organic compounds
e,e-trans-Cyclohexane-1,4-carboxylic acid–hexamethylenetetramine (1/2)
aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za
The 6H12N4·C8H12O4, contains one half-molecule of e,e-trans-cyclohexane-1,4-dicarboxylic acid (the complete molecule being generated by inversion symmetry) and one molecule of hexamethylenetetramine (HMTA), which are connected by O—H⋯N hydrogen bonds. This forms isolated trimers that pack in a herringbone fashion.
of the title compound, 2CRelated literature
For related co-crystals featuring one hydrogen bond to HMTA, see: Feng et al. (2006); Li et al. (2001); Mak et al. (1986). For related co-crystals featuring two hydrogen bonds to HMTA, see: Coupar et al. (1997a); Gardon et al. (2003); Ghosh et al. (2005). For related co-crystals featuring three hydrogen bonds to HMTA, see: Coupar et al. (1997b); De Bruyn et al. (1996); Jordan & Mak (1970). For related co-crystals featuring four hydrogen bonds to HMTA, see: Daka & Wheeler (2006); MacLean et al. (1999); Zakaria et al. (2003).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810053626/bt5446sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810053626/bt5446Isup2.hkl
Crystals where grown by slow evaporation at ambient conditions of a methanol solution containing a 2:1 stoichiometric quantity of hexamethylenetetramine and cis-1,4-cyclohexanecarboxylic acid.
The C-bound H atoms were geometrically placed with C—H bond lengths of 1.00Å for methine CH and 0.99Å for ethylene CH2 and refined as riding with Uiso(H) = 1.2Ueq(C). The O-bound H atom was geometrically placed (O—H bond length 0.84 Å) and refined as riding with Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).2C6H12N4·C8H12O4 | F(000) = 488 |
Mr = 452.57 | Dx = 1.394 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5661 reflections |
a = 5.9182 (1) Å | θ = 3.7–28.3° |
b = 31.5242 (6) Å | µ = 0.1 mm−1 |
c = 6.1193 (1) Å | T = 173 K |
β = 109.144 (1)° | Plate, colourless |
V = 1078.52 (3) Å3 | 0.4 × 0.35 × 0.04 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 2218 reflections with I > 2σ(I) |
ω scans | Rint = 0.045 |
Absorption correction: integration (XPREP; Bruker, 2004) | θmax = 28.0°, θmin = 1.3° |
Tmin = 0.960, Tmax = 0.996 | h = −7→7 |
13851 measured reflections | k = −41→41 |
2594 independent reflections | l = −8→8 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0739P)2 + 0.3667P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max = 0.001 |
S = 0.89 | Δρmax = 0.39 e Å−3 |
2594 reflections | Δρmin = −0.19 e Å−3 |
146 parameters |
2C6H12N4·C8H12O4 | V = 1078.52 (3) Å3 |
Mr = 452.57 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.9182 (1) Å | µ = 0.1 mm−1 |
b = 31.5242 (6) Å | T = 173 K |
c = 6.1193 (1) Å | 0.4 × 0.35 × 0.04 mm |
β = 109.144 (1)° |
Bruker APEXII CCD area-detector diffractometer | 2594 independent reflections |
Absorption correction: integration (XPREP; Bruker, 2004) | 2218 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.996 | Rint = 0.045 |
13851 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 0.89 | Δρmax = 0.39 e Å−3 |
2594 reflections | Δρmin = −0.19 e Å−3 |
146 parameters |
Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0247 (2) | 0.63264 (4) | 0.4650 (2) | 0.0246 (3) | |
H1A | −0.1214 | 0.6094 | 0.3707 | 0.029* | |
H1B | −0.0231 | 0.6289 | 0.6261 | 0.029* | |
C2 | −0.1335 (2) | 0.67841 (4) | 0.1382 (2) | 0.0282 (3) | |
H2A | −0.2086 | 0.7058 | 0.0755 | 0.034* | |
H2B | −0.2303 | 0.6555 | 0.041 | 0.034* | |
C3 | 0.2502 (2) | 0.71082 (4) | 0.2722 (2) | 0.0290 (3) | |
H3A | 0.1799 | 0.7386 | 0.2111 | 0.035* | |
H3B | 0.4155 | 0.7101 | 0.2667 | 0.035* | |
C4 | 0.2168 (2) | 0.63619 (4) | 0.2177 (2) | 0.0282 (3) | |
H4A | 0.3818 | 0.6348 | 0.2117 | 0.034* | |
H4B | 0.1235 | 0.613 | 0.1201 | 0.034* | |
C5 | 0.3614 (2) | 0.66535 (4) | 0.6002 (2) | 0.0256 (3) | |
H5A | 0.3658 | 0.662 | 0.7623 | 0.031* | |
H5B | 0.5281 | 0.6642 | 0.5986 | 0.031* | |
C6 | 0.0111 (2) | 0.70746 (4) | 0.5164 (2) | 0.0267 (3) | |
H6A | 0.0126 | 0.7045 | 0.678 | 0.032* | |
H6B | −0.0621 | 0.7352 | 0.4574 | 0.032* | |
N1 | 0.22317 (16) | 0.62980 (3) | 0.45945 (16) | 0.0202 (2) | |
N2 | −0.13588 (17) | 0.67350 (3) | 0.37597 (19) | 0.0250 (2) | |
N3 | 0.1098 (2) | 0.67701 (3) | 0.12396 (18) | 0.0273 (2) | |
N4 | 0.25799 (18) | 0.70679 (3) | 0.51366 (18) | 0.0257 (2) | |
C7 | 0.76647 (19) | 0.52006 (3) | 0.88313 (19) | 0.0188 (2) | |
H7 | 0.6734 | 0.4942 | 0.8128 | 0.023* | |
C8 | 0.9750 (2) | 0.52451 (4) | 0.78814 (19) | 0.0219 (2) | |
H8A | 0.9119 | 0.5271 | 0.6175 | 0.026* | |
H8B | 1.0667 | 0.5506 | 0.851 | 0.026* | |
C9 | 1.1394 (2) | 0.48596 (4) | 0.85539 (19) | 0.0213 (2) | |
H9A | 1.0504 | 0.4603 | 0.7819 | 0.026* | |
H9B | 1.2758 | 0.4897 | 0.7973 | 0.026* | |
C10 | 0.6008 (2) | 0.55801 (3) | 0.8143 (2) | 0.0212 (2) | |
O1 | 0.47562 (17) | 0.55861 (3) | 0.59260 (15) | 0.0319 (2) | |
H1 | 0.3883 | 0.5803 | 0.5629 | 0.048* | |
O2 | 0.58343 (19) | 0.58498 (3) | 0.94835 (17) | 0.0397 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0217 (5) | 0.0197 (6) | 0.0322 (6) | 0.0004 (4) | 0.0087 (5) | 0.0055 (4) |
C2 | 0.0237 (6) | 0.0261 (6) | 0.0265 (6) | 0.0051 (5) | −0.0031 (5) | 0.0042 (5) |
C3 | 0.0264 (6) | 0.0249 (6) | 0.0384 (7) | 0.0007 (5) | 0.0145 (5) | 0.0100 (5) |
C4 | 0.0356 (7) | 0.0266 (6) | 0.0238 (6) | 0.0119 (5) | 0.0115 (5) | 0.0007 (5) |
C5 | 0.0203 (5) | 0.0246 (6) | 0.0253 (6) | 0.0009 (4) | −0.0015 (4) | 0.0010 (4) |
C6 | 0.0330 (6) | 0.0203 (6) | 0.0297 (6) | 0.0059 (5) | 0.0143 (5) | −0.0018 (4) |
N1 | 0.0193 (5) | 0.0187 (5) | 0.0205 (5) | 0.0044 (3) | 0.0038 (4) | 0.0017 (3) |
N2 | 0.0178 (5) | 0.0221 (5) | 0.0353 (6) | 0.0038 (4) | 0.0091 (4) | 0.0049 (4) |
N3 | 0.0350 (6) | 0.0273 (6) | 0.0206 (5) | 0.0083 (4) | 0.0104 (4) | 0.0052 (4) |
N4 | 0.0247 (5) | 0.0190 (5) | 0.0296 (5) | −0.0022 (4) | 0.0037 (4) | −0.0008 (4) |
C7 | 0.0179 (5) | 0.0154 (5) | 0.0212 (5) | 0.0034 (4) | 0.0039 (4) | 0.0004 (4) |
C8 | 0.0242 (6) | 0.0216 (5) | 0.0206 (5) | 0.0059 (4) | 0.0084 (4) | 0.0050 (4) |
C9 | 0.0216 (5) | 0.0220 (6) | 0.0218 (5) | 0.0056 (4) | 0.0090 (4) | 0.0026 (4) |
C10 | 0.0183 (5) | 0.0181 (5) | 0.0246 (6) | 0.0025 (4) | 0.0037 (4) | 0.0006 (4) |
O1 | 0.0369 (5) | 0.0259 (5) | 0.0249 (5) | 0.0161 (4) | −0.0007 (4) | −0.0002 (3) |
O2 | 0.0487 (6) | 0.0305 (5) | 0.0306 (5) | 0.0201 (4) | 0.0002 (4) | −0.0064 (4) |
C1—N2 | 1.4676 (14) | C5—H5B | 0.99 |
C1—N1 | 1.4808 (15) | C6—N2 | 1.4663 (16) |
C1—H1A | 0.99 | C6—N4 | 1.4671 (16) |
C1—H1B | 0.99 | C6—H6A | 0.99 |
C2—N2 | 1.4678 (17) | C6—H6B | 0.99 |
C2—N3 | 1.4713 (17) | C7—C10 | 1.5160 (15) |
C2—H2A | 0.99 | C7—C9i | 1.5238 (15) |
C2—H2B | 0.99 | C7—C8 | 1.5331 (15) |
C3—N3 | 1.4679 (17) | C7—H7 | 1 |
C3—N4 | 1.4686 (16) | C8—C9 | 1.5268 (15) |
C3—H3A | 0.99 | C8—H8A | 0.99 |
C3—H3B | 0.99 | C8—H8B | 0.99 |
C4—N3 | 1.4657 (15) | C9—C7i | 1.5238 (15) |
C4—N1 | 1.4812 (15) | C9—H9A | 0.99 |
C4—H4A | 0.99 | C9—H9B | 0.99 |
C4—H4B | 0.99 | C10—O2 | 1.2091 (15) |
C5—N4 | 1.4662 (15) | C10—O1 | 1.3154 (14) |
C5—N1 | 1.4848 (15) | O1—H1 | 0.84 |
C5—H5A | 0.99 | ||
N2—C1—N1 | 111.82 (9) | H6A—C6—H6B | 107.8 |
N2—C1—H1A | 109.3 | C1—N1—C4 | 108.27 (9) |
N1—C1—H1A | 109.3 | C1—N1—C5 | 107.61 (9) |
N2—C1—H1B | 109.3 | C4—N1—C5 | 107.78 (9) |
N1—C1—H1B | 109.3 | C6—N2—C1 | 108.39 (9) |
H1A—C1—H1B | 107.9 | C6—N2—C2 | 107.89 (9) |
N2—C2—N3 | 112.54 (9) | C1—N2—C2 | 108.14 (9) |
N2—C2—H2A | 109.1 | C4—N3—C3 | 108.13 (10) |
N3—C2—H2A | 109.1 | C4—N3—C2 | 107.97 (10) |
N2—C2—H2B | 109.1 | C3—N3—C2 | 107.96 (9) |
N3—C2—H2B | 109.1 | C5—N4—C6 | 107.94 (9) |
H2A—C2—H2B | 107.8 | C5—N4—C3 | 108.17 (10) |
N3—C3—N4 | 112.56 (9) | C6—N4—C3 | 107.91 (9) |
N3—C3—H3A | 109.1 | C10—C7—C9i | 111.75 (9) |
N4—C3—H3A | 109.1 | C10—C7—C8 | 110.48 (9) |
N3—C3—H3B | 109.1 | C9i—C7—C8 | 110.30 (9) |
N4—C3—H3B | 109.1 | C10—C7—H7 | 108.1 |
H3A—C3—H3B | 107.8 | C9i—C7—H7 | 108.1 |
N3—C4—N1 | 112.12 (9) | C8—C7—H7 | 108.1 |
N3—C4—H4A | 109.2 | C9—C8—C7 | 110.25 (9) |
N1—C4—H4A | 109.2 | C9—C8—H8A | 109.6 |
N3—C4—H4B | 109.2 | C7—C8—H8A | 109.6 |
N1—C4—H4B | 109.2 | C9—C8—H8B | 109.6 |
H4A—C4—H4B | 107.9 | C7—C8—H8B | 109.6 |
N4—C5—N1 | 112.20 (9) | H8A—C8—H8B | 108.1 |
N4—C5—H5A | 109.2 | C7i—C9—C8 | 111.31 (9) |
N1—C5—H5A | 109.2 | C7i—C9—H9A | 109.4 |
N4—C5—H5B | 109.2 | C8—C9—H9A | 109.4 |
N1—C5—H5B | 109.2 | C7i—C9—H9B | 109.4 |
H5A—C5—H5B | 107.9 | C8—C9—H9B | 109.4 |
N2—C6—N4 | 112.61 (9) | H9A—C9—H9B | 108 |
N2—C6—H6A | 109.1 | O2—C10—O1 | 123.03 (11) |
N4—C6—H6A | 109.1 | O2—C10—C7 | 123.88 (10) |
N2—C6—H6B | 109.1 | O1—C10—C7 | 113.09 (10) |
N4—C6—H6B | 109.1 | C10—O1—H1 | 109.5 |
N2—C1—N1—C4 | −57.93 (12) | N2—C2—N3—C4 | 58.78 (12) |
N2—C1—N1—C5 | 58.31 (12) | N2—C2—N3—C3 | −57.91 (12) |
N3—C4—N1—C1 | 57.99 (13) | N1—C5—N4—C6 | 58.47 (13) |
N3—C4—N1—C5 | −58.15 (13) | N1—C5—N4—C3 | −58.05 (13) |
N4—C5—N1—C1 | −58.63 (12) | N2—C6—N4—C5 | −58.39 (12) |
N4—C5—N1—C4 | 57.94 (12) | N2—C6—N4—C3 | 58.29 (12) |
N4—C6—N2—C1 | 58.57 (13) | N3—C3—N4—C5 | 58.48 (12) |
N4—C6—N2—C2 | −58.32 (12) | N3—C3—N4—C6 | −58.06 (12) |
N1—C1—N2—C6 | −58.43 (13) | C10—C7—C8—C9 | −179.28 (9) |
N1—C1—N2—C2 | 58.29 (12) | C9i—C7—C8—C9 | 56.67 (13) |
N3—C2—N2—C6 | 58.06 (12) | C7—C8—C9—C7i | −57.25 (13) |
N3—C2—N2—C1 | −58.99 (12) | C9i—C7—C10—O2 | 13.98 (17) |
N1—C4—N3—C3 | 58.54 (13) | C8—C7—C10—O2 | −109.24 (14) |
N1—C4—N3—C2 | −58.04 (13) | C9i—C7—C10—O1 | −165.62 (10) |
N4—C3—N3—C4 | −58.70 (13) | C8—C7—C10—O1 | 71.17 (12) |
N4—C3—N3—C2 | 57.88 (12) |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | 2C6H12N4·C8H12O4 |
Mr | 452.57 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 5.9182 (1), 31.5242 (6), 6.1193 (1) |
β (°) | 109.144 (1) |
V (Å3) | 1078.52 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.1 |
Crystal size (mm) | 0.4 × 0.35 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Integration (XPREP; Bruker, 2004) |
Tmin, Tmax | 0.960, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13851, 2594, 2218 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.113, 0.89 |
No. of reflections | 2594 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.19 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Acknowledgements
The University of the Witwatersrand and the Molecular Sciences Institute are thanked for providing the infrastructure and financial support to do this work.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT-Plus including XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruyn, P. J. de, Gable, R. W., Potter, A. C. & Solomon, D. H. (1996). Acta Cryst. C52, 466–468. CSD CrossRef Web of Science IUCr Journals Google Scholar
Coupar, P. I., Ferguson, G., Glidewell, C. & Meehan, P. R. (1997b). Acta Cryst. C53, 1978–1980. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Coupar, P. I., Glidewell, C. & Ferguson, G. (1997a). Acta Cryst. B53, 521–533. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Daka, P. & Wheeler, K. A. (2006). Acta Cryst. E62, o5477–o5479. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Feng, H., Zhang, H.-M., Tu, B. & Jin, Z.-M. (2006). Acta Cryst. E62, o3122–o3123. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gardon, M., Pinheiro, C. B. & Chapuis, G. (2003). Acta Cryst. B59, 527–536. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ghosh, K., Datta, M., Fröhlich, R. & Ganguly, N. C. (2005). J. Mol. Struct. 737, 201–206. Web of Science CSD CrossRef CAS Google Scholar
Jordan, T. H. & Mak, T. C. W. (1970). J. Chem. Phys. 52, 3790–3794. CSD CrossRef CAS Web of Science Google Scholar
Li, W., Zhang, J.-P., Tong, M.-L. & Chen, X.-M. (2001). Aust. J. Chem. 54, 213–217. Web of Science CSD CrossRef Google Scholar
MacLean, E. J., Glidewell, C., Ferguson, G., Gregson, R. M. & Lough, A. J. (1999). Acta Cryst. C55, 1867–1870. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mak, T. C. W., Xiaoming, C., Kailiang, S., Jiaxing, Y. & Chaode, Z. (1986). J. Crystallogr. Spectrosc. Res. 16, 639–646. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zakaria, C. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 118–131. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecule hexamethylenetetramine (HMTA) acts as a good hydrogen bond acceptor for carboxylic acid or phenol hydrogen bond donors to make binary co-crystals. HMTA can accept any number from one to four hydrogen bonds due to its tetravalent hydrogen bond acceptors, the lone pairs on each of the four N atoms. Most common are two hydrogen bonds per HMTA molecule (Coupar et al., 1997a; Gardon et al., 2003; Ghosh et al., 2005.), with a smaller frequency of one, three or four hydrogen bonds (Coupar et al., 1997b; Daka & Wheeler, 2006; De Bruyn et al., 1996; Feng et al., 2006; Jordan & Mak, 1970; Li et al., 2001; MacLean et al., 1999; Mak et al., 1986; Zakaria et al., 2003.). The title compound is an example of HMTA only accepting one hydrogen bond. As the cis-cyclohexane-1,4-dicarboxylic acid (CHDA) molecule has two carboxylic acid groups, the observed hydrogen bonded assembly is dumb-bell shaped, where one central CHDA molecule (the bar) hydrogen bonds to two pendant HMTA molecules (the bells) (Fig. 2). The dumb-bell trimers are situated on a centre of inversion, located at the centre of the CHDA molecule. The dumbells pack in a herring-bone fashion (Fig. 3).