metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-4-methyl­pyridinium) bis­­(pyridine-2,6-di­carboxyl­ato)cuprate(II)

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran, and cDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 25 December 2010; accepted 8 January 2011; online 15 January 2011)

The asymmetric unit of the title compound, (C6H9N2)2[Cu(C7H3NO4)2], contains half of a [Cu(pydc)2]2− (pydcH2 is pyridine-2,6-dicarb­oxy­lic acid) anion and one protonated 2-amino-4-methyl­pyridine (2a4mpH)+ counter-ion. The anion is a six-coordinated complex with a distorted CuN2O4 octa­hedral geometry around the CuII ion. N—H⋯O and C—H⋯O hydrogen bonds along with ππ contacts between the pyridine rings of the (2a4mpH)+ cations [centroid–centroid distance = 3.573 (2) Å] stabilize the crystal structure.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related structures see: Aghabozorg et al. (2011[Aghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o54.]); Eshtiagh-Hosseini, Aghabozorg et al. (2010[Eshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y.-G., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 180-189.]); Eshtiagh-Hosseini, Gschwind et al. (2010[Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826-m827.]); Sharif et al. (2010[Sharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)2[Cu(C7H3NO4)2]

  • Mr = 612.06

  • Monoclinic, C 2/c

  • a = 24.034 (5) Å

  • b = 14.231 (3) Å

  • c = 7.9780 (16) Å

  • β = 107.01 (3)°

  • V = 2609.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.9 mm−1

  • T = 298 K

  • 0.45 × 0.15 × 0.10 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.743, Tmax = 0.846

  • 8829 measured reflections

  • 3509 independent reflections

  • 2785 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.119

  • S = 1.15

  • 3509 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.92 (4) 1.77 (4) 2.662 (4) 163 (4)
N4—H4A⋯O1i 0.85 (5) 2.22 (5) 3.056 (4) 170 (4)
N4—H4B⋯O3 0.89 (5) 1.97 (5) 2.854 (4) 176 (4)
C7—H7⋯O1ii 0.93 2.58 3.250 (4) 130
C14—H14⋯O4iii 0.93 2.42 3.160 (4) 136
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Polycarboxylate ligands are widely applied to assemble supramolecular network decorated by coordination bonds, van der Waals interactions, and ππ stacking. Due to the manifold N– and O-donors of pyridine or pyrazine-(di)carboxylic ligands, metal pyridine- or pyrazine dicarboxylates can contrast versatile structural motifs, which finally aggregate to generate various supramolecular architectures with interesting properties. As ones of the dicarboxylate ligands, pydcH2 have drawn extensive attentions. Continuing with our previous works on synthesizing coordination and proton transfer compounds (Aghabozorg et al. 2008, 2011), (Eshtiagh-Hosseini, Aghabozorg et al., 2010, Eshtiagh-Hosseini, Gschwind et al., 2010), (Sharif et al., 2010), herein, we planned the reaction between pydcH2, 2a4mp, and copperII nitrate trihydrate which resulted in the formation of (2a4mpH)+2.[Cu(pydc)2] crystals (Fig. 1). Crystal packing diagram related to the title compound is also rendered in the Fig. 2. In the anionic fragment, the CuII atom is six-coordinated by two nitrogen and four oxygen atoms from the carboxylate groups of two (pydc)2- ligands, with bond length ranges of 1.911 (3)–2.029 (2) Å. The N1—Cu1—N2 [180.000 (1)°], O1—Cu1—O1 [146.67 (5)°] and O3—Cu1—O3 [160.23 (5)°] angles. The coordination environment around CuII is distorted octahedral. In the crystal structure of the title compound, there are intermolecular C—H···O and N—H···O hydrogen bonds (Table 1) and also π-π contacts between pyridine rings of (2a4mpH)+ with centroid-centroid distance Cg1···Cg1i equel to 3.573 (2) Å [symmetry code: (i) 2 - x, 2 - y,1 - z, where Cg1 is the centroid of ring N3/C9—C11/C13—C14]. (Fig. 2) stabilize the structure.

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures see: Aghabozorg et al. (2011); Eshtiagh-Hosseini, Aghabozorg et al. (2010); Eshtiagh-Hosseini, Gschwind et al. (2010); Sharif et al. (2010).

Experimental top

A solution of pyridine-2,6-dicarboxylic acid (pydcH2) (167 mg, 1 mmol) in 10 ml me thanol was added to a solution of 2-amino-4-methylpyridine (2a4mp) (216 mg, 0.6 mmol) in 10 ml me thanol and stirred for 4 hrs. Then a solution of Cu(NO3)2.3H2O (240 mg, 1 mmol) in 3 ml me thanol was added to the solution of pydcH2 and 2a4mp. To the resulted precipitate was added 1 ml of DMSO and stirred for several minutes under heating. By slove evaporation of this solution in room temprature, green crystals of the title compound were obtained after three week which were suitable for X-ray analysis (m.p 265–267 °C).

Refinement top

The hydrogen atoms of the N—H and NH2 groups were found in a difference Fourier map and refined isotropically without restraint. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl group.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (2a4mpH)+2.[Cu(pydc)2] with displacement ellipsoids drawn at 30% probability level (symmetry code: i: -x, y, 3/2 - z).
[Figure 2] Fig. 2. The packing diagram of (2a4mpH)+2.[Cu(pydc)2]. The intermolecular N—H···O and C—H···O hydrogen bonds and π-π contacts are shown as blue and orange dashed lines, respectively.
Bis(2-amino-4-methylpyridinium) bis(pyridine-2,6-dicarboxylato)cuprate(II) top
Crystal data top
(C6H9N2)2[Cu(C7H3NO4)2]F(000) = 1260
Mr = 612.06Dx = 1.558 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3509 reflections
a = 24.034 (5) Åθ = 2.9–29.2°
b = 14.231 (3) ŵ = 0.9 mm1
c = 7.9780 (16) ÅT = 298 K
β = 107.01 (3)°Needle, blue
V = 2609.3 (10) Å30.45 × 0.15 × 0.1 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3509 independent reflections
Radiation source: fine-focus sealed tube2785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.9°
rotation method scansh = 3032
Absorption correction: numerical
[shape of crystal determined optically (X-RED32, Stoe & Cie, 2005)]
k = 1916
Tmin = 0.743, Tmax = 0.846l = 1010
8829 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0336P)2 + 5.0605P]
where P = (Fo2 + 2Fc2)/3
3509 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
(C6H9N2)2[Cu(C7H3NO4)2]V = 2609.3 (10) Å3
Mr = 612.06Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.034 (5) ŵ = 0.9 mm1
b = 14.231 (3) ÅT = 298 K
c = 7.9780 (16) Å0.45 × 0.15 × 0.1 mm
β = 107.01 (3)°
Data collection top
Stoe IPDS II
diffractometer
3509 independent reflections
Absorption correction: numerical
[shape of crystal determined optically (X-RED32, Stoe & Cie, 2005)]
2785 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.846Rint = 0.061
8829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.39 e Å3
3509 reflectionsΔρmin = 0.30 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.04362 (14)0.1040 (2)0.8614 (4)0.0350 (6)
O20.13708 (12)0.1246 (2)1.0589 (3)0.0592 (7)
O10.07172 (11)0.23932 (17)1.0341 (3)0.0475 (6)
C70.04400 (13)0.5659 (2)0.7068 (4)0.0338 (6)
H70.07340.59800.67700.041*
C80.00000.6143 (3)0.75000.0359 (9)
H80.00000.67960.75000.043*
Cu10.00000.29007 (3)0.75000.02835 (14)
N20.00000.4244 (2)0.75000.0266 (6)
N40.11686 (12)0.2123 (2)0.4309 (4)0.0461 (7)
O30.07121 (9)0.31454 (14)0.6690 (3)0.0370 (5)
N30.19892 (12)0.14346 (19)0.3935 (4)0.0388 (6)
N10.00000.1521 (2)0.75000.0318 (7)
C90.17056 (13)0.1785 (2)0.5020 (4)0.0345 (6)
C110.25320 (16)0.1393 (2)0.7462 (4)0.0444 (7)
C100.19805 (15)0.1743 (2)0.6831 (4)0.0420 (7)
H100.17860.19570.76080.050*
O40.12832 (10)0.43226 (18)0.6314 (3)0.0493 (6)
C60.04298 (11)0.46879 (19)0.7094 (3)0.0272 (5)
C50.08574 (12)0.4019 (2)0.6666 (4)0.0320 (6)
C130.28131 (16)0.1052 (3)0.6265 (5)0.0516 (9)
H130.31880.08080.66650.062*
C140.25339 (15)0.1082 (3)0.4529 (5)0.0485 (8)
H140.27190.08590.37340.058*
C120.2851 (2)0.1384 (3)0.9394 (5)0.0679 (12)
H12A0.30970.19270.96840.102*
H12B0.30840.08260.96750.102*
H12C0.25740.13931.00520.102*
C10.08860 (15)0.1616 (2)0.9957 (4)0.0395 (7)
C30.04539 (18)0.0064 (2)0.8605 (5)0.0485 (8)
H30.07700.02550.93390.058*
C40.00000.0425 (3)0.75000.0591 (15)
H40.00000.10790.75000.071*
H3A0.1810 (18)0.148 (3)0.275 (5)0.057 (11)*
H4B0.1012 (19)0.245 (3)0.501 (6)0.062 (12)*
H4A0.108 (2)0.225 (3)0.322 (7)0.074 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0432 (17)0.0305 (14)0.0316 (14)0.0044 (12)0.0116 (13)0.0005 (11)
O20.0498 (15)0.0694 (18)0.0477 (14)0.0226 (13)0.0024 (12)0.0063 (12)
O10.0519 (14)0.0415 (13)0.0427 (12)0.0065 (11)0.0036 (11)0.0087 (10)
C70.0291 (14)0.0305 (14)0.0372 (14)0.0073 (11)0.0026 (12)0.0014 (11)
C80.033 (2)0.0240 (18)0.042 (2)0.0000.0011 (18)0.000
Cu10.0325 (3)0.0218 (2)0.0336 (2)0.0000.01408 (19)0.000
N20.0261 (16)0.0261 (15)0.0273 (15)0.0000.0072 (13)0.000
N40.0400 (14)0.0526 (17)0.0444 (15)0.0111 (14)0.0100 (12)0.0122 (15)
O30.0376 (11)0.0338 (11)0.0444 (11)0.0037 (9)0.0193 (10)0.0036 (9)
N30.0367 (14)0.0414 (14)0.0378 (13)0.0074 (11)0.0102 (11)0.0009 (11)
N10.042 (2)0.0233 (15)0.0304 (16)0.0000.0112 (15)0.000
C90.0320 (14)0.0303 (13)0.0410 (15)0.0003 (11)0.0104 (12)0.0066 (11)
C110.0478 (18)0.0351 (16)0.0440 (17)0.0024 (14)0.0033 (14)0.0012 (14)
C100.0445 (18)0.0415 (16)0.0399 (16)0.0009 (14)0.0120 (14)0.0061 (13)
O40.0357 (12)0.0546 (14)0.0658 (15)0.0093 (11)0.0279 (12)0.0084 (12)
C60.0249 (13)0.0304 (13)0.0254 (11)0.0025 (10)0.0059 (10)0.0004 (10)
C50.0304 (14)0.0357 (14)0.0305 (13)0.0020 (11)0.0098 (11)0.0030 (11)
C130.0375 (18)0.049 (2)0.062 (2)0.0101 (15)0.0032 (16)0.0013 (16)
C140.0394 (18)0.051 (2)0.058 (2)0.0144 (15)0.0181 (16)0.0010 (16)
C120.080 (3)0.058 (2)0.049 (2)0.000 (2)0.008 (2)0.0008 (18)
C10.0470 (18)0.0404 (17)0.0294 (14)0.0049 (14)0.0086 (13)0.0005 (12)
C30.065 (2)0.0306 (15)0.0484 (18)0.0147 (15)0.0148 (17)0.0050 (13)
C40.088 (4)0.022 (2)0.067 (3)0.0000.022 (3)0.000
Geometric parameters (Å, º) top
C2—N11.346 (3)N3—C141.351 (4)
C2—C31.390 (4)N3—H3A0.92 (4)
C2—C11.520 (4)N1—C2i1.346 (3)
O2—C11.243 (4)C9—C101.403 (4)
O1—C11.246 (4)C11—C101.367 (5)
C7—C61.382 (4)C11—C131.407 (5)
C7—C81.387 (4)C11—C121.507 (5)
C7—H70.9300C10—H100.9300
C8—C7i1.387 (4)O4—C51.217 (3)
C8—H80.9300C6—C51.511 (4)
Cu1—N21.911 (3)C13—C141.352 (5)
Cu1—N11.964 (3)C13—H130.9300
Cu1—O32.029 (2)C14—H140.9300
Cu1—O3i2.029 (2)C12—H12A0.9600
N2—C61.330 (3)C12—H12B0.9600
N2—C6i1.330 (3)C12—H12C0.9600
N4—C91.338 (4)C3—C41.374 (5)
N4—H4B0.89 (5)C3—H30.9300
N4—H4A0.85 (5)C4—C3i1.374 (5)
O3—C51.292 (4)C4—H40.9300
N3—C91.344 (4)
N1—C2—C3121.6 (3)C10—C11—C12121.8 (3)
N1—C2—C1116.5 (3)C13—C11—C12119.3 (3)
C3—C2—C1121.8 (3)C11—C10—C9120.5 (3)
C6—C7—C8118.3 (3)C11—C10—H10119.7
C6—C7—H7120.8C9—C10—H10119.7
C8—C7—H7120.8N2—C6—C7119.8 (3)
C7i—C8—C7120.5 (4)N2—C6—C5112.5 (2)
C7i—C8—H8119.8C7—C6—C5127.6 (3)
C7—C8—H8119.8O4—C5—O3126.4 (3)
N2—Cu1—N1180.000 (1)O4—C5—C6120.1 (3)
N2—Cu1—O380.12 (6)O3—C5—C6113.5 (2)
N1—Cu1—O399.88 (6)C14—C13—C11119.4 (3)
N2—Cu1—O3i80.12 (6)C14—C13—H13120.3
N1—Cu1—O3i99.88 (6)C11—C13—H13120.3
O3—Cu1—O3i160.24 (12)N3—C14—C13120.7 (3)
C6—N2—C6i123.2 (3)N3—C14—H14119.6
C6—N2—Cu1118.39 (17)C13—C14—H14119.6
C6i—N2—Cu1118.39 (17)C11—C12—H12A109.5
C9—N4—H4B117 (3)C11—C12—H12B109.5
C9—N4—H4A116 (3)H12A—C12—H12B109.5
H4B—N4—H4A120 (4)C11—C12—H12C109.5
C5—O3—Cu1115.23 (17)H12A—C12—H12C109.5
C9—N3—C14122.2 (3)H12B—C12—H12C109.5
C9—N3—H3A118 (3)O2—C1—O1127.6 (3)
C14—N3—H3A120 (3)O2—C1—C2116.4 (3)
C2i—N1—C2118.9 (4)O1—C1—C2115.9 (3)
C2i—N1—Cu1120.56 (18)C4—C3—C2119.3 (3)
C2—N1—Cu1120.56 (18)C4—C3—H3120.3
N4—C9—N3118.0 (3)C2—C3—H3120.3
N4—C9—C10123.8 (3)C3i—C4—C3119.2 (4)
N3—C9—C10118.2 (3)C3i—C4—H4120.4
C10—C11—C13118.8 (3)C3—C4—H4120.4
C6—C7—C8—C7i0.48 (18)Cu1—N2—C6—C7179.50 (19)
O3—Cu1—N2—C62.65 (14)C6i—N2—C6—C5179.4 (2)
O3i—Cu1—N2—C6177.35 (14)Cu1—N2—C6—C50.6 (2)
O3—Cu1—N2—C6i177.35 (14)C8—C7—C6—N21.0 (4)
O3i—Cu1—N2—C6i2.65 (14)C8—C7—C6—C5179.7 (2)
N2—Cu1—O3—C54.56 (19)Cu1—O3—C5—O4176.0 (3)
N1—Cu1—O3—C5175.44 (19)Cu1—O3—C5—C65.4 (3)
O3i—Cu1—O3—C54.56 (19)N2—C6—C5—O4178.1 (2)
C3—C2—N1—C2i1.8 (2)C7—C6—C5—O43.2 (5)
C1—C2—N1—C2i174.4 (3)N2—C6—C5—O33.2 (3)
C3—C2—N1—Cu1178.2 (2)C7—C6—C5—O3175.5 (3)
C1—C2—N1—Cu15.6 (3)C10—C11—C13—C140.3 (5)
O3—Cu1—N1—C2i114.82 (16)C12—C11—C13—C14178.2 (4)
O3i—Cu1—N1—C2i65.18 (16)C9—N3—C14—C131.3 (5)
O3—Cu1—N1—C265.18 (16)C11—C13—C14—N30.1 (6)
O3i—Cu1—N1—C2114.82 (16)N1—C2—C1—O2157.6 (3)
C14—N3—C9—N4179.6 (3)C3—C2—C1—O226.2 (5)
C14—N3—C9—C102.6 (5)N1—C2—C1—O124.9 (4)
C13—C11—C10—C91.6 (5)C3—C2—C1—O1151.3 (3)
C12—C11—C10—C9176.8 (3)N1—C2—C3—C43.6 (5)
N4—C9—C10—C11179.6 (3)C1—C2—C3—C4172.4 (3)
N3—C9—C10—C112.7 (5)C2—C3—C4—C3i1.7 (2)
C6i—N2—C6—C70.50 (19)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2ii0.92 (4)1.77 (4)2.662 (4)163 (4)
N4—H4A···O1ii0.85 (5)2.22 (5)3.056 (4)170 (4)
N4—H4B···O30.89 (5)1.97 (5)2.854 (4)176 (4)
C7—H7···O1iii0.932.583.250 (4)130
C14—H14···O4iv0.932.423.160 (4)136
Symmetry codes: (ii) x, y, z1; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula(C6H9N2)2[Cu(C7H3NO4)2]
Mr612.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.034 (5), 14.231 (3), 7.9780 (16)
β (°) 107.01 (3)
V3)2609.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.9
Crystal size (mm)0.45 × 0.15 × 0.1
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
[shape of crystal determined optically (X-RED32, Stoe & Cie, 2005)]
Tmin, Tmax0.743, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
8829, 3509, 2785
Rint0.061
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.119, 1.15
No. of reflections3509
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.92 (4)1.77 (4)2.662 (4)163 (4)
N4—H4A···O1i0.85 (5)2.22 (5)3.056 (4)170 (4)
N4—H4B···O30.89 (5)1.97 (5)2.854 (4)176 (4)
C7—H7···O1ii0.932.583.250 (4)130
C14—H14···O4iii0.932.423.160 (4)136
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y.-G., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 180–189.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826–m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds