metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­(di­methyl sulfoxide)(μ4-pyridine-2,5-di­carboxyl­ato)calcium(II)]

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran, and cDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
*Correspondence e-mail: z.safari515@yahoo.com

(Received 19 December 2010; accepted 26 December 2010; online 15 January 2011)

In the polymeric title compound, [Ca(C7H3NO4)(H2O)(C2H6OS)]n, the CaII ion is coordinated in a distorted penta­gonal–bipyramidal CdNO6 geometry. The crystal packing is stabilized by O—H⋯O hydrogen bonds and ππ stacking inter­actions between the aromatic rings of pyridine-2,5-dicarb­oxy­late with centroid–centroid distances of 3.6166 (13) Å.

Related literature

For related coordination polymers involving pyridine-2,5-dicarb­oxy­lic acid, see: Aghabozorg, Derikvand et al. (2008[Aghabozorg, H., Derikvand, Z., Nemati, A., Bahrami, Z. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m111.]); Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Xu et al. (2008[Xu, H.-Y., Ma, H.-L., Xu, M.-T., Zhao, W.-X. & Guo, B.-G. (2008). Acta Cryst. E64, m413.]); Sun et al. (2006[Sun, L.-P., Niu, S.-Y., Jin, J., Yang, G.-D. & Ye, L. (2006). Eur. J. Inorg. Chem. pp. 5130-5137.]); Çolak et al. (2010[Çolak, A. T., Yeşilel, O. Z. & Büyükgüngör, O. (2010). J. Inorg. Organomet. Polym. 20, 26-31.]); Wang et al. (2009[Wang, D.-E., Tian, Z.-F., Wang, F., Wen, L.-L. & Li, D.-F. (2009). J. Inorg. Organomet. Polym. 19, 196-201.]); Xie et al. (2009[Xie, C., Zhou, Q. & Xu, J. (2009). J. Chem. Crystallogr. 39, 799-803.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C7H3NO4)(H2O)(C2H6OS)]

  • Mr = 301.34

  • Monoclinic, P 21 /c

  • a = 10.449 (2) Å

  • b = 11.450 (2) Å

  • c = 10.325 (2) Å

  • β = 95.93 (3)°

  • V = 1228.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 298 K

  • 0.27 × 0.15 × 0.15 mm

Data collection
  • Stoe IPDS II diffractometer

  • 8616 measured reflections

  • 3302 independent reflections

  • 2718 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.097

  • S = 1.11

  • 3302 reflections

  • 173 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O3i 0.84 (3) 2.00 (3) 2.782 (2) 155 (3)
O6—H6A⋯O1ii 0.82 (4) 1.96 (4) 2.739 (2) 158 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Extended frameworks of coordination polymers based on transition metal ions and multifunctional bridging ligands are currently of great interest because of their intriguing topologies and their potential applications (Sun et al., 2006; Wang et al., 2009; Xie, et al., 2009). Pyridine-2,5-dicarboxylic acid (py-2,5- dcH2) has unique features because of the presence of two carboxylate groups (O donor atoms) and the pyridine ring (N donor atom), which aids to increase the dimensionality of the assembled covalent network. Therefore, it is most likely that py-2,5-dcH2 will form low symmetric structures with metals (Aghabozorg, Derikvand, et al., 2008; Xu et al., 2008; Çolak et al., 2010). Our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg, Manteghi & Sheshmani, 2008).

The title compound consists of one deprotonated 2,5-pydc unit, one water molecule, and one dimethylsulfoxide molecule. The asymmetric unit of the title compound is shown in Fig. 1. In the the title compound, CaII ion is 7-coordinated in a NO6 environment. Its geometry is distorted pentagonal bipyramidal. Pentagonal plane is constructed by one oxygen from water, one nitrogen and three oxygen atoms from the (py-2,5-dc)2– and axial positions occupied by two oxygen atoms from (py-2,5-dc)2– and dimethylsulfoxide moieties. A perspective view of the coordination environment around the CaII ion is shown in Fig. 2. The crystal structure of title compound shows that the compound is a two-dimensional polymer [Ca(C7H3NO4)(H2O)(C2H6SO)]n. The polymeric structure of title compound is shown in Fig. 3. There are O—H···O hydrogen bonds between hydrogen atoms of water molecules and oxygen atoms of py-2,5-dc (Table 2). There is also ππ stacking interactions (Fig. 4) between two aromatic rings of (py-2,5-dc)2– with centroid–centroid distances of 3.6166 (13) Å.

Related literature top

For related coordination polymers involving pyridine-2,5-dicarboxylic acid, see: Aghabozorg, Derikvand et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008); Xu et al. (2008); Sun et al. (2006); Çolak et al. (2010); Wang et al. (2009); Xie et al. (2009).

Experimental top

A mixture of CaCl2 (0.627 g), pyridine-2,5-dicarboxylic acid (0.1519 g), 1,4-butanediammine (1 ml) in 6 ml DMSO was stirred at room temprature for 2 hrs.The solution was filtered, and the filtrate was stand at room temprature. After two days, colorless block shape crystals of the title compound were obtained (m.p 249°C).

Refinement top

The hydrogen atoms of the water molecule were found in a difference Fourier map and refined isotropically. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymetric unit of title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The coordination environment around the Ca(II) ion in the title compound.
[Figure 3] Fig. 3. A view of the two-dimensional structure of the title compound down the a-axis. Hydrogen atoms have been ommited for clarity.
[Figure 4] Fig. 4. The packing diagram of title compound showing intermolecular π-π interaction (dashed lines) between pyridine rings of py-2,5-dc.
Poly[aqua(dimethyl sulfoxide)(µ4-pyridine-2,5-dicarboxylato)calcium(II)] top
Crystal data top
[Ca(C7H3NO4)(C2H6OS)(H2O)]F(000) = 624.0
Mr = 301.34Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3302 reflections
a = 10.449 (2) Åθ = 2.7–29.1°
b = 11.450 (2) ŵ = 0.70 mm1
c = 10.325 (2) ÅT = 298 K
β = 95.93 (3)°Block, colorless
V = 1228.7 (4) Å30.27 × 0.15 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
2718 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 29.1°, θmin = 2.7°
Detector resolution: 0.15 mm pixels mm-1h = 1413
rotation method scansk = 1315
8616 measured reflectionsl = 1414
3302 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.5537P]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ca(C7H3NO4)(C2H6OS)(H2O)]V = 1228.7 (4) Å3
Mr = 301.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.449 (2) ŵ = 0.70 mm1
b = 11.450 (2) ÅT = 298 K
c = 10.325 (2) Å0.27 × 0.15 × 0.15 mm
β = 95.93 (3)°
Data collection top
Stoe IPDS II
diffractometer
2718 reflections with I > 2σ(I)
8616 measured reflectionsRint = 0.041
3302 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.44 e Å3
3302 reflectionsΔρmin = 0.30 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.67926 (4)1.08747 (3)0.15351 (3)0.01937 (10)
S11.00299 (7)0.95463 (8)0.23803 (8)0.0533 (2)
O50.89654 (19)1.04175 (19)0.2093 (2)0.0525 (5)
C90.9931 (4)0.8533 (4)0.1082 (4)0.0836 (13)
H9A0.90680.82370.09330.125*
H9B1.05150.78990.12980.125*
H9C1.01550.89140.03080.125*
C80.9511 (5)0.8595 (5)0.3569 (5)0.114 (2)
H8A0.93860.90310.43400.171*
H8B1.01510.80030.37770.171*
H8C0.87150.82340.32370.171*
N10.63254 (17)0.97721 (13)0.36682 (15)0.0212 (3)
C50.6057 (2)0.86315 (16)0.37822 (17)0.0207 (4)
H50.57350.82280.30370.025*
C10.67172 (18)1.03533 (15)0.47695 (17)0.0176 (3)
C30.6660 (2)0.86337 (17)0.60687 (18)0.0245 (4)
H30.68030.82520.68660.029*
C20.6872 (2)0.98248 (17)0.59788 (18)0.0237 (4)
H20.71141.02620.67230.028*
C40.62317 (19)0.80212 (15)0.49489 (17)0.0191 (3)
C70.59970 (19)0.67151 (16)0.49754 (18)0.0203 (4)
O30.53823 (15)0.62711 (12)0.39822 (14)0.0265 (3)
O40.64566 (17)0.61761 (13)0.59638 (14)0.0311 (4)
O20.72123 (17)1.22148 (12)0.56666 (14)0.0307 (3)
O10.69341 (17)1.20480 (12)0.34958 (13)0.0307 (3)
C60.6974 (2)1.16520 (15)0.46351 (18)0.0209 (4)
O60.7022 (2)1.06481 (15)0.07874 (15)0.0350 (4)
H6A0.685 (3)1.127 (3)0.116 (3)0.055 (9)*
H6B0.643 (3)1.019 (3)0.106 (3)0.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0298 (2)0.01175 (16)0.01607 (16)0.00106 (14)0.00007 (13)0.00002 (13)
S10.0306 (3)0.0622 (5)0.0649 (5)0.0089 (3)0.0054 (3)0.0029 (4)
O50.0371 (10)0.0517 (12)0.0662 (13)0.0085 (9)0.0062 (9)0.0013 (10)
C90.077 (3)0.074 (3)0.103 (3)0.005 (2)0.025 (2)0.026 (2)
C80.109 (4)0.128 (4)0.109 (4)0.062 (3)0.038 (3)0.066 (3)
N10.0341 (9)0.0119 (7)0.0173 (7)0.0012 (6)0.0011 (6)0.0000 (5)
C50.0321 (10)0.0128 (8)0.0169 (8)0.0009 (7)0.0012 (7)0.0013 (6)
C10.0235 (9)0.0118 (8)0.0177 (8)0.0012 (6)0.0026 (7)0.0012 (6)
C30.0383 (11)0.0187 (9)0.0159 (8)0.0018 (8)0.0000 (8)0.0034 (7)
C20.0371 (11)0.0170 (8)0.0165 (8)0.0043 (8)0.0000 (7)0.0022 (7)
C40.0252 (9)0.0122 (8)0.0200 (8)0.0005 (7)0.0034 (7)0.0013 (6)
C70.0280 (10)0.0133 (8)0.0200 (8)0.0001 (7)0.0049 (7)0.0014 (6)
O30.0342 (8)0.0172 (6)0.0272 (7)0.0041 (6)0.0019 (6)0.0016 (5)
O40.0573 (10)0.0150 (6)0.0203 (7)0.0015 (6)0.0002 (7)0.0039 (5)
O20.0549 (10)0.0151 (6)0.0212 (7)0.0016 (6)0.0003 (6)0.0042 (5)
O10.0598 (10)0.0131 (6)0.0191 (6)0.0043 (6)0.0029 (7)0.0003 (5)
C60.0307 (10)0.0116 (8)0.0206 (8)0.0003 (7)0.0031 (7)0.0021 (6)
O60.0622 (12)0.0181 (7)0.0253 (7)0.0083 (8)0.0076 (7)0.0010 (6)
Geometric parameters (Å, º) top
Ca1—O3i2.3249 (16)C5—C41.388 (2)
Ca1—O52.343 (2)C5—H50.9300
Ca1—O12.4214 (15)C1—C21.382 (3)
Ca1—O2ii2.4215 (15)C1—C61.520 (2)
Ca1—O4iii2.4377 (15)C3—C21.386 (3)
Ca1—O62.4484 (17)C3—C41.386 (3)
Ca1—N12.6278 (16)C3—H30.9300
Ca1—H6B2.78 (3)C2—H20.9300
S1—O51.501 (2)C4—C71.516 (2)
S1—C81.768 (5)C7—O41.246 (2)
S1—C91.768 (4)C7—O31.260 (2)
C9—H9A0.9600O3—Ca1iv2.3249 (16)
C9—H9B0.9600O4—Ca1v2.4377 (15)
C9—H9C0.9600O2—C61.248 (2)
C8—H8A0.9600O2—Ca1vi2.4215 (15)
C8—H8B0.9600O1—C61.257 (2)
C8—H8C0.9600O6—H6A0.82 (4)
N1—C51.344 (2)O6—H6B0.84 (3)
N1—C11.344 (2)
O3i—Ca1—O5178.05 (7)S1—C8—H8A109.5
O3i—Ca1—O193.30 (6)S1—C8—H8B109.5
O5—Ca1—O186.82 (7)H8A—C8—H8B109.5
O3i—Ca1—O2ii87.06 (6)S1—C8—H8C109.5
O5—Ca1—O2ii94.87 (7)H8A—C8—H8C109.5
O1—Ca1—O2ii79.09 (5)H8B—C8—H8C109.5
O3i—Ca1—O4iii91.12 (6)C5—N1—C1117.08 (16)
O5—Ca1—O4iii87.47 (7)C5—N1—Ca1126.80 (12)
O1—Ca1—O4iii137.02 (5)C1—N1—Ca1113.85 (11)
O2ii—Ca1—O4iii143.87 (5)N1—C5—C4123.73 (17)
O3i—Ca1—O689.31 (7)N1—C5—H5118.1
O5—Ca1—O691.53 (8)C4—C5—H5118.1
O1—Ca1—O6150.93 (5)N1—C1—C2122.99 (16)
O2ii—Ca1—O672.13 (5)N1—C1—C6116.64 (16)
O4iii—Ca1—O671.77 (5)C2—C1—C6120.37 (16)
O3i—Ca1—N191.41 (6)C2—C3—C4118.80 (17)
O5—Ca1—N186.89 (7)C2—C3—H3120.6
O1—Ca1—N164.30 (5)C4—C3—H3120.6
O2ii—Ca1—N1143.22 (5)C1—C2—C3119.12 (18)
O4iii—Ca1—N172.87 (5)C1—C2—H2120.4
O6—Ca1—N1144.64 (5)C3—C2—H2120.4
O3i—Ca1—H6B78.5 (6)C3—C4—C5118.12 (17)
O5—Ca1—H6B102.0 (6)C3—C4—C7121.52 (16)
O1—Ca1—H6B162.4 (7)C5—C4—C7120.34 (17)
O2ii—Ca1—H6B84.9 (7)O4—C7—O3126.02 (18)
O4iii—Ca1—H6B59.5 (7)O4—C7—C4117.00 (18)
O6—Ca1—H6B17.1 (7)O3—C7—C4116.95 (17)
N1—Ca1—H6B130.7 (7)C7—O3—Ca1iv132.07 (13)
O5—S1—C8105.83 (18)C7—O4—Ca1v135.17 (13)
O5—S1—C9107.57 (19)C6—O2—Ca1vi139.02 (14)
C8—S1—C997.1 (3)C6—O1—Ca1125.13 (12)
S1—O5—Ca1151.24 (14)O2—C6—O1126.64 (17)
S1—C9—H9A109.5O2—C6—C1116.68 (16)
S1—C9—H9B109.5O1—C6—C1116.68 (16)
H9A—C9—H9B109.5Ca1—O6—H6A110 (2)
S1—C9—H9C109.5Ca1—O6—H6B105 (2)
H9A—C9—H9C109.5H6A—O6—H6B106 (3)
H9B—C9—H9C109.5
C8—S1—O5—Ca151.3 (4)C4—C3—C2—C13.5 (3)
C9—S1—O5—Ca151.7 (3)C2—C3—C4—C51.1 (3)
O1—Ca1—O5—S1124.5 (3)C2—C3—C4—C7179.23 (19)
O2ii—Ca1—O5—S1156.7 (3)N1—C5—C4—C32.6 (3)
O4iii—Ca1—O5—S112.9 (3)N1—C5—C4—C7175.50 (18)
O6—Ca1—O5—S184.5 (3)C3—C4—C7—O414.9 (3)
N1—Ca1—O5—S160.1 (3)C5—C4—C7—O4163.15 (18)
O3i—Ca1—N1—C589.08 (17)C3—C4—C7—O3166.78 (19)
O5—Ca1—N1—C589.97 (18)C5—C4—C7—O315.2 (3)
O1—Ca1—N1—C5177.93 (18)O4—C7—O3—Ca1iv88.3 (2)
O2ii—Ca1—N1—C5176.05 (15)C4—C7—O3—Ca1iv93.54 (19)
O4iii—Ca1—N1—C51.66 (16)O3—C7—O4—Ca1v10.8 (3)
O6—Ca1—N1—C51.7 (2)C4—C7—O4—Ca1v167.38 (13)
O3i—Ca1—N1—C1108.68 (14)O3i—Ca1—O1—C6103.41 (18)
O5—Ca1—N1—C172.27 (14)O5—Ca1—O1—C674.64 (18)
O1—Ca1—N1—C115.69 (13)O2ii—Ca1—O1—C6170.23 (18)
O2ii—Ca1—N1—C121.71 (19)O4iii—Ca1—O1—C68.2 (2)
O4iii—Ca1—N1—C1160.58 (14)O6—Ca1—O1—C6162.06 (16)
O6—Ca1—N1—C1160.53 (13)N1—Ca1—O1—C613.44 (16)
C1—N1—C5—C43.8 (3)Ca1vi—O2—C6—O137.1 (4)
Ca1—N1—C5—C4157.96 (15)Ca1vi—O2—C6—C1143.44 (16)
C5—N1—C1—C21.2 (3)Ca1—O1—C6—O2170.04 (17)
Ca1—N1—C1—C2162.86 (15)Ca1—O1—C6—C19.4 (3)
C5—N1—C1—C6177.95 (17)N1—C1—C6—O2173.06 (18)
Ca1—N1—C1—C618.0 (2)C2—C1—C6—O26.1 (3)
N1—C1—C2—C32.4 (3)N1—C1—C6—O17.5 (3)
C6—C1—C2—C3178.49 (18)C2—C1—C6—O1173.34 (19)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+5/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+5/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O3iii0.84 (3)2.00 (3)2.782 (2)155 (3)
O6—H6A···O1ii0.82 (4)1.96 (4)2.739 (2)158 (3)
Symmetry codes: (ii) x, y+5/2, z1/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ca(C7H3NO4)(C2H6OS)(H2O)]
Mr301.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.449 (2), 11.450 (2), 10.325 (2)
β (°) 95.93 (3)
V3)1228.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.27 × 0.15 × 0.15
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8616, 3302, 2718
Rint0.041
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.11
No. of reflections3302
No. of parameters173
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O3i0.84 (3)2.00 (3)2.782 (2)155 (3)
O6—H6A···O1ii0.82 (4)1.96 (4)2.739 (2)158 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+5/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the Islamic Azad University, North Tehran Branch, for financial support and Shahid Beheshti University for the provision of X-ray facilities.

References

First citationAghabozorg, H., Derikvand, Z., Nemati, A., Bahrami, Z. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationÇolak, A. T., Yeşilel, O. Z. & Büyükgüngör, O. (2010). J. Inorg. Organomet. Polym. 20, 26–31.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSun, L.-P., Niu, S.-Y., Jin, J., Yang, G.-D. & Ye, L. (2006). Eur. J. Inorg. Chem. pp. 5130–5137.  Web of Science CSD CrossRef Google Scholar
First citationWang, D.-E., Tian, Z.-F., Wang, F., Wen, L.-L. & Li, D.-F. (2009). J. Inorg. Organomet. Polym. 19, 196–201.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, C., Zhou, Q. & Xu, J. (2009). J. Chem. Crystallogr. 39, 799–803.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, H.-Y., Ma, H.-L., Xu, M.-T., Zhao, W.-X. & Guo, B.-G. (2008). Acta Cryst. E64, m413.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds