organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-6-methyl-N-(4-methyl­phen­yl)quinolin-2-amine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: dvelmurugan@unom.ac.in

(Received 3 January 2011; accepted 15 January 2011; online 26 January 2011)

In the title compound C17H15ClN2, the dihedral angle between the quinoline ring system and the phenyl ring is 50.18 (6)°. In the crystal, mol­ecules are linked into chains running along the c axis by N—H⋯N hydrogen bonds.

Related literature

For the biological activity of quinoline derivatives, see: Lunniss et al. (2009[Lunniss, C. J., Cooper, A. W. J., Eldred, C. D., Kranz, M., Lindvall, M., Lucas, F. S., Neu, M., Preston, A. G. S., Ranshaw, L. E., Redgrave, A. J., Robinson, J. E., Shipley, T. J., Solanke, Y. E., Somers, D. O. & Wiseman, J. O. (2009). Bioorg. Med. Chem. 19, 1380-1385.]); Kemnitzer et al. (2008[Kemnitzer, W., Kuemmerle, J., Jiang, S., Zhang, H.-Z., Sirisoma, N., Kasibhatla, S., Crogan-Grundy, C., Tseng, B., Drewe, J. & Cai, X. Z. (2008). Bioorg. Med. Chem. Lett. 18, 6259-6264.]); Woodrow et al. (2009[Woodrow, M. D., Ballantine, S. P., Barker, M. D., Clarke, B. J., Dawson, J., Dean, T. W., Delves, C. J., Evans, B., Gough, S. L., Guntrip, S. B., Holman, S., Holmes, D. S., Kranz, M., Lindvaal, M. K., Lucas, F. S., Neu, M., Ranshaw, L. E., Solanke, Y. E., Somers, D. O., Ward, P. & Wiseman, J. O. (2009). Bioorg. Med. Chem. Lett. 19, 5261-5265.]). For a related structure, see: Cheng et al. (2005[Cheng, J., Liu, Z. & Yang, G. (2005). Acta Cryst. E61, o2638-o2639.]). For the synthesis, see: Manoj et al. (2011[Manoj, M. & Rajendra Prasad, K. J. (2011). J. Heterocycl. Chem. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClN2

  • Mr = 282.76

  • Monoclinic, P 21 /c

  • a = 15.1445 (13) Å

  • b = 11.4337 (10) Å

  • c = 8.4764 (7) Å

  • β = 92.344 (4)°

  • V = 1466.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • 13649 measured reflections

  • 3669 independent reflections

  • 2508 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.03

  • 3669 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.59 3.404 (2) 157
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinoline derivatives fused with various heterocycles have displayed potent anticancer activity targeting different sites like topoisomerase I, telomerase, farnasyl transferase, Src tyrosine kinase, protein kinase CK-II etc. The trisubstituted quinoline analogs have attractive profile and are a good start point to initiate a lead optimisation programme. Due to its significant biological importance, the title compound was chosen for the X-ray crystallographic study.

The title compound is the first structural example with methyl phenyl moiety attached to the amino substituted quinoline. The chlorine atom deviates only by 0.0276 (5)Å below the mean plane of atoms passing through C2-C10, N1. The methyl phenyl moiety is oriented at 129.9 (5)° from the plane containing the quinoline ring system.

C-H···N and N-H···N intermolecular interactions assist the molecular packing of the crystal which resembles helical patterns. In addition to van der Waals forces, the hydrogen bond interactions at the groove of helix maintains the stability of the crystal packing. Atom N1 acts as a bifurcated acceptor. The bifurcated hydrogen bond also forms the R12(6) motif. The structure of the title compound is shown in Figure 1. All the bond lengths and bond angles are in the usual ranges. The molecular packing with hydrogen bonds as dotted lines is shown in Figure 2.

Related literature top

For the biological activity of quinoline derivatives, see: Lunniss et al. (2009); Kemnitzer et al. (2008); Woodrow et al. (2009); For a related structure, see: Cheng et al. (2005). For the synthesis, see: Manoj et al. (2011).

Experimental top

A mixture of appropriate 6-methyl-2,4-dichloroquinoline (0.010 mol) and p-toluidine (0.010 mol) was heated under neat condition at 160°C for half an hour. The product obtained was washed with water, dried and purified by column chromatography over silica gel and eluted with petroleum ether : ethyl acetate mixture (99 : 1) to get the product as pale yellow solid. It was recrystallised using methanol.

Refinement top

The H-atoms were positioned geometrically and treated as riding atoms: C—H =0.93 Å H-aromatic, C—H = 0.96 Å H-methyl, and N—H = 0.86 Å, with Uiso = k×Ueq(parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule, showing the thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down c-axis with bifurcated hydrogen bonds (dotted lines) between the molecules.
4-chloro-6-methyl-N-(4-methylphenyl)quinolin-2-amine top
Crystal data top
C17H15ClN2F(000) = 592
Mr = 282.76Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3683 reflections
a = 15.1445 (13) Åθ = 1.3–28.4°
b = 11.4337 (10) ŵ = 0.25 mm1
c = 8.4764 (7) ÅT = 293 K
β = 92.344 (4)°Block, yellow
V = 1466.5 (2) Å30.22 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2508 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 28.4°, θmin = 1.4°
ω and ϕ scansh = 1720
13649 measured reflectionsk = 1315
3669 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.052P)2 + 0.3324P]
where P = (Fo2 + 2Fc2)/3
3669 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C17H15ClN2V = 1466.5 (2) Å3
Mr = 282.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1445 (13) ŵ = 0.25 mm1
b = 11.4337 (10) ÅT = 293 K
c = 8.4764 (7) Å0.22 × 0.21 × 0.20 mm
β = 92.344 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2508 reflections with I > 2σ(I)
13649 measured reflectionsRint = 0.027
3669 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
3669 reflectionsΔρmin = 0.30 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88432 (3)0.45826 (5)0.04769 (5)0.07158 (19)
C40.83107 (10)0.48222 (13)0.26320 (17)0.0457 (4)
N10.70049 (9)0.37817 (12)0.37362 (14)0.0493 (3)
C50.77053 (10)0.45280 (13)0.38898 (17)0.0452 (3)
C60.78424 (12)0.50298 (17)0.53791 (19)0.0571 (4)
H60.74590.48470.62280.068*
C30.90078 (11)0.55972 (15)0.2897 (2)0.0537 (4)
H30.94000.57860.20630.064*
C80.81569 (11)0.42723 (14)0.11597 (17)0.0490 (4)
C90.74846 (12)0.35319 (15)0.10002 (19)0.0545 (4)
H90.73940.31720.00360.065*
N20.62355 (11)0.25326 (14)0.21237 (17)0.0660 (4)
H20.62810.20930.13010.079*
C70.85260 (12)0.57759 (16)0.5596 (2)0.0610 (5)
H70.85990.60920.65930.073*
C20.91267 (12)0.60825 (16)0.4350 (2)0.0578 (4)
C110.54756 (13)0.23837 (16)0.3114 (2)0.0585 (4)
C100.69089 (11)0.33048 (14)0.23354 (19)0.0509 (4)
C160.50425 (12)0.33144 (16)0.3851 (2)0.0633 (5)
H160.52790.40630.37550.076*
C140.38882 (13)0.2042 (2)0.4889 (2)0.0721 (6)
C150.42658 (13)0.31429 (18)0.4723 (2)0.0691 (5)
H150.39880.37800.52130.083*
C120.51110 (15)0.12859 (18)0.3286 (2)0.0754 (6)
H120.53930.06460.28120.091*
C10.98772 (14)0.69163 (19)0.4625 (3)0.0794 (6)
H1A0.96470.76930.47750.119*
H1B1.01780.66800.55490.119*
H1C1.02840.69070.37270.119*
C170.30336 (15)0.1871 (2)0.5837 (3)0.1002 (8)
H17A0.30340.11150.63300.150*
H17B0.29770.24650.66350.150*
H17C0.25460.19230.51520.150*
C130.43288 (16)0.1126 (2)0.4157 (3)0.0818 (7)
H130.40930.03770.42510.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0732 (3)0.0915 (4)0.0487 (3)0.0072 (3)0.0138 (2)0.0015 (2)
C40.0506 (8)0.0431 (8)0.0435 (8)0.0052 (7)0.0014 (6)0.0006 (6)
N10.0576 (8)0.0490 (7)0.0415 (7)0.0057 (6)0.0054 (6)0.0029 (6)
C50.0513 (8)0.0439 (8)0.0406 (7)0.0002 (7)0.0037 (6)0.0011 (6)
C60.0644 (10)0.0655 (11)0.0411 (8)0.0082 (9)0.0010 (7)0.0034 (8)
C30.0536 (9)0.0528 (10)0.0542 (9)0.0011 (8)0.0037 (7)0.0015 (8)
C80.0565 (9)0.0508 (9)0.0395 (8)0.0090 (8)0.0011 (7)0.0007 (7)
C90.0697 (11)0.0531 (10)0.0410 (8)0.0055 (9)0.0069 (7)0.0060 (7)
N20.0813 (10)0.0610 (9)0.0561 (9)0.0195 (8)0.0079 (8)0.0082 (7)
C70.0694 (11)0.0659 (12)0.0483 (9)0.0085 (9)0.0076 (8)0.0112 (8)
C20.0571 (9)0.0523 (10)0.0641 (11)0.0037 (8)0.0049 (8)0.0028 (8)
C110.0720 (11)0.0512 (10)0.0540 (9)0.0145 (9)0.0211 (8)0.0070 (8)
C100.0622 (10)0.0443 (9)0.0469 (9)0.0012 (8)0.0106 (7)0.0016 (7)
C160.0644 (11)0.0509 (11)0.0759 (12)0.0124 (9)0.0198 (9)0.0141 (9)
C140.0716 (12)0.0801 (14)0.0660 (12)0.0248 (11)0.0220 (10)0.0215 (11)
C150.0644 (11)0.0662 (13)0.0780 (13)0.0061 (9)0.0198 (10)0.0078 (10)
C120.0959 (15)0.0530 (11)0.0781 (13)0.0185 (11)0.0119 (11)0.0002 (10)
C10.0747 (13)0.0750 (14)0.0886 (15)0.0199 (11)0.0065 (11)0.0112 (11)
C170.0856 (16)0.121 (2)0.0946 (17)0.0340 (15)0.0107 (13)0.0253 (16)
C130.0992 (17)0.0598 (13)0.0876 (15)0.0334 (12)0.0173 (13)0.0139 (11)
Geometric parameters (Å, º) top
Cl1—C81.7356 (16)C2—C11.509 (3)
C4—C31.403 (2)C11—C121.377 (3)
C4—C51.418 (2)C11—C161.385 (3)
C4—C81.425 (2)C16—C151.378 (3)
N1—C101.320 (2)C16—H160.9300
N1—C51.3716 (19)C14—C131.376 (3)
C5—C61.410 (2)C14—C151.387 (3)
C6—C71.360 (2)C14—C171.508 (3)
C6—H60.9300C15—H150.9300
C3—C21.369 (2)C12—C131.382 (3)
C3—H30.9300C12—H120.9300
C8—C91.335 (2)C1—H1A0.9600
C9—C101.424 (2)C1—H1B0.9600
C9—H90.9300C1—H1C0.9600
N2—C101.366 (2)C17—H17A0.9600
N2—C111.407 (2)C17—H17B0.9600
N2—H20.8600C17—H17C0.9600
C7—C21.410 (2)C13—H130.9300
C7—H70.9300
C3—C4—C5119.79 (14)N1—C10—N2119.69 (15)
C3—C4—C8124.74 (14)N1—C10—C9123.58 (15)
C5—C4—C8115.47 (14)N2—C10—C9116.71 (15)
C10—N1—C5117.16 (13)C15—C16—C11120.72 (17)
N1—C5—C6118.75 (14)C15—C16—H16119.6
N1—C5—C4123.71 (13)C11—C16—H16119.6
C6—C5—C4117.54 (14)C13—C14—C15117.0 (2)
C7—C6—C5121.16 (15)C13—C14—C17122.1 (2)
C7—C6—H6119.4C15—C14—C17120.8 (2)
C5—C6—H6119.4C16—C15—C14121.5 (2)
C2—C3—C4121.83 (15)C16—C15—H15119.2
C2—C3—H3119.1C14—C15—H15119.2
C4—C3—H3119.1C11—C12—C13120.5 (2)
C9—C8—C4121.40 (14)C11—C12—H12119.7
C9—C8—Cl1118.87 (12)C13—C12—H12119.7
C4—C8—Cl1119.72 (13)C2—C1—H1A109.5
C8—C9—C10118.67 (14)C2—C1—H1B109.5
C8—C9—H9120.7H1A—C1—H1B109.5
C10—C9—H9120.7C2—C1—H1C109.5
C10—N2—C11126.62 (15)H1A—C1—H1C109.5
C10—N2—H2116.7H1B—C1—H1C109.5
C11—N2—H2116.7C14—C17—H17A109.5
C6—C7—C2121.75 (16)C14—C17—H17B109.5
C6—C7—H7119.1H17A—C17—H17B109.5
C2—C7—H7119.1C14—C17—H17C109.5
C3—C2—C7117.93 (16)H17A—C17—H17C109.5
C3—C2—C1121.50 (17)H17B—C17—H17C109.5
C7—C2—C1120.56 (17)C14—C13—C12121.99 (19)
C12—C11—C16118.19 (19)C14—C13—H13119.0
C12—C11—N2119.22 (19)C12—C13—H13119.0
C16—C11—N2122.46 (16)
C10—N1—C5—C6178.35 (15)C6—C7—C2—C1179.77 (18)
C10—N1—C5—C41.1 (2)C10—N2—C11—C12146.26 (19)
C3—C4—C5—N1179.84 (14)C10—N2—C11—C1638.0 (3)
C8—C4—C5—N10.9 (2)C5—N1—C10—N2178.42 (15)
C3—C4—C5—C60.7 (2)C5—N1—C10—C90.4 (2)
C8—C4—C5—C6178.59 (15)C11—N2—C10—N117.5 (3)
N1—C5—C6—C7179.95 (16)C11—N2—C10—C9163.54 (16)
C4—C5—C6—C70.5 (3)C8—C9—C10—N10.4 (3)
C5—C4—C3—C20.2 (3)C8—C9—C10—N2179.33 (15)
C8—C4—C3—C2178.95 (16)C12—C11—C16—C150.3 (3)
C3—C4—C8—C9179.17 (16)N2—C11—C16—C15175.44 (16)
C5—C4—C8—C90.0 (2)C11—C16—C15—C140.4 (3)
C3—C4—C8—Cl11.9 (2)C13—C14—C15—C160.7 (3)
C5—C4—C8—Cl1178.91 (11)C17—C14—C15—C16179.50 (18)
C4—C8—C9—C100.7 (2)C16—C11—C12—C130.7 (3)
Cl1—C8—C9—C10178.30 (12)N2—C11—C12—C13175.21 (18)
C5—C6—C7—C20.0 (3)C15—C14—C13—C120.3 (3)
C4—C3—C2—C70.4 (3)C17—C14—C13—C12179.9 (2)
C4—C3—C2—C1179.92 (17)C11—C12—C13—C140.4 (3)
C6—C7—C2—C30.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.593.404 (2)157
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15ClN2
Mr282.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.1445 (13), 11.4337 (10), 8.4764 (7)
β (°) 92.344 (4)
V3)1466.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13649, 3669, 2508
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.03
No. of reflections3669
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.593.404 (2)157
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

KNV thanks the CSIR, New Delhi, for financial assistance in the form of a Senior Research fellowship. DV acknowledges the Department of Science and Technology (DST) for providing data-collection facilities under the TBI Program and is also grateful for financial support to the Department under the UGC–SAP and DST–FIST programs.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J., Liu, Z. & Yang, G. (2005). Acta Cryst. E61, o2638–o2639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKemnitzer, W., Kuemmerle, J., Jiang, S., Zhang, H.-Z., Sirisoma, N., Kasibhatla, S., Crogan-Grundy, C., Tseng, B., Drewe, J. & Cai, X. Z. (2008). Bioorg. Med. Chem. Lett. 18, 6259–6264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLunniss, C. J., Cooper, A. W. J., Eldred, C. D., Kranz, M., Lindvall, M., Lucas, F. S., Neu, M., Preston, A. G. S., Ranshaw, L. E., Redgrave, A. J., Robinson, J. E., Shipley, T. J., Solanke, Y. E., Somers, D. O. & Wiseman, J. O. (2009). Bioorg. Med. Chem. 19, 1380–1385.  CrossRef CAS Google Scholar
First citationManoj, M. & Rajendra Prasad, K. J. (2011). J. Heterocycl. Chem. In the press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodrow, M. D., Ballantine, S. P., Barker, M. D., Clarke, B. J., Dawson, J., Dean, T. W., Delves, C. J., Evans, B., Gough, S. L., Guntrip, S. B., Holman, S., Holmes, D. S., Kranz, M., Lindvaal, M. K., Lucas, F. S., Neu, M., Ranshaw, L. E., Solanke, Y. E., Somers, D. O., Ward, P. & Wiseman, J. O. (2009). Bioorg. Med. Chem. Lett. 19, 5261–5265.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds