metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m266-m267

Bis(2-amino-6-methyl­pyridinium) trans-di­aqua­bis­­(pyrazine-2,3-di­carboxyl­ato)cobaltate(II) octa­hydrate

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, Purdue University, W. Lafayette, IN 47907, USA
*Correspondence e-mail: pfanwick@purdue.edu

(Received 20 December 2010; accepted 8 January 2011; online 29 January 2011)

The title compound, (C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2O, was obtained by the reaction of CoCl2·6H2O with 1,4-pyrazine-2,3-dicarb­oxy­lic acid and 2-amino-6-methyl­pyridine in aqueous solution (molar ratio 1:2:2). The CoII ion is situated on an inversion centre and is coordinated by two O and two N atoms of two symmetry-related 1,4-pyrazine-2,3-dicarboxyl­ate ligands and two water mol­ecules and has a disorted octa­hedral coordination environment. The asymmetric unit also contains four water mol­ecules. In the crystal, extensive inter­molecular classical N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.490 (1) Å] connect the various components, forming a three-dimensional network.

Related literature

For related structures based on 1,4-pyrazine-2,3-dicarboxylate ligands, see: Eshtiagh-Hosseini, Alfi et al. (2010[Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010). Acta Cryst. E66, o2810-o2811.]). Eshtiagh-Hosseini, Gschwind et al. (2010[Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826-m827.]). Eshtiagh-Hosseini, Necas et al. (2010[Eshtiagh-Hosseini, H., Necas, M., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m1320-m1321.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2O

  • Mr = 789.58

  • Triclinic, [P \overline 1]

  • a = 6.8570 (4) Å

  • b = 10.2348 (5) Å

  • c = 13.6403 (10) Å

  • α = 109.604 (4)°

  • β = 90.424 (5)°

  • γ = 105.524 (4)°

  • V = 863.89 (9) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 4.68 mm−1

  • T = 150 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku RAPID II diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.280, Tmax = 0.508

  • 19137 measured reflections

  • 3152 independent reflections

  • 3151 reflections with > 2.0σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.087

  • S = 1.04

  • 3152 reflections

  • 285 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O31 0.82 (2) 1.98 (2) 2.794 (3) 179 (2)
N12—H121⋯O2Wi 0.86 (3) 2.05 (2) 2.900 (2) 170 (2)
N12—H122⋯O32 0.84 (3) 1.97 (3) 2.804 (3) 176 (2)
O1W—H1W1⋯O2Wii 0.78 (3) 1.99 (3) 2.770 (3) 178 (3)
O1W—H1W2⋯O5Wii 0.85 (3) 1.85 (3) 2.697 (2) 172 (3)
O2W—H2W1⋯O21 0.85 (3) 2.10 (3) 2.942 (3) 168 (3)
O2W—H2W2⋯O4W 0.72 (3) 2.07 (3) 2.784 (3) 176 (2)
O3W—H3W2⋯O4W 0.83 (3) 1.99 (3) 2.811 (3) 167 (3)
O4W—H4W1⋯O3Wiii 0.80 (3) 1.98 (2) 2.755 (2) 165 (3)
O4W—H4W2⋯O31iv 0.80 (2) 1.94 (2) 2.738 (2) 178 (3)
O5W—H5W1⋯O32v 0.79 (2) 2.00 (3) 2.767 (2) 161 (3)
O5W—H5W2⋯N4vi 0.77 (3) 2.11 (3) 2.871 (3) 167 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) x, y+1, z; (vi) x-1, y+1, z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Johnson, 1976[Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and local programs.

Supporting information


Comment top

In the recent years, our research group has been interested in the synthesis of proton transfer compounds and study of their behavior with metal ions. We have focused on the proton delivery from polycarboxylic acids, which are considered as very good donors and amines as acceptors. Among polycarboxylic acids, 1,4-pyrazine-2,3-dicarboxylic acid (pyzdcH2) as a very important carboxylate derivative has attracted much interest in coordination chemistry and it is the one that we utilized widely in our studies (Eshtiagh-Hosseini, Alfi et al., 2010). In order to develop novel systems, we wish to report the first complex of CoII ion with pydcH2 as proton donor and 2a-6 m as proton acceptor. PyzdcH2 has proved to be well suited for the construction of multidimensional frameworks due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms).

The asymmetric unit of the title compound (Fig. 1), contains half a [Co(pyzdc)2(H2O)2]2- anion, a (2a-6mpyH)+ cation, and four uncoordinated water molecules. In the anions, CoII ion has a N2O4 donor set bond with normal distances and angles. The title compound can be compared with the mono-nuclear coordination compound of CoII ion which has recently been synthesized and characterized by our research group (Eshtiagh-Hosseini, Necas et al., 2010). There are some hydrogen bonding interactions such as O–H···O and N–H···O between cations, anions and uncoordinated water molecules (Table 2). The water molecules act also as bridging agents and link anions and cationic fragments together via hydrogen bonds which resulted in the creation of six supramolecular synthons as R22(8), R34(10), R35(10), R45(15), R44(18), R44(26) (Figs. 2, 3). As it is seen in Fig. 4, there are also π-π stacking interactions between the aromatic rings of the coordinated (pyzdc)2– and carboxylate functional group anions and (2a-6mpyH)+ cation. Ion pairing, hydrogen bonds, ππ stacking, and van der Waals interactions stabilize the crystal structure. These interactions lead to formation of a three-dimensional structure. By the help of hydrogen bond interactions between uncoordinated water molecules, the related crystalline network bears (H2O)6 cluster in the form of two branched-cyclohexane (Eshtiagh-Hosseini, Gschwind et al., 2010).

Related literature top

For related 1,4-pyrazine-2,3-dicarboxylic acid structures, see: Eshtiagh-Hosseini, Alfi et al. (2010). Eshtiagh-Hosseini, Gschwind et al. (2010). Eshtiagh-Hosseini, Necas et al. (2010).

Experimental top

A solution of pyzdcH2 (0.6 mmol, 0.1 g) and 2a-6mpy (1.2 mmol, 0.13 g) in water (10 ml) was refluxed for an hour, then a solution of CoCl2.6H2O (0.02 mmol, 0.05 g) was added dropwise and continued refluxing for 6 hrs at 293 K. The obtained orange solution gave orange block like crystals of title compound after slow evaporation of solvent at R.T.

Refinement top

Carbon bound hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso set to either 1.2Ueq(C) or 1.5Ueq(Cmethyl) of their parent atoms. The C—H distances were set to 0.93 and 0.96Å for aromatic and methyl H atoms, respectively. Hydrogen atoms bonded to N and O were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound showing 50% ellipsoid probability. Only the symmetry independent atoms are labelled.
[Figure 2] Fig. 2. Water molecules connecting anions and cations.
[Figure 3] Fig. 3. Schematic representation of different graph set motifs in the crystalline network of 1. Dashed lines indicate the hydrogen bonds.
[Figure 4] Fig. 4. Perspective views of the ππ stacking interactions.
Bis(2-amino-6-methylpyridinium) trans-diaquabis(pyrazine-2,3-dicarboxylato)cobaltate(II) octahydrate top
Crystal data top
(C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2OZ = 1
Mr = 789.58F(000) = 413
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Cu - Kα radiation, λ = 1.54184 Å
a = 6.8570 (4) ÅCell parameters from 3181 reflections
b = 10.2348 (5) Åθ = 3–71°
c = 13.6403 (10) ŵ = 4.68 mm1
α = 109.604 (4)°T = 150 K
β = 90.424 (5)°Chunk, brown
γ = 105.524 (4)°0.20 × 0.18 × 0.14 mm
V = 863.89 (9) Å3
Data collection top
Rigaku RAPID II
diffractometer
3151 reflections with > 2.0σ(I)
Confocal optics monochromatorRint = 0.036
ω scansθmax = 71.9°, θmin = 3.5°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 08
Tmin = 0.280, Tmax = 0.508k = 1212
19137 measured reflectionsl = 1616
3152 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.057P)2 + 0.2735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.23 e Å3
3152 reflectionsΔρmin = 0.40 e Å3
285 parameters
Crystal data top
(C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2Oγ = 105.524 (4)°
Mr = 789.58V = 863.89 (9) Å3
Triclinic, P1Z = 1
a = 6.8570 (4) ÅCu - Kα radiation
b = 10.2348 (5) ŵ = 4.68 mm1
c = 13.6403 (10) ÅT = 150 K
α = 109.604 (4)°0.20 × 0.18 × 0.14 mm
β = 90.424 (5)°
Data collection top
Rigaku RAPID II
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3151 reflections with > 2.0σ(I)
Tmin = 0.280, Tmax = 0.508Rint = 0.036
19137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
3152 reflectionsΔρmin = 0.40 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.00000.01861 (12)
O1W0.78751 (19)0.34893 (13)0.12293 (10)0.0281 (3)
O210.79587 (17)0.45953 (12)0.10552 (10)0.0244 (3)
O220.70494 (18)0.32395 (14)0.20508 (10)0.0309 (3)
O2W0.4756 (2)0.56148 (13)0.22356 (12)0.0277 (3)
O310.97825 (17)0.20966 (12)0.31826 (9)0.0257 (3)
O320.77764 (18)0.02378 (12)0.18707 (10)0.0278 (3)
O3W0.6610 (2)0.37101 (15)0.42401 (11)0.0318 (3)
O4W0.3166 (2)0.44434 (16)0.37295 (12)0.0307 (3)
O5W0.3645 (2)0.92255 (14)0.12233 (11)0.0301 (3)
N11.08935 (19)0.33770 (13)0.03478 (10)0.0185 (3)
N41.1850 (2)0.14113 (14)0.11111 (11)0.0212 (3)
N110.82673 (19)0.07875 (14)0.46263 (11)0.0201 (3)
N120.6818 (2)0.13230 (16)0.32292 (12)0.0243 (3)
C20.9819 (2)0.29538 (15)0.10633 (12)0.0179 (3)
C31.0303 (2)0.19613 (16)0.14422 (13)0.0188 (3)
C51.2920 (2)0.18647 (17)0.04140 (13)0.0219 (3)
C61.2436 (2)0.28428 (17)0.00249 (13)0.0213 (3)
C120.7163 (2)0.06269 (17)0.42549 (13)0.0200 (3)
C130.6442 (2)0.12847 (18)0.49910 (14)0.0240 (4)
C140.6901 (3)0.0497 (2)0.60314 (15)0.0286 (4)
C150.8071 (3)0.0960 (2)0.63821 (14)0.0281 (4)
C160.8729 (2)0.15970 (18)0.56645 (14)0.0239 (3)
C170.9948 (3)0.31426 (18)0.59367 (16)0.0307 (4)
C210.8125 (2)0.36383 (17)0.14298 (13)0.0215 (3)
C310.9158 (2)0.13968 (17)0.22335 (13)0.0211 (3)
H51.40180.15160.01830.026*
H61.32000.31280.04670.026*
H110.869 (3)0.117 (2)0.4202 (17)0.023 (5)*
H130.56600.22480.47680.029*
H140.64320.09300.65180.034*
H150.83940.14850.70950.034*
H1210.618 (3)0.223 (3)0.3014 (17)0.032 (5)*
H1220.716 (3)0.086 (3)0.2827 (19)0.035 (6)*
H17A1.12250.31850.56460.046*
H17B1.01940.36000.66840.046*
H17C0.92100.36360.56550.046*
H1W10.712 (4)0.374 (3)0.150 (2)0.044 (7)*
H1W20.729 (4)0.263 (3)0.1249 (19)0.045 (7)*
H2W10.561 (4)0.520 (3)0.191 (2)0.052 (7)*
H2W20.431 (4)0.528 (3)0.260 (2)0.037 (7)*
H3W10.728 (4)0.345 (3)0.378 (2)0.046 (7)*
H3W20.564 (4)0.389 (3)0.399 (2)0.050 (7)*
H4W10.300 (4)0.493 (3)0.430 (2)0.039 (7)*
H4W20.219 (4)0.375 (3)0.356 (2)0.051 (7)*
H5W10.478 (4)0.970 (3)0.145 (2)0.049 (7)*
H5W20.304 (4)0.977 (3)0.125 (2)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02261 (19)0.01812 (18)0.0174 (2)0.00806 (13)0.00137 (13)0.00745 (14)
O1W0.0329 (6)0.0208 (6)0.0290 (8)0.0054 (5)0.0089 (5)0.0086 (5)
O210.0262 (6)0.0268 (6)0.0269 (7)0.0142 (5)0.0064 (5)0.0126 (5)
O220.0295 (6)0.0455 (7)0.0302 (8)0.0197 (5)0.0137 (5)0.0219 (6)
O2W0.0279 (6)0.0239 (6)0.0322 (8)0.0108 (5)0.0006 (5)0.0083 (6)
O310.0292 (6)0.0268 (6)0.0191 (7)0.0024 (5)0.0001 (5)0.0100 (5)
O320.0292 (6)0.0258 (6)0.0242 (7)0.0011 (5)0.0008 (5)0.0105 (5)
O3W0.0355 (7)0.0367 (7)0.0249 (8)0.0124 (6)0.0078 (6)0.0113 (6)
O4W0.0306 (7)0.0281 (6)0.0273 (9)0.0037 (6)0.0009 (5)0.0058 (6)
O5W0.0247 (6)0.0248 (6)0.0455 (9)0.0092 (5)0.0019 (5)0.0166 (6)
N10.0216 (6)0.0175 (6)0.0158 (7)0.0058 (5)0.0009 (5)0.0051 (5)
N40.0232 (6)0.0203 (6)0.0211 (8)0.0084 (5)0.0008 (5)0.0069 (5)
N110.0193 (6)0.0221 (6)0.0213 (8)0.0071 (5)0.0034 (5)0.0098 (6)
N120.0257 (7)0.0217 (7)0.0235 (9)0.0014 (6)0.0001 (6)0.0098 (6)
C20.0194 (7)0.0173 (7)0.0152 (9)0.0045 (5)0.0001 (6)0.0040 (6)
C30.0193 (7)0.0178 (7)0.0167 (9)0.0035 (5)0.0015 (6)0.0042 (6)
C50.0224 (7)0.0232 (7)0.0205 (9)0.0101 (6)0.0038 (6)0.0053 (6)
C60.0233 (7)0.0223 (7)0.0192 (9)0.0081 (6)0.0061 (6)0.0070 (6)
C120.0157 (7)0.0239 (7)0.0232 (10)0.0081 (6)0.0024 (6)0.0099 (7)
C130.0206 (7)0.0264 (8)0.0288 (11)0.0072 (6)0.0056 (6)0.0139 (7)
C140.0259 (8)0.0404 (10)0.0286 (11)0.0145 (7)0.0109 (7)0.0194 (8)
C150.0276 (8)0.0383 (9)0.0201 (10)0.0159 (7)0.0057 (7)0.0072 (8)
C160.0200 (7)0.0268 (8)0.0260 (10)0.0123 (6)0.0021 (6)0.0062 (7)
C170.0326 (9)0.0248 (8)0.0312 (11)0.0111 (7)0.0016 (7)0.0031 (7)
C210.0211 (7)0.0243 (8)0.0196 (9)0.0086 (6)0.0009 (6)0.0066 (7)
C310.0214 (7)0.0220 (7)0.0230 (10)0.0079 (6)0.0019 (6)0.0104 (7)
Geometric parameters (Å, º) top
Co1—O21i2.0790 (12)N11—C121.357 (2)
Co1—O212.0790 (11)N11—C161.363 (2)
Co1—O1W2.0841 (12)N11—H110.82 (2)
Co1—O1Wi2.0841 (12)N12—C121.325 (2)
Co1—N12.1045 (12)N12—H1210.86 (2)
Co1—N1i2.1045 (12)N12—H1220.84 (2)
O1W—H1W10.77 (3)C2—C31.393 (2)
O1W—H1W20.86 (3)C2—C211.516 (2)
O21—C211.2760 (19)C3—C311.518 (2)
O22—C211.228 (2)C5—C61.388 (2)
O2W—H2W10.85 (3)C5—H50.9300
O2W—H2W20.72 (3)C6—H60.9300
O31—C311.256 (2)C12—C131.410 (2)
O32—C311.244 (2)C13—C141.361 (3)
O3W—H3W10.80 (3)C13—H130.9300
O3W—H3W20.84 (3)C14—C151.404 (3)
O4W—H4W10.80 (3)C14—H140.9300
O4W—H4W20.80 (3)C15—C161.365 (3)
O5W—H5W10.79 (3)C15—H150.9300
O5W—H5W20.77 (3)C16—C171.494 (2)
N1—C61.329 (2)C17—H17A0.9600
N1—C21.344 (2)C17—H17B0.9600
N4—C51.335 (2)C17—H17C0.9600
N4—C31.342 (2)
O21i—Co1—O21180.00 (7)N4—C3—C2121.24 (14)
O21i—Co1—O1W90.50 (5)N4—C3—C31114.49 (13)
O21—Co1—O1W89.50 (5)C2—C3—C31124.27 (14)
O21i—Co1—O1Wi89.50 (5)N4—C5—C6121.69 (14)
O21—Co1—O1Wi90.50 (5)N4—C5—H5119.20
O1W—Co1—O1Wi180.00 (6)C6—C5—H5119.20
O21i—Co1—N1100.88 (5)N1—C6—C5120.75 (14)
O21—Co1—N179.12 (5)N1—C6—H6119.60
O1W—Co1—N192.48 (5)C5—C6—H6119.60
O1Wi—Co1—N187.52 (5)N12—C12—N11119.07 (15)
O21i—Co1—N1i79.12 (5)N12—C12—C13123.23 (15)
O21—Co1—N1i100.88 (5)N11—C12—C13117.70 (15)
O1W—Co1—N1i87.52 (5)C14—C13—C12119.36 (15)
O1Wi—Co1—N1i92.48 (5)C14—C13—H13120.30
N1—Co1—N1i180.00 (6)C12—C13—H13120.30
Co1—O1W—H1W1119.7 (19)C13—C14—C15121.07 (16)
Co1—O1W—H1W2122.8 (17)C13—C14—H14119.50
H1W1—O1W—H1W2109 (2)C15—C14—H14119.50
C21—O21—Co1116.29 (10)C16—C15—C14119.19 (17)
H2W1—O2W—H2W2110 (3)C16—C15—H15120.40
H3W1—O3W—H3W2108 (3)C14—C15—H15120.40
H4W1—O4W—H4W2104 (3)N11—C16—C15118.88 (15)
H5W1—O5W—H5W2106 (3)N11—C16—C17116.76 (16)
C6—N1—C2118.50 (13)C15—C16—C17124.35 (17)
C6—N1—Co1128.65 (11)C16—C17—H17A109.50
C2—N1—Co1112.57 (10)C16—C17—H17B109.50
C5—N4—C3117.44 (13)H17A—C17—H17B109.50
C12—N11—C16123.77 (15)C16—C17—H17C109.50
C12—N11—H11117.9 (15)H17A—C17—H17C109.50
C16—N11—H11118.3 (15)H17B—C17—H17C109.50
C12—N12—H121117.3 (15)O22—C21—O21125.85 (15)
C12—N12—H122119.2 (16)O22—C21—C2118.38 (14)
H121—N12—H122123 (2)O21—C21—C2115.77 (13)
N1—C2—C3120.37 (14)O32—C31—O31126.69 (15)
N1—C2—C21116.14 (13)O32—C31—C3116.34 (15)
C3—C2—C21123.47 (14)O31—C31—C3116.80 (13)
O21i—Co1—O21—C21113 (47)C3—N4—C5—C61.4 (2)
O1W—Co1—O21—C2193.19 (12)C2—N1—C6—C50.3 (2)
O1Wi—Co1—O21—C2186.81 (12)Co1—N1—C6—C5173.81 (11)
N1—Co1—O21—C210.57 (11)N4—C5—C6—N10.9 (2)
N1i—Co1—O21—C21179.43 (11)C16—N11—C12—N12179.22 (14)
O21i—Co1—N1—C63.94 (14)C16—N11—C12—C130.6 (2)
O21—Co1—N1—C6176.06 (14)N12—C12—C13—C14178.72 (15)
O1W—Co1—N1—C694.93 (14)N11—C12—C13—C141.1 (2)
O1Wi—Co1—N1—C685.07 (14)C12—C13—C14—C150.3 (2)
N1i—Co1—N1—C685 (62)C13—C14—C15—C161.0 (2)
O21i—Co1—N1—C2177.76 (10)C12—N11—C16—C150.7 (2)
O21—Co1—N1—C22.24 (10)C12—N11—C16—C17179.59 (14)
O1W—Co1—N1—C291.26 (11)C14—C15—C16—N111.5 (2)
O1Wi—Co1—N1—C288.74 (11)C14—C15—C16—C17178.83 (15)
N1i—Co1—N1—C2102 (62)Co1—O21—C21—O22179.10 (14)
C6—N1—C2—C30.9 (2)Co1—O21—C21—C21.06 (18)
Co1—N1—C2—C3175.43 (11)N1—C2—C21—O22177.04 (14)
C6—N1—C2—C21177.95 (13)C3—C2—C21—O224.1 (2)
Co1—N1—C2—C213.44 (16)N1—C2—C21—O213.1 (2)
C5—N4—C3—C20.7 (2)C3—C2—C21—O21175.73 (14)
C5—N4—C3—C31179.98 (13)N4—C3—C31—O3285.16 (17)
N1—C2—C3—N40.4 (2)C2—C3—C31—O3294.11 (19)
C21—C2—C3—N4178.37 (14)N4—C3—C31—O3190.54 (17)
N1—C2—C3—C31178.80 (14)C2—C3—C31—O3190.20 (19)
C21—C2—C3—C312.4 (2)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O310.82 (2)1.98 (2)2.794 (3)179 (2)
N12—H121···O2Wii0.86 (3)2.05 (2)2.900 (2)170 (2)
N12—H122···O320.84 (3)1.97 (3)2.804 (3)176 (2)
O1W—H1W1···O2Wiii0.78 (3)1.99 (3)2.770 (3)178 (3)
O1W—H1W2···O5Wiii0.85 (3)1.85 (3)2.697 (2)172 (3)
O2W—H2W1···O210.85 (3)2.10 (3)2.942 (3)168 (3)
O2W—H2W2···O4W0.72 (3)2.07 (3)2.784 (3)176 (2)
O3W—H3W2···O4W0.83 (3)1.99 (3)2.811 (3)167 (3)
O4W—H4W1···O3Wiv0.80 (3)1.98 (2)2.755 (2)165 (3)
O4W—H4W2···O31v0.80 (2)1.94 (2)2.738 (2)178 (3)
O5W—H5W1···O32vi0.79 (2)2.00 (3)2.767 (2)161 (3)
O5W—H5W2···N4vii0.77 (3)2.11 (3)2.871 (3)167 (3)
Symmetry codes: (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1, z; (vii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2O
Mr789.58
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.8570 (4), 10.2348 (5), 13.6403 (10)
α, β, γ (°)109.604 (4), 90.424 (5), 105.524 (4)
V3)863.89 (9)
Z1
Radiation typeCu - Kα
µ (mm1)4.68
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku RAPID II
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.280, 0.508
No. of measured, independent and
observed [ > 2.0σ(I)] reflections
19137, 3152, 3151
Rint0.036
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.04
No. of reflections3152
No. of parameters285
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.40

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), ORTEP (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O310.82 (2)1.98 (2)2.794 (3)179 (2)
N12—H121···O2Wi0.86 (3)2.05 (2)2.900 (2)170 (2)
N12—H122···O320.84 (3)1.97 (3)2.804 (3)176 (2)
O1W—H1W1···O2Wii0.78 (3)1.99 (3)2.770 (3)178 (3)
O1W—H1W2···O5Wii0.85 (3)1.85 (3)2.697 (2)172 (3)
O2W—H2W1···O210.85 (3)2.10 (3)2.942 (3)168 (3)
O2W—H2W2···O4W0.72 (3)2.07 (3)2.784 (3)176 (2)
O3W—H3W2···O4W0.83 (3)1.99 (3)2.811 (3)167 (3)
O4W—H4W1···O3Wiii0.80 (3)1.98 (2)2.755 (2)165 (3)
O4W—H4W2···O31iv0.80 (2)1.94 (2)2.738 (2)178 (3)
O5W—H5W1···O32v0.79 (2)2.00 (3)2.767 (2)161 (3)
O5W—H5W2···N4vi0.77 (3)2.11 (3)2.871 (3)167 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z; (vi) x1, y+1, z.
 

Acknowledgements

The authors express their appreciation to the Ferdowsi University of Mashhad for financial support of this research (grant No. P/355).

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010). Acta Cryst. E66, o2810–o2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826–m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Necas, M., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m1320–m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m266-m267
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds