metal-organic compounds
Bis(2-amino-6-methylpyridinium) trans-diaquabis(pyrazine-2,3-dicarboxylato)cobaltate(II) octahydrate
aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, Purdue University, W. Lafayette, IN 47907, USA
*Correspondence e-mail: pfanwick@purdue.edu
The title compound, (C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2O, was obtained by the reaction of CoCl2·6H2O with 1,4-pyrazine-2,3-dicarboxylic acid and 2-amino-6-methylpyridine in aqueous solution (molar ratio 1:2:2). The CoII ion is situated on an inversion centre and is coordinated by two O and two N atoms of two symmetry-related 1,4-pyrazine-2,3-dicarboxylate ligands and two water molecules and has a disorted octahedral coordination environment. The also contains four water molecules. In the crystal, extensive intermolecular classical N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds and π–π stacking interactions [centroid–centroid distance = 3.490 (1) Å] connect the various components, forming a three-dimensional network.
Related literature
For related structures based on 1,4-pyrazine-2,3-dicarboxylate ligands, see: Eshtiagh-Hosseini, Alfi et al. (2010). Eshtiagh-Hosseini, Gschwind et al. (2010). Eshtiagh-Hosseini, Necas et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and local programs.
Supporting information
10.1107/S1600536811001127/bt5444sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811001127/bt5444Isup2.hkl
A solution of pyzdcH2 (0.6 mmol, 0.1 g) and 2a-6mpy (1.2 mmol, 0.13 g) in water (10 ml) was refluxed for an hour, then a solution of CoCl2.6H2O (0.02 mmol, 0.05 g) was added dropwise and continued refluxing for 6 hrs at 293 K. The obtained orange solution gave orange block like crystals of title compound after slow evaporation of solvent at R.T.
Carbon bound hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso set to either 1.2Ueq(C) or 1.5Ueq(Cmethyl) of their parent atoms. The C—H distances were set to 0.93 and 0.96Å for aromatic and methyl H atoms, respectively. Hydrogen atoms bonded to N and O were located in a difference Fourier map and refined isotropically.
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local programs.Fig. 1. An ORTEP drawing of the title compound showing 50% ellipsoid probability. Only the symmetry independent atoms are labelled. | |
Fig. 2. Water molecules connecting anions and cations. | |
Fig. 3. Schematic representation of different graph set motifs in the crystalline network of 1. Dashed lines indicate the hydrogen bonds. | |
Fig. 4. Perspective views of the π–π stacking interactions. |
(C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2O | Z = 1 |
Mr = 789.58 | F(000) = 413 |
Triclinic, P1 | Dx = 1.518 Mg m−3 |
Hall symbol: -P 1 | Cu - Kα radiation, λ = 1.54184 Å |
a = 6.8570 (4) Å | Cell parameters from 3181 reflections |
b = 10.2348 (5) Å | θ = 3–71° |
c = 13.6403 (10) Å | µ = 4.68 mm−1 |
α = 109.604 (4)° | T = 150 K |
β = 90.424 (5)° | Chunk, brown |
γ = 105.524 (4)° | 0.20 × 0.18 × 0.14 mm |
V = 863.89 (9) Å3 |
Rigaku RAPID II diffractometer | 3151 reflections with > 2.0σ(I) |
Confocal optics monochromator | Rint = 0.036 |
ω scans | θmax = 71.9°, θmin = 3.5° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = 0→8 |
Tmin = 0.280, Tmax = 0.508 | k = −12→12 |
19137 measured reflections | l = −16→16 |
3152 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.057P)2 + 0.2735P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.087 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.23 e Å−3 |
3152 reflections | Δρmin = −0.40 e Å−3 |
285 parameters |
(C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2O | γ = 105.524 (4)° |
Mr = 789.58 | V = 863.89 (9) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.8570 (4) Å | Cu - Kα radiation |
b = 10.2348 (5) Å | µ = 4.68 mm−1 |
c = 13.6403 (10) Å | T = 150 K |
α = 109.604 (4)° | 0.20 × 0.18 × 0.14 mm |
β = 90.424 (5)° |
Rigaku RAPID II diffractometer | 3152 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 3151 reflections with > 2.0σ(I) |
Tmin = 0.280, Tmax = 0.508 | Rint = 0.036 |
19137 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.23 e Å−3 |
3152 reflections | Δρmin = −0.40 e Å−3 |
285 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 1.0000 | 0.5000 | 0.0000 | 0.01861 (12) | |
O1W | 0.78751 (19) | 0.34893 (13) | −0.12293 (10) | 0.0281 (3) | |
O21 | 0.79587 (17) | 0.45953 (12) | 0.10552 (10) | 0.0244 (3) | |
O22 | 0.70494 (18) | 0.32395 (14) | 0.20508 (10) | 0.0309 (3) | |
O2W | 0.4756 (2) | 0.56148 (13) | 0.22356 (12) | 0.0277 (3) | |
O31 | 0.97825 (17) | 0.20966 (12) | 0.31826 (9) | 0.0257 (3) | |
O32 | 0.77764 (18) | 0.02378 (12) | 0.18707 (10) | 0.0278 (3) | |
O3W | 0.6610 (2) | 0.37101 (15) | 0.42401 (11) | 0.0318 (3) | |
O4W | 0.3166 (2) | 0.44434 (16) | 0.37295 (12) | 0.0307 (3) | |
O5W | 0.3645 (2) | 0.92255 (14) | 0.12233 (11) | 0.0301 (3) | |
N1 | 1.08935 (19) | 0.33770 (13) | 0.03478 (10) | 0.0185 (3) | |
N4 | 1.1850 (2) | 0.14113 (14) | 0.11111 (11) | 0.0212 (3) | |
N11 | 0.82673 (19) | 0.07875 (14) | 0.46263 (11) | 0.0201 (3) | |
N12 | 0.6818 (2) | −0.13230 (16) | 0.32292 (12) | 0.0243 (3) | |
C2 | 0.9819 (2) | 0.29538 (15) | 0.10633 (12) | 0.0179 (3) | |
C3 | 1.0303 (2) | 0.19613 (16) | 0.14422 (13) | 0.0188 (3) | |
C5 | 1.2920 (2) | 0.18647 (17) | 0.04140 (13) | 0.0219 (3) | |
C6 | 1.2436 (2) | 0.28428 (17) | 0.00249 (13) | 0.0213 (3) | |
C12 | 0.7163 (2) | −0.06269 (17) | 0.42549 (13) | 0.0200 (3) | |
C13 | 0.6442 (2) | −0.12847 (18) | 0.49910 (14) | 0.0240 (4) | |
C14 | 0.6901 (3) | −0.0497 (2) | 0.60314 (15) | 0.0286 (4) | |
C15 | 0.8071 (3) | 0.0960 (2) | 0.63821 (14) | 0.0281 (4) | |
C16 | 0.8729 (2) | 0.15970 (18) | 0.56645 (14) | 0.0239 (3) | |
C17 | 0.9948 (3) | 0.31426 (18) | 0.59367 (16) | 0.0307 (4) | |
C21 | 0.8125 (2) | 0.36383 (17) | 0.14298 (13) | 0.0215 (3) | |
C31 | 0.9158 (2) | 0.13968 (17) | 0.22335 (13) | 0.0211 (3) | |
H5 | 1.4018 | 0.1516 | 0.0183 | 0.026* | |
H6 | 1.3200 | 0.3128 | −0.0467 | 0.026* | |
H11 | 0.869 (3) | 0.117 (2) | 0.4202 (17) | 0.023 (5)* | |
H13 | 0.5660 | −0.2248 | 0.4768 | 0.029* | |
H14 | 0.6432 | −0.0930 | 0.6518 | 0.034* | |
H15 | 0.8394 | 0.1485 | 0.7095 | 0.034* | |
H121 | 0.618 (3) | −0.223 (3) | 0.3014 (17) | 0.032 (5)* | |
H122 | 0.716 (3) | −0.086 (3) | 0.2827 (19) | 0.035 (6)* | |
H17A | 1.1225 | 0.3185 | 0.5646 | 0.046* | |
H17B | 1.0194 | 0.3600 | 0.6684 | 0.046* | |
H17C | 0.9210 | 0.3636 | 0.5655 | 0.046* | |
H1W1 | 0.712 (4) | 0.374 (3) | −0.150 (2) | 0.044 (7)* | |
H1W2 | 0.729 (4) | 0.263 (3) | −0.1249 (19) | 0.045 (7)* | |
H2W1 | 0.561 (4) | 0.520 (3) | 0.191 (2) | 0.052 (7)* | |
H2W2 | 0.431 (4) | 0.528 (3) | 0.260 (2) | 0.037 (7)* | |
H3W1 | 0.728 (4) | 0.345 (3) | 0.378 (2) | 0.046 (7)* | |
H3W2 | 0.564 (4) | 0.389 (3) | 0.399 (2) | 0.050 (7)* | |
H4W1 | 0.300 (4) | 0.493 (3) | 0.430 (2) | 0.039 (7)* | |
H4W2 | 0.219 (4) | 0.375 (3) | 0.356 (2) | 0.051 (7)* | |
H5W1 | 0.478 (4) | 0.970 (3) | 0.145 (2) | 0.049 (7)* | |
H5W2 | 0.304 (4) | 0.977 (3) | 0.125 (2) | 0.042 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02261 (19) | 0.01812 (18) | 0.0174 (2) | 0.00806 (13) | 0.00137 (13) | 0.00745 (14) |
O1W | 0.0329 (6) | 0.0208 (6) | 0.0290 (8) | 0.0054 (5) | −0.0089 (5) | 0.0086 (5) |
O21 | 0.0262 (6) | 0.0268 (6) | 0.0269 (7) | 0.0142 (5) | 0.0064 (5) | 0.0126 (5) |
O22 | 0.0295 (6) | 0.0455 (7) | 0.0302 (8) | 0.0197 (5) | 0.0137 (5) | 0.0219 (6) |
O2W | 0.0279 (6) | 0.0239 (6) | 0.0322 (8) | 0.0108 (5) | 0.0006 (5) | 0.0083 (6) |
O31 | 0.0292 (6) | 0.0268 (6) | 0.0191 (7) | 0.0024 (5) | −0.0001 (5) | 0.0100 (5) |
O32 | 0.0292 (6) | 0.0258 (6) | 0.0242 (7) | −0.0011 (5) | −0.0008 (5) | 0.0105 (5) |
O3W | 0.0355 (7) | 0.0367 (7) | 0.0249 (8) | 0.0124 (6) | 0.0078 (6) | 0.0113 (6) |
O4W | 0.0306 (7) | 0.0281 (6) | 0.0273 (9) | 0.0037 (6) | 0.0009 (5) | 0.0058 (6) |
O5W | 0.0247 (6) | 0.0248 (6) | 0.0455 (9) | 0.0092 (5) | 0.0019 (5) | 0.0166 (6) |
N1 | 0.0216 (6) | 0.0175 (6) | 0.0158 (7) | 0.0058 (5) | 0.0009 (5) | 0.0051 (5) |
N4 | 0.0232 (6) | 0.0203 (6) | 0.0211 (8) | 0.0084 (5) | 0.0008 (5) | 0.0069 (5) |
N11 | 0.0193 (6) | 0.0221 (6) | 0.0213 (8) | 0.0071 (5) | 0.0034 (5) | 0.0098 (6) |
N12 | 0.0257 (7) | 0.0217 (7) | 0.0235 (9) | 0.0014 (6) | 0.0001 (6) | 0.0098 (6) |
C2 | 0.0194 (7) | 0.0173 (7) | 0.0152 (9) | 0.0045 (5) | 0.0001 (6) | 0.0040 (6) |
C3 | 0.0193 (7) | 0.0178 (7) | 0.0167 (9) | 0.0035 (5) | −0.0015 (6) | 0.0042 (6) |
C5 | 0.0224 (7) | 0.0232 (7) | 0.0205 (9) | 0.0101 (6) | 0.0038 (6) | 0.0053 (6) |
C6 | 0.0233 (7) | 0.0223 (7) | 0.0192 (9) | 0.0081 (6) | 0.0061 (6) | 0.0070 (6) |
C12 | 0.0157 (7) | 0.0239 (7) | 0.0232 (10) | 0.0081 (6) | 0.0024 (6) | 0.0099 (7) |
C13 | 0.0206 (7) | 0.0264 (8) | 0.0288 (11) | 0.0072 (6) | 0.0056 (6) | 0.0139 (7) |
C14 | 0.0259 (8) | 0.0404 (10) | 0.0286 (11) | 0.0145 (7) | 0.0109 (7) | 0.0194 (8) |
C15 | 0.0276 (8) | 0.0383 (9) | 0.0201 (10) | 0.0159 (7) | 0.0057 (7) | 0.0072 (8) |
C16 | 0.0200 (7) | 0.0268 (8) | 0.0260 (10) | 0.0123 (6) | 0.0021 (6) | 0.0062 (7) |
C17 | 0.0326 (9) | 0.0248 (8) | 0.0312 (11) | 0.0111 (7) | −0.0016 (7) | 0.0031 (7) |
C21 | 0.0211 (7) | 0.0243 (8) | 0.0196 (9) | 0.0086 (6) | 0.0009 (6) | 0.0066 (7) |
C31 | 0.0214 (7) | 0.0220 (7) | 0.0230 (10) | 0.0079 (6) | 0.0019 (6) | 0.0104 (7) |
Co1—O21i | 2.0790 (12) | N11—C12 | 1.357 (2) |
Co1—O21 | 2.0790 (11) | N11—C16 | 1.363 (2) |
Co1—O1W | 2.0841 (12) | N11—H11 | 0.82 (2) |
Co1—O1Wi | 2.0841 (12) | N12—C12 | 1.325 (2) |
Co1—N1 | 2.1045 (12) | N12—H121 | 0.86 (2) |
Co1—N1i | 2.1045 (12) | N12—H122 | 0.84 (2) |
O1W—H1W1 | 0.77 (3) | C2—C3 | 1.393 (2) |
O1W—H1W2 | 0.86 (3) | C2—C21 | 1.516 (2) |
O21—C21 | 1.2760 (19) | C3—C31 | 1.518 (2) |
O22—C21 | 1.228 (2) | C5—C6 | 1.388 (2) |
O2W—H2W1 | 0.85 (3) | C5—H5 | 0.9300 |
O2W—H2W2 | 0.72 (3) | C6—H6 | 0.9300 |
O31—C31 | 1.256 (2) | C12—C13 | 1.410 (2) |
O32—C31 | 1.244 (2) | C13—C14 | 1.361 (3) |
O3W—H3W1 | 0.80 (3) | C13—H13 | 0.9300 |
O3W—H3W2 | 0.84 (3) | C14—C15 | 1.404 (3) |
O4W—H4W1 | 0.80 (3) | C14—H14 | 0.9300 |
O4W—H4W2 | 0.80 (3) | C15—C16 | 1.365 (3) |
O5W—H5W1 | 0.79 (3) | C15—H15 | 0.9300 |
O5W—H5W2 | 0.77 (3) | C16—C17 | 1.494 (2) |
N1—C6 | 1.329 (2) | C17—H17A | 0.9600 |
N1—C2 | 1.344 (2) | C17—H17B | 0.9600 |
N4—C5 | 1.335 (2) | C17—H17C | 0.9600 |
N4—C3 | 1.342 (2) | ||
O21i—Co1—O21 | 180.00 (7) | N4—C3—C2 | 121.24 (14) |
O21i—Co1—O1W | 90.50 (5) | N4—C3—C31 | 114.49 (13) |
O21—Co1—O1W | 89.50 (5) | C2—C3—C31 | 124.27 (14) |
O21i—Co1—O1Wi | 89.50 (5) | N4—C5—C6 | 121.69 (14) |
O21—Co1—O1Wi | 90.50 (5) | N4—C5—H5 | 119.20 |
O1W—Co1—O1Wi | 180.00 (6) | C6—C5—H5 | 119.20 |
O21i—Co1—N1 | 100.88 (5) | N1—C6—C5 | 120.75 (14) |
O21—Co1—N1 | 79.12 (5) | N1—C6—H6 | 119.60 |
O1W—Co1—N1 | 92.48 (5) | C5—C6—H6 | 119.60 |
O1Wi—Co1—N1 | 87.52 (5) | N12—C12—N11 | 119.07 (15) |
O21i—Co1—N1i | 79.12 (5) | N12—C12—C13 | 123.23 (15) |
O21—Co1—N1i | 100.88 (5) | N11—C12—C13 | 117.70 (15) |
O1W—Co1—N1i | 87.52 (5) | C14—C13—C12 | 119.36 (15) |
O1Wi—Co1—N1i | 92.48 (5) | C14—C13—H13 | 120.30 |
N1—Co1—N1i | 180.00 (6) | C12—C13—H13 | 120.30 |
Co1—O1W—H1W1 | 119.7 (19) | C13—C14—C15 | 121.07 (16) |
Co1—O1W—H1W2 | 122.8 (17) | C13—C14—H14 | 119.50 |
H1W1—O1W—H1W2 | 109 (2) | C15—C14—H14 | 119.50 |
C21—O21—Co1 | 116.29 (10) | C16—C15—C14 | 119.19 (17) |
H2W1—O2W—H2W2 | 110 (3) | C16—C15—H15 | 120.40 |
H3W1—O3W—H3W2 | 108 (3) | C14—C15—H15 | 120.40 |
H4W1—O4W—H4W2 | 104 (3) | N11—C16—C15 | 118.88 (15) |
H5W1—O5W—H5W2 | 106 (3) | N11—C16—C17 | 116.76 (16) |
C6—N1—C2 | 118.50 (13) | C15—C16—C17 | 124.35 (17) |
C6—N1—Co1 | 128.65 (11) | C16—C17—H17A | 109.50 |
C2—N1—Co1 | 112.57 (10) | C16—C17—H17B | 109.50 |
C5—N4—C3 | 117.44 (13) | H17A—C17—H17B | 109.50 |
C12—N11—C16 | 123.77 (15) | C16—C17—H17C | 109.50 |
C12—N11—H11 | 117.9 (15) | H17A—C17—H17C | 109.50 |
C16—N11—H11 | 118.3 (15) | H17B—C17—H17C | 109.50 |
C12—N12—H121 | 117.3 (15) | O22—C21—O21 | 125.85 (15) |
C12—N12—H122 | 119.2 (16) | O22—C21—C2 | 118.38 (14) |
H121—N12—H122 | 123 (2) | O21—C21—C2 | 115.77 (13) |
N1—C2—C3 | 120.37 (14) | O32—C31—O31 | 126.69 (15) |
N1—C2—C21 | 116.14 (13) | O32—C31—C3 | 116.34 (15) |
C3—C2—C21 | 123.47 (14) | O31—C31—C3 | 116.80 (13) |
O21i—Co1—O21—C21 | 113 (47) | C3—N4—C5—C6 | −1.4 (2) |
O1W—Co1—O21—C21 | 93.19 (12) | C2—N1—C6—C5 | 0.3 (2) |
O1Wi—Co1—O21—C21 | −86.81 (12) | Co1—N1—C6—C5 | 173.81 (11) |
N1—Co1—O21—C21 | 0.57 (11) | N4—C5—C6—N1 | 0.9 (2) |
N1i—Co1—O21—C21 | −179.43 (11) | C16—N11—C12—N12 | −179.22 (14) |
O21i—Co1—N1—C6 | 3.94 (14) | C16—N11—C12—C13 | 0.6 (2) |
O21—Co1—N1—C6 | −176.06 (14) | N12—C12—C13—C14 | 178.72 (15) |
O1W—Co1—N1—C6 | 94.93 (14) | N11—C12—C13—C14 | −1.1 (2) |
O1Wi—Co1—N1—C6 | −85.07 (14) | C12—C13—C14—C15 | 0.3 (2) |
N1i—Co1—N1—C6 | 85 (62) | C13—C14—C15—C16 | 1.0 (2) |
O21i—Co1—N1—C2 | 177.76 (10) | C12—N11—C16—C15 | 0.7 (2) |
O21—Co1—N1—C2 | −2.24 (10) | C12—N11—C16—C17 | −179.59 (14) |
O1W—Co1—N1—C2 | −91.26 (11) | C14—C15—C16—N11 | −1.5 (2) |
O1Wi—Co1—N1—C2 | 88.74 (11) | C14—C15—C16—C17 | 178.83 (15) |
N1i—Co1—N1—C2 | −102 (62) | Co1—O21—C21—O22 | −179.10 (14) |
C6—N1—C2—C3 | −0.9 (2) | Co1—O21—C21—C2 | 1.06 (18) |
Co1—N1—C2—C3 | −175.43 (11) | N1—C2—C21—O22 | 177.04 (14) |
C6—N1—C2—C21 | 177.95 (13) | C3—C2—C21—O22 | −4.1 (2) |
Co1—N1—C2—C21 | 3.44 (16) | N1—C2—C21—O21 | −3.1 (2) |
C5—N4—C3—C2 | 0.7 (2) | C3—C2—C21—O21 | 175.73 (14) |
C5—N4—C3—C31 | −179.98 (13) | N4—C3—C31—O32 | −85.16 (17) |
N1—C2—C3—N4 | 0.4 (2) | C2—C3—C31—O32 | 94.11 (19) |
C21—C2—C3—N4 | −178.37 (14) | N4—C3—C31—O31 | 90.54 (17) |
N1—C2—C3—C31 | −178.80 (14) | C2—C3—C31—O31 | −90.20 (19) |
C21—C2—C3—C31 | 2.4 (2) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O31 | 0.82 (2) | 1.98 (2) | 2.794 (3) | 179 (2) |
N12—H121···O2Wii | 0.86 (3) | 2.05 (2) | 2.900 (2) | 170 (2) |
N12—H122···O32 | 0.84 (3) | 1.97 (3) | 2.804 (3) | 176 (2) |
O1W—H1W1···O2Wiii | 0.78 (3) | 1.99 (3) | 2.770 (3) | 178 (3) |
O1W—H1W2···O5Wiii | 0.85 (3) | 1.85 (3) | 2.697 (2) | 172 (3) |
O2W—H2W1···O21 | 0.85 (3) | 2.10 (3) | 2.942 (3) | 168 (3) |
O2W—H2W2···O4W | 0.72 (3) | 2.07 (3) | 2.784 (3) | 176 (2) |
O3W—H3W2···O4W | 0.83 (3) | 1.99 (3) | 2.811 (3) | 167 (3) |
O4W—H4W1···O3Wiv | 0.80 (3) | 1.98 (2) | 2.755 (2) | 165 (3) |
O4W—H4W2···O31v | 0.80 (2) | 1.94 (2) | 2.738 (2) | 178 (3) |
O5W—H5W1···O32vi | 0.79 (2) | 2.00 (3) | 2.767 (2) | 161 (3) |
O5W—H5W2···N4vii | 0.77 (3) | 2.11 (3) | 2.871 (3) | 167 (3) |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) x, y+1, z; (vii) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C6H9N2)2[Co(C6H2N2O4)2(H2O)2]·8H2O |
Mr | 789.58 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 6.8570 (4), 10.2348 (5), 13.6403 (10) |
α, β, γ (°) | 109.604 (4), 90.424 (5), 105.524 (4) |
V (Å3) | 863.89 (9) |
Z | 1 |
Radiation type | Cu - Kα |
µ (mm−1) | 4.68 |
Crystal size (mm) | 0.20 × 0.18 × 0.14 |
Data collection | |
Diffractometer | Rigaku RAPID II diffractometer |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.280, 0.508 |
No. of measured, independent and observed [ > 2.0σ(I)] reflections | 19137, 3152, 3151 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.087, 1.04 |
No. of reflections | 3152 |
No. of parameters | 285 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.40 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), ORTEP (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O31 | 0.82 (2) | 1.98 (2) | 2.794 (3) | 179 (2) |
N12—H121···O2Wi | 0.86 (3) | 2.05 (2) | 2.900 (2) | 170 (2) |
N12—H122···O32 | 0.84 (3) | 1.97 (3) | 2.804 (3) | 176 (2) |
O1W—H1W1···O2Wii | 0.78 (3) | 1.99 (3) | 2.770 (3) | 178 (3) |
O1W—H1W2···O5Wii | 0.85 (3) | 1.85 (3) | 2.697 (2) | 172 (3) |
O2W—H2W1···O21 | 0.85 (3) | 2.10 (3) | 2.942 (3) | 168 (3) |
O2W—H2W2···O4W | 0.72 (3) | 2.07 (3) | 2.784 (3) | 176 (2) |
O3W—H3W2···O4W | 0.83 (3) | 1.99 (3) | 2.811 (3) | 167 (3) |
O4W—H4W1···O3Wiii | 0.80 (3) | 1.98 (2) | 2.755 (2) | 165 (3) |
O4W—H4W2···O31iv | 0.80 (2) | 1.94 (2) | 2.738 (2) | 178 (3) |
O5W—H5W1···O32v | 0.79 (2) | 2.00 (3) | 2.767 (2) | 161 (3) |
O5W—H5W2···N4vi | 0.77 (3) | 2.11 (3) | 2.871 (3) | 167 (3) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) x, y+1, z; (vi) x−1, y+1, z. |
Acknowledgements
The authors express their appreciation to the Ferdowsi University of Mashhad for financial support of this research (grant No. P/355).
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M. & Necas, M. (2010). Acta Cryst. E66, o2810–o2811. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826–m827. Web of Science CSD CrossRef IUCr Journals Google Scholar
Eshtiagh-Hosseini, H., Necas, M., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m1320–m1321. Web of Science CSD CrossRef IUCr Journals Google Scholar
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the recent years, our research group has been interested in the synthesis of proton transfer compounds and study of their behavior with metal ions. We have focused on the proton delivery from polycarboxylic acids, which are considered as very good donors and amines as acceptors. Among polycarboxylic acids, 1,4-pyrazine-2,3-dicarboxylic acid (pyzdcH2) as a very important carboxylate derivative has attracted much interest in coordination chemistry and it is the one that we utilized widely in our studies (Eshtiagh-Hosseini, Alfi et al., 2010). In order to develop novel systems, we wish to report the first complex of CoII ion with pydcH2 as proton donor and 2a-6 m as proton acceptor. PyzdcH2 has proved to be well suited for the construction of multidimensional frameworks due to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms).
The asymmetric unit of the title compound (Fig. 1), contains half a [Co(pyzdc)2(H2O)2]2- anion, a (2a-6mpyH)+ cation, and four uncoordinated water molecules. In the anions, CoII ion has a N2O4 donor set bond with normal distances and angles. The title compound can be compared with the mono-nuclear coordination compound of CoII ion which has recently been synthesized and characterized by our research group (Eshtiagh-Hosseini, Necas et al., 2010). There are some hydrogen bonding interactions such as O–H···O and N–H···O between cations, anions and uncoordinated water molecules (Table 2). The water molecules act also as bridging agents and link anions and cationic fragments together via hydrogen bonds which resulted in the creation of six supramolecular synthons as R22(8), R34(10), R35(10), R45(15), R44(18), R44(26) (Figs. 2, 3). As it is seen in Fig. 4, there are also π-π stacking interactions between the aromatic rings of the coordinated (pyzdc)2– and carboxylate functional group anions and (2a-6mpyH)+ cation. Ion pairing, hydrogen bonds, π–π stacking, and van der Waals interactions stabilize the crystal structure. These interactions lead to formation of a three-dimensional structure. By the help of hydrogen bond interactions between uncoordinated water molecules, the related crystalline network bears (H2O)6 cluster in the form of two branched-cyclohexane (Eshtiagh-Hosseini, Gschwind et al., 2010).