metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(6-bromo­picolinato-κ2N,O)(nitrato-κ2O,O)copper(II)

aChemistry Department, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-535 Coimbra, Portugal, bCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and cInstituto Tecnologico e Nuclear, Estrada Nacional 10, P-2686-953 Sacavem, Portugal
*Correspondence e-mail: manuela@pollux.fis.uc.pt

(Received 27 December 2010; accepted 5 January 2011; online 12 January 2011)

In the monomeric title complex, [Cu(C6H3BrNO2)(NO3)(H2O)2], the CuII ion is coordinated by a bidentate 6-bromo­picolinate ion, one nitrate ion and two water mol­ecules in a geometry inter­mediate between five- and six-coordinate. Conventional O—H⋯O hydrogen bonds link the complex mol­ecules, forming layers parallel to the ab plane.

Related literature

For general background to copper complexes with low-dimensionality synthesized by our group, see: Martins, Ramos Silva et al. (2008[Martins, N. D., Ramos Silva, M., Silva, J. A., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, m829-m830.]), Martins, Silva et al. (2008[Martins, N. D., Silva, J. A., Ramos Silva, M., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, m394.]); Ramos Silva et al. (2001a[Ramos Silva, M., Paixão, J. A., Matos Beja, A. & Alte da Veiga, L. (2001a). Acta Cryst. C57, 7-8.],b[Ramos Silva, M., Paixão, J. A., Matos Beja, A. & Alte da Veiga, L. (2001b). Acta Cryst. C57, 9-11.],c[Ramos Silva, M., Paixão, J. A., Matos Beja, A., da Veiga, L. A. & Martin-Gil, J. (2001c). J. Chem. Crystallogr. 31, 167-171.], 2005a[Ramos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005a). Acta Cryst. C61, m507-m509.],b[Ramos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005b). Acta Cryst. C61, m380-m382.]). For a magnetic low-dimensional system with picolinic acid, see: Eppley et al. (1997[Eppley, H. J., Aubin, S. M., Streib, W. E., Bollinger, J. C., Hendrickson, D. N. & Christou, G. (1997). Inorg. Chem. 36, 109-115.]). For a similar compound with magnetic properties, see: Kukovec et al. (2008[Kukovec, B.-M., Popovic, Z., Kozlevcar, B. & Jaglicic, Z. (2008). Polyhedron, 27, 3631-3638.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H3BrNO2)(NO3)(H2O)2]

  • Mr = 362.59

  • Orthorhombic, P b c a

  • a = 9.0791 (14) Å

  • b = 14.035 (2) Å

  • c = 17.165 (2) Å

  • V = 2187.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.68 mm−1

  • T = 293 K

  • 0.40 × 0.10 × 0.08 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.619, Tmax = 0.999

  • 35919 measured reflections

  • 3263 independent reflections

  • 1849 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.137

  • S = 1.03

  • 3263 reflections

  • 167 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O3i 0.85 (1) 2.03 (2) 2.825 (4) 156 (4)
O6—H6B⋯O2ii 0.85 (2) 1.86 (1) 2.700 (4) 166 (2)
O7—H7A⋯O4iii 0.85 (1) 2.06 (2) 2.874 (5) 163 (5)
O7—H7B⋯O1ii 0.85 (3) 2.08 (3) 2.833 (4) 148 (5)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was obtained within a project of synthesizing new molecular magnets (Martins, Silva et al., 2008; Martins, Ramos Silva et al., 2008; Ramos Silva et al., 2001a, 2001b, 2001c, 2005a, 2005b). Molecular based magnets can capitalize on the flexibility inherent in carbon chemistry. Such flexibility allows a rational choice of ligands to control the dimensionality of the system, so that quantum effects can be enhanced. Picolinic and hydroxypicolinic acid have been widely used as ligands in low- dimensional metallic systems (Eppley et al., 1997) but 6-bromopicolinic acid has been scarcely used. A different substituent in the pyridine ring may lead to significant electronic and steric effects enlarging the structural diversity. In fact, Kukovec et al. (2008) synthesized a copper (II) complex with 6-bromopicolinic acid as a bidentate ligand in which the magnetic exchange pathway is connected to the Br···π interaction.

In the title compound, the CuII ion is coordinated by a bromopicolinate ligand, two water molecules and a nitrate ion (Fig. 1). One of the Cu—O bonds is rather long [Cu1—O4 2.682 (3) °] so that the coordination about the copper ion is intermediate between five and six-coordination. If the latter bond is to be ignored, the remaining coordination stereochemistry is near a square pyramid. In that case, the copper ion is 0.3149 (5) Å above the least-squares plane of the basal coordinating atoms. The H-bond network is confined to layers parallel to the ab plane (Fig. 2, Table 1). The bromine also forms a short contact [3.066 (2) Å] with O2i [symmetry code: (i) -1 + x,y,z].

The magnetic susceptibility was measured using a SQUID magnetometer in function of temperature with an applied magnetic field of 2 T. The inverse susceptibility showed a linear dependence with temperature, excluding any interaction between magnetic centers.

Related literature top

For general background to copper complexes with low-dimensional elements synthesized by our group, see: Martins, Ramos Silva et al. (2008), Martins, Silva et al. (2008); Ramos Silva et al. (2001a,b,c, 2005a,b). For a magnetic low-dimensional system with picolinic acid, see: Eppley et al. (1997). For a similar compound with magnetic properties, see: Kukovec et al. (2008).

Experimental top

0.14 mmol of 6-bromo-2-pyridinecarboxaldehyde in dichloromethane (10 ml) was added to 0.12 mmol of Cu(NO3)2.3H2O in water (10 ml). After a few weeks, blue single crystals of the title compound were obtained.

Refinement top

H atoms bound to C atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 Å (aromatic) and with Uiso(H) = 1.2 Ueq(C). H atoms of water molecules O6 an O7 could not be correctly located in a difference Fourier map. They were placed at positions calculated to optimize H-bonds and refined using restraints [O—H = 0.85 (1) Å, H—H = 1.34 (1) Å] and Uiso(H) = 1.5Ueq(O). To avoid that water (O6) H atoms slip into density peaks around the heavy metal atom, a DFIX command was used to garantee a Cu···H distance of at least 2.50 (1) Å. There are maximum and minimum density peaks slightly above 1 e/Å3.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Packing of the molecules in the unit cell showing the H-bonds as dashed lines.
Diaqua(6-bromopicolinato-κ2N,O)(nitrato- κ2O,O)copper(II) top
Crystal data top
[Cu(C6H3BrNO2)(NO3)(H2O)2]F(000) = 1416
Mr = 362.59Dx = 2.202 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6959 reflections
a = 9.0791 (14) Åθ = 2.9–26.3°
b = 14.035 (2) ŵ = 5.68 mm1
c = 17.165 (2) ÅT = 293 K
V = 2187.2 (6) Å3Needle, blue
Z = 80.40 × 0.10 × 0.08 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3263 independent reflections
Radiation source: fine-focus sealed tube1849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 31.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1211
Tmin = 0.619, Tmax = 0.999k = 1920
35919 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3263 reflectionsΔρmax = 1.06 e Å3
167 parametersΔρmin = 1.19 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (3)
Crystal data top
[Cu(C6H3BrNO2)(NO3)(H2O)2]V = 2187.2 (6) Å3
Mr = 362.59Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.0791 (14) ŵ = 5.68 mm1
b = 14.035 (2) ÅT = 293 K
c = 17.165 (2) Å0.40 × 0.10 × 0.08 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3263 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1849 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.999Rint = 0.069
35919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0387 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.06 e Å3
3263 reflectionsΔρmin = 1.19 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27639 (5)0.10769 (4)0.67505 (3)0.03377 (16)
Br10.01236 (4)0.12831 (4)0.52718 (3)0.04471 (16)
C10.5394 (5)0.1362 (3)0.6017 (2)0.0356 (10)
C20.4323 (4)0.1249 (2)0.5356 (2)0.0291 (8)
C30.4765 (5)0.1207 (4)0.4602 (3)0.0463 (12)
H30.57630.12140.44790.056*
C40.3723 (6)0.1155 (4)0.4020 (3)0.0542 (14)
H40.40040.11070.35000.065*
C50.2261 (5)0.1175 (4)0.4223 (3)0.0500 (13)
H50.15330.11640.38430.060*
C60.1890 (5)0.1212 (3)0.5006 (2)0.0367 (10)
O10.4821 (3)0.1405 (2)0.66941 (16)0.0406 (8)
O20.6707 (3)0.1410 (3)0.58800 (18)0.0529 (9)
O30.1019 (3)0.0189 (2)0.67729 (14)0.0378 (7)
O40.2795 (3)0.0834 (3)0.66960 (18)0.0516 (9)
O50.0612 (4)0.1309 (2)0.7005 (2)0.0572 (9)
O60.3112 (3)0.0737 (3)0.78475 (15)0.0505 (9)
H6A0.3992 (12)0.074 (3)0.8019 (8)0.076*
H6B0.264 (3)0.103 (2)0.8203 (5)0.076*
O70.1350 (4)0.2239 (2)0.70395 (19)0.0494 (8)
H7A0.156 (5)0.2826 (10)0.703 (3)0.074*
H7B0.086 (4)0.222 (4)0.7459 (14)0.074*
N10.2882 (4)0.1232 (2)0.55771 (19)0.0313 (8)
N20.1477 (4)0.0683 (3)0.68317 (17)0.0356 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0240 (3)0.0461 (4)0.0312 (2)0.0008 (2)0.00166 (17)0.0011 (2)
Br10.0287 (2)0.0573 (3)0.0481 (3)0.00161 (19)0.00589 (16)0.0033 (2)
C10.030 (2)0.040 (3)0.037 (2)0.0019 (18)0.0022 (16)0.0035 (17)
C20.028 (2)0.022 (2)0.0374 (19)0.0017 (16)0.0021 (15)0.0012 (15)
C30.035 (3)0.063 (3)0.041 (2)0.002 (2)0.0043 (17)0.001 (2)
C40.049 (3)0.079 (4)0.035 (2)0.004 (2)0.0032 (19)0.007 (2)
C50.043 (3)0.070 (4)0.037 (2)0.004 (2)0.0053 (18)0.002 (2)
C60.032 (2)0.045 (3)0.0328 (19)0.0002 (17)0.0041 (16)0.0018 (17)
O10.0272 (15)0.064 (2)0.0312 (14)0.0077 (14)0.0003 (10)0.0009 (13)
O20.0238 (16)0.091 (3)0.0443 (17)0.0025 (15)0.0015 (12)0.0099 (16)
O30.0269 (14)0.0397 (19)0.0468 (15)0.0008 (12)0.0003 (11)0.0047 (12)
O40.0397 (19)0.049 (2)0.066 (2)0.0137 (15)0.0097 (14)0.0014 (16)
O50.055 (2)0.052 (2)0.065 (2)0.0217 (17)0.0069 (17)0.0160 (16)
O60.0313 (16)0.087 (3)0.0326 (14)0.0088 (16)0.0015 (11)0.0027 (16)
O70.0525 (19)0.0418 (19)0.0541 (17)0.0043 (16)0.0184 (14)0.0001 (16)
N10.0277 (17)0.032 (2)0.0340 (16)0.0022 (14)0.0002 (13)0.0037 (13)
N20.037 (2)0.036 (2)0.0337 (16)0.0017 (17)0.0030 (14)0.0025 (14)
Geometric parameters (Å, º) top
Cu1—O11.926 (3)C4—C51.373 (7)
Cu1—O61.968 (3)C4—H40.9300
Cu1—O32.016 (3)C5—C61.386 (6)
Cu1—N12.029 (3)C5—H50.9300
Cu1—O72.134 (3)C6—N11.332 (5)
Br1—C61.886 (4)O3—N21.296 (4)
C1—O21.218 (5)O4—N21.238 (4)
C1—O11.274 (5)O5—N21.215 (5)
C1—C21.503 (6)O6—H6A0.851 (9)
C2—C31.356 (6)O6—H6B0.85 (2)
C2—N11.363 (5)O7—H7A0.845 (10)
C3—C41.378 (6)O7—H7B0.85 (3)
C3—H30.9300
O1—Cu1—O687.13 (12)C3—C4—H4120.7
O1—Cu1—O3155.59 (13)C4—C5—C6118.9 (4)
O6—Cu1—O387.61 (12)C4—C5—H5120.6
O1—Cu1—N182.72 (12)C6—C5—H5120.6
O6—Cu1—N1165.35 (13)N1—C6—C5123.3 (4)
O3—Cu1—N197.29 (11)N1—C6—Br1118.4 (3)
O1—Cu1—O7114.35 (14)C5—C6—Br1118.2 (3)
O6—Cu1—O793.40 (13)C1—O1—Cu1115.5 (3)
O3—Cu1—O789.74 (13)N2—O3—Cu1109.4 (2)
N1—Cu1—O7100.38 (13)Cu1—O6—H6A118.7 (11)
O2—C1—O1125.0 (4)Cu1—O6—H6B118.9 (11)
O2—C1—C2119.6 (4)H6A—O6—H6B103.2 (14)
O1—C1—C2115.5 (4)Cu1—O7—H7A127 (3)
C3—C2—N1123.3 (4)Cu1—O7—H7B119 (3)
C3—C2—C1122.3 (4)H7A—O7—H7B99 (4)
N1—C2—C1114.3 (3)C6—N1—C2116.4 (3)
C2—C3—C4119.4 (4)C6—N1—Cu1133.9 (3)
C2—C3—H3120.3C2—N1—Cu1109.2 (2)
C4—C3—H3120.3O5—N2—O4123.1 (4)
C5—C4—C3118.6 (4)O5—N2—O3119.7 (4)
C5—C4—H4120.7O4—N2—O3117.2 (3)
O2—C1—C2—C30.6 (6)O7—Cu1—O3—N2162.2 (2)
O1—C1—C2—C3179.0 (4)C5—C6—N1—C22.3 (6)
O2—C1—C2—N1178.1 (4)Br1—C6—N1—C2175.4 (3)
O1—C1—C2—N11.5 (5)C5—C6—N1—Cu1168.5 (3)
N1—C2—C3—C40.7 (7)Br1—C6—N1—Cu113.8 (5)
C1—C2—C3—C4176.6 (4)C3—C2—N1—C62.8 (6)
C2—C3—C4—C51.9 (7)C1—C2—N1—C6174.7 (3)
C3—C4—C5—C62.3 (7)C3—C2—N1—Cu1170.2 (3)
C4—C5—C6—N10.2 (7)C1—C2—N1—Cu112.3 (4)
C4—C5—C6—Br1177.9 (4)O1—Cu1—N1—C6174.5 (4)
O2—C1—O1—Cu1169.1 (4)O6—Cu1—N1—C6139.0 (5)
C2—C1—O1—Cu111.3 (5)O3—Cu1—N1—C630.1 (4)
O6—Cu1—O1—C1155.0 (3)O7—Cu1—N1—C660.9 (4)
O3—Cu1—O1—C177.1 (4)O1—Cu1—N1—C214.3 (2)
N1—Cu1—O1—C114.5 (3)O6—Cu1—N1—C232.2 (6)
O7—Cu1—O1—C1112.6 (3)O3—Cu1—N1—C2141.1 (2)
O1—Cu1—O3—N28.9 (4)O7—Cu1—N1—C2127.8 (2)
O6—Cu1—O3—N268.8 (2)Cu1—O3—N2—O5165.8 (3)
N1—Cu1—O3—N297.3 (2)Cu1—O3—N2—O415.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O3i0.85 (1)2.03 (2)2.825 (4)156 (4)
O6—H6B···O2ii0.85 (2)1.86 (1)2.700 (4)166 (2)
O7—H7A···O4iii0.85 (1)2.06 (2)2.874 (5)163 (5)
O7—H7B···O1ii0.85 (3)2.08 (3)2.833 (4)148 (5)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1/2, y, z+3/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H3BrNO2)(NO3)(H2O)2]
Mr362.59
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.0791 (14), 14.035 (2), 17.165 (2)
V3)2187.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)5.68
Crystal size (mm)0.40 × 0.10 × 0.08
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.619, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
35919, 3263, 1849
Rint0.069
(sin θ/λ)max1)0.734
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.137, 1.03
No. of reflections3263
No. of parameters167
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 1.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O3i0.851 (9)2.027 (16)2.825 (4)156 (4)
O6—H6B···O2ii0.85 (2)1.862 (9)2.700 (4)166 (2)
O7—H7A···O4iii0.845 (10)2.055 (18)2.874 (5)163 (5)
O7—H7B···O1ii0.85 (3)2.08 (3)2.833 (4)148 (5)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x1/2, y, z+3/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Fundo Europeu de Desenvolvimento Regional-QREN-COMPETE through project PTDC/FIS/102284/2008-Fundação para a Ciência e a Tecnologia (FCT).

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEppley, H. J., Aubin, S. M., Streib, W. E., Bollinger, J. C., Hendrickson, D. N. & Christou, G. (1997). Inorg. Chem. 36, 109–115.  CSD CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKukovec, B.-M., Popovic, Z., Kozlevcar, B. & Jaglicic, Z. (2008). Polyhedron, 27, 3631–3638.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartins, N. D., Ramos Silva, M., Silva, J. A., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, m829–m830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartins, N. D., Silva, J. A., Ramos Silva, M., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, m394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamos Silva, M., Paixão, J. A., Matos Beja, A. & Alte da Veiga, L. (2001a). Acta Cryst. C57, 7–8.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamos Silva, M., Paixão, J. A., Matos Beja, A. & Alte da Veiga, L. (2001b). Acta Cryst. C57, 9–11.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamos Silva, M., Paixão, J. A., Matos Beja, A., da Veiga, L. A. & Martin-Gil, J. (2001c). J. Chem. Crystallogr. 31, 167–171.  Google Scholar
First citationRamos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005a). Acta Cryst. C61, m507–m509.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamos Silva, M., Matos Beja, A., Paixão, J. A. & Martin-Gil, J. (2005b). Acta Cryst. C61, m380–m382.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds