metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-n-butyl­bis­­(thio­cyanato-κN)(1,10-phenanthroline-κ2N,N′)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 January 2011; accepted 10 January 2011; online 15 January 2011)

In the asymmetric unit of the title compound, [Sn(C4H9)2(NCS)2(C12H8N2)], there are two independent mol­ecules, both lying on a twofold rotation axis. The axis passes through the mid-point of the 1,10 and 5,6 bonds of the N-heterocycle and through the Sn atom. The Sn atoms show a slightly distorted SnC2N4 octa­hedral coordination.

Related literature

For the di-n-butyl­tin dichloride adduct, see: Ganis et al. (1983[Ganis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245-250.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(NCS)2(C12H8N2]

  • Mr = 529.28

  • Monoclinic, P 2/n

  • a = 15.0008 (3) Å

  • b = 10.5220 (2) Å

  • c = 15.8359 (3) Å

  • β = 107.452 (2)°

  • V = 2384.46 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent Technologies SuperNova diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.703, Tmax = 0.884

  • 11981 measured reflections

  • 5323 independent reflections

  • 4659 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.02

  • 5323 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diorganotin dihalides/pseudohalides form a number of adducts with 1,10-phenanthroline. The dihalides adducts have been better studied, particularly with dibutyltin dihalides adducts; the di-n-butyltin dichloride adduct was reported a long time ago (Ganis et al., 1983). The diisothiocyanate adduct (Scheme I, Fig. 1 & 2), also features the chelated tin atom in an octahedral geometry. The two independent molecules both lie on a twofold rotation axis; the axis passes through the mid-point of the 1,10 and 5,6 pairs of atoms of the N-heterocycle, and it relates one butyl group to the other (as well as one isothiocyanate group to the other).

Related literature top

For the di-n-butyltin dichloride adduct, see: Ganis et al. (1983).

Experimental top

Dibutyltin diisothiocyanate and 1,10-phenanthroline (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the two independent molecules of dibutyldiisothiocyanato(1,10-phenanthroline)tin at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-n-butylbis(thiocyanato-κN)(1,10-phenanthroline- κ2N,N')tin(IV) top
Crystal data top
[Sn(C4H9)2(NCS)2(C12H8N2]F(000) = 1072
Mr = 529.28Dx = 1.474 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 10240 reflections
a = 15.0008 (3) Åθ = 2.2–29.4°
b = 10.5220 (2) ŵ = 1.26 mm1
c = 15.8359 (3) ÅT = 100 K
β = 107.452 (2)°Prism, colorless
V = 2384.46 (8) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent Technologies SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
5323 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4659 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1918
Absorption correction: multi-scan
CrysAlis PRO (Agilent Technologies, 2010)
k = 1313
Tmin = 0.703, Tmax = 0.884l = 1320
11981 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.2915P]
where P = (Fo2 + 2Fc2)/3
5323 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Sn(C4H9)2(NCS)2(C12H8N2]V = 2384.46 (8) Å3
Mr = 529.28Z = 4
Monoclinic, P2/nMo Kα radiation
a = 15.0008 (3) ŵ = 1.26 mm1
b = 10.5220 (2) ÅT = 100 K
c = 15.8359 (3) Å0.30 × 0.20 × 0.10 mm
β = 107.452 (2)°
Data collection top
Agilent Technologies SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
5323 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent Technologies, 2010)
4659 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.884Rint = 0.029
11981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
5323 reflectionsΔρmin = 0.61 e Å3
263 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.75000.646740 (19)0.25000.01691 (7)
Sn20.75000.61402 (2)0.75000.01760 (7)
S10.80427 (5)0.90208 (6)0.00369 (4)0.02442 (15)
S21.01982 (5)0.34705 (6)0.92845 (5)0.02964 (16)
N10.76659 (13)0.46325 (17)0.16982 (12)0.0186 (4)
N20.76347 (15)0.7767 (2)0.14184 (14)0.0296 (5)
N30.83931 (12)0.79303 (17)0.80419 (12)0.0168 (4)
N40.87303 (16)0.4872 (2)0.82567 (14)0.0328 (5)
C10.60205 (16)0.6504 (2)0.19698 (17)0.0232 (5)
H1A0.58320.59190.14570.028*
H1B0.57450.61800.24230.028*
C20.56148 (17)0.7817 (2)0.16729 (18)0.0291 (6)
H2A0.57630.80550.11250.035*
H2B0.59170.84460.21350.035*
C30.45576 (19)0.7876 (3)0.14991 (18)0.0394 (7)
H3A0.42550.72140.10630.047*
H3B0.44090.76960.20560.047*
C40.4165 (2)0.9175 (3)0.1149 (2)0.0578 (10)
H4A0.34880.91810.10490.087*
H4B0.42970.93460.05900.087*
H4C0.44580.98310.15820.087*
C50.78497 (16)0.4644 (2)0.09300 (15)0.0238 (5)
H50.79120.54400.06700.029*
C60.79562 (19)0.3532 (2)0.04866 (17)0.0292 (6)
H60.80940.35740.00600.035*
C70.78590 (17)0.2385 (2)0.08520 (17)0.0303 (6)
H70.79130.16210.05510.036*
C80.76801 (16)0.2333 (2)0.16709 (17)0.0246 (6)
C90.75910 (15)0.3498 (2)0.20787 (15)0.0184 (5)
C100.7587 (2)0.1170 (2)0.21069 (19)0.0354 (7)
H100.76490.03830.18360.042*
C110.78116 (16)0.8286 (2)0.08429 (15)0.0191 (5)
C120.70141 (16)0.5978 (2)0.86263 (15)0.0207 (5)
H12A0.69570.50640.87490.025*
H12B0.74940.63430.91420.025*
C130.60877 (17)0.6616 (2)0.85540 (16)0.0245 (5)
H13A0.56190.63240.80040.029*
H13B0.61620.75450.85050.029*
C140.57178 (19)0.6351 (2)0.93319 (17)0.0289 (6)
H14A0.56630.54210.93970.035*
H14B0.61710.66750.98810.035*
C150.47828 (19)0.6955 (3)0.92244 (19)0.0389 (7)
H15A0.45760.67550.97400.058*
H15B0.43270.66260.86880.058*
H15C0.48360.78790.91750.058*
C160.92697 (16)0.7912 (2)0.85792 (15)0.0217 (5)
H160.95610.71160.87640.026*
C170.97730 (18)0.9027 (2)0.88790 (16)0.0262 (6)
H171.03970.89830.92600.031*
C180.93621 (17)1.0177 (2)0.86206 (16)0.0262 (6)
H180.97011.09390.88150.031*
C190.84303 (17)1.0231 (2)0.80631 (16)0.0224 (5)
C200.79742 (15)0.9072 (2)0.77864 (14)0.0170 (5)
C210.79440 (18)1.1396 (2)0.77720 (18)0.0282 (6)
H210.82491.21820.79640.034*
C220.93256 (18)0.4328 (2)0.86806 (16)0.0214 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01948 (13)0.01283 (11)0.01867 (12)0.0000.00609 (9)0.000
Sn20.01997 (13)0.01451 (12)0.01626 (12)0.0000.00229 (9)0.000
S10.0332 (4)0.0204 (3)0.0224 (3)0.0006 (3)0.0125 (3)0.0011 (2)
S20.0255 (3)0.0243 (3)0.0335 (4)0.0060 (3)0.0005 (3)0.0004 (3)
N10.0181 (10)0.0161 (9)0.0203 (10)0.0001 (8)0.0039 (8)0.0006 (8)
N20.0296 (12)0.0284 (11)0.0316 (12)0.0009 (10)0.0105 (10)0.0061 (10)
N30.0178 (9)0.0175 (9)0.0155 (9)0.0000 (8)0.0056 (8)0.0003 (8)
N40.0346 (13)0.0373 (13)0.0237 (11)0.0053 (11)0.0043 (10)0.0009 (10)
C10.0183 (12)0.0224 (12)0.0282 (13)0.0032 (10)0.0058 (10)0.0001 (10)
C20.0286 (14)0.0261 (13)0.0307 (14)0.0108 (11)0.0062 (12)0.0040 (11)
C30.0334 (15)0.0569 (19)0.0293 (15)0.0216 (14)0.0117 (12)0.0055 (14)
C40.059 (2)0.075 (2)0.0418 (19)0.044 (2)0.0178 (17)0.0180 (18)
C50.0262 (13)0.0254 (12)0.0188 (12)0.0032 (11)0.0052 (10)0.0015 (10)
C60.0326 (14)0.0309 (14)0.0253 (14)0.0074 (12)0.0104 (12)0.0034 (11)
C70.0290 (14)0.0266 (13)0.0341 (15)0.0083 (11)0.0076 (12)0.0107 (12)
C80.0229 (12)0.0172 (11)0.0320 (14)0.0025 (10)0.0055 (11)0.0055 (10)
C90.0123 (11)0.0167 (11)0.0246 (13)0.0002 (9)0.0030 (10)0.0002 (9)
C100.0415 (17)0.0161 (11)0.0488 (18)0.0020 (12)0.0139 (15)0.0046 (12)
C110.0187 (12)0.0148 (10)0.0220 (12)0.0013 (9)0.0035 (10)0.0045 (10)
C120.0234 (12)0.0228 (12)0.0154 (11)0.0037 (10)0.0050 (10)0.0027 (10)
C130.0246 (13)0.0272 (13)0.0211 (12)0.0022 (11)0.0060 (11)0.0017 (10)
C140.0300 (14)0.0351 (14)0.0216 (13)0.0056 (12)0.0078 (11)0.0002 (11)
C150.0296 (15)0.0591 (19)0.0305 (15)0.0067 (14)0.0128 (12)0.0019 (14)
C160.0209 (12)0.0244 (12)0.0193 (12)0.0000 (10)0.0054 (10)0.0028 (10)
C170.0213 (12)0.0344 (14)0.0218 (13)0.0055 (11)0.0050 (10)0.0078 (11)
C180.0286 (13)0.0237 (12)0.0307 (14)0.0119 (11)0.0154 (11)0.0097 (11)
C190.0265 (13)0.0209 (11)0.0248 (12)0.0033 (10)0.0151 (11)0.0025 (10)
C200.0206 (12)0.0162 (11)0.0167 (11)0.0008 (9)0.0092 (10)0.0022 (9)
C210.0358 (15)0.0170 (11)0.0386 (16)0.0042 (10)0.0217 (13)0.0037 (10)
C220.0305 (14)0.0147 (11)0.0240 (13)0.0035 (11)0.0157 (11)0.0056 (10)
Geometric parameters (Å, º) top
Sn1—C1i2.125 (2)C5—H50.9500
Sn1—C12.125 (2)C6—C71.365 (4)
Sn1—N2i2.248 (2)C6—H60.9500
Sn1—N22.248 (2)C7—C81.402 (4)
Sn1—N12.3646 (19)C7—H70.9500
Sn1—N1i2.3646 (19)C8—C91.410 (3)
Sn2—C12ii2.126 (2)C8—C101.433 (4)
Sn2—C122.126 (2)C9—C9i1.440 (5)
Sn2—N4ii2.302 (2)C10—C10i1.347 (6)
Sn2—N42.302 (2)C10—H100.9500
Sn2—N32.3215 (18)C12—C131.516 (3)
Sn2—N3ii2.3215 (18)C12—H12A0.9900
S1—C111.616 (3)C12—H12B0.9900
S2—C221.641 (3)C13—C141.521 (4)
N1—C51.326 (3)C13—H13A0.9900
N1—C91.357 (3)C13—H13B0.9900
N2—C111.159 (3)C14—C151.502 (4)
N3—C161.335 (3)C14—H14A0.9900
N3—C201.360 (3)C14—H14B0.9900
N4—C221.102 (3)C15—H15A0.9800
C1—C21.526 (3)C15—H15B0.9800
C1—H1A0.9900C15—H15C0.9800
C1—H1B0.9900C16—C171.399 (3)
C2—C31.527 (4)C16—H160.9500
C2—H2A0.9900C17—C181.364 (3)
C2—H2B0.9900C17—H170.9500
C3—C41.525 (4)C18—C191.413 (3)
C3—H3A0.9900C18—H180.9500
C3—H3B0.9900C19—C201.403 (3)
C4—H4A0.9800C19—C211.430 (3)
C4—H4B0.9800C20—C20ii1.440 (4)
C4—H4C0.9800C21—C21ii1.352 (5)
C5—C61.398 (3)C21—H210.9500
C1i—Sn1—C1177.93 (12)N1—C5—C6122.7 (2)
C1i—Sn1—N2i90.57 (9)N1—C5—H5118.7
C1—Sn1—N2i88.18 (8)C6—C5—H5118.7
C1i—Sn1—N288.18 (8)C7—C6—C5119.0 (3)
C1—Sn1—N290.57 (9)C7—C6—H6120.5
N2i—Sn1—N2105.05 (11)C5—C6—H6120.5
C1i—Sn1—N187.78 (8)C6—C7—C8120.1 (2)
C1—Sn1—N193.91 (8)C6—C7—H7120.0
N2i—Sn1—N1162.54 (7)C8—C7—H7120.0
N2—Sn1—N192.27 (7)C7—C8—C9117.4 (2)
C1i—Sn1—N1i93.91 (8)C7—C8—C10123.5 (2)
C1—Sn1—N1i87.78 (8)C9—C8—C10119.1 (2)
N2i—Sn1—N1i92.27 (7)N1—C9—C8122.0 (2)
N2—Sn1—N1i162.54 (7)N1—C9—C9i118.39 (13)
N1—Sn1—N1i70.53 (9)C8—C9—C9i119.65 (15)
C12ii—Sn2—C12170.80 (13)C10i—C10—C8121.30 (15)
C12ii—Sn2—N4ii86.55 (8)C10i—C10—H10119.4
C12—Sn2—N4ii88.12 (8)C8—C10—H10119.4
C12ii—Sn2—N488.12 (8)N2—C11—S1179.1 (2)
C12—Sn2—N486.55 (8)C13—C12—Sn2115.99 (15)
N4ii—Sn2—N4109.11 (11)C13—C12—H12A108.3
C12ii—Sn2—N394.02 (8)Sn2—C12—H12A108.3
C12—Sn2—N393.44 (8)C13—C12—H12B108.3
N4ii—Sn2—N3161.22 (7)Sn2—C12—H12B108.3
N4—Sn2—N389.68 (7)H12A—C12—H12B107.4
C12ii—Sn2—N3ii93.44 (8)C12—C13—C14114.0 (2)
C12—Sn2—N3ii94.02 (8)C12—C13—H13A108.8
N4ii—Sn2—N3ii89.68 (7)C14—C13—H13A108.8
N4—Sn2—N3ii161.22 (7)C12—C13—H13B108.8
N3—Sn2—N3ii71.54 (9)C14—C13—H13B108.8
C5—N1—C9118.9 (2)H13A—C13—H13B107.6
C5—N1—Sn1124.72 (15)C15—C14—C13112.7 (2)
C9—N1—Sn1116.34 (15)C15—C14—H14A109.1
C11—N2—Sn1168.4 (2)C13—C14—H14A109.1
C16—N3—C20118.75 (19)C15—C14—H14B109.1
C16—N3—Sn2124.96 (15)C13—C14—H14B109.1
C20—N3—Sn2116.29 (14)H14A—C14—H14B107.8
C22—N4—Sn2173.9 (2)C14—C15—H15A109.5
C2—C1—Sn1114.26 (17)C14—C15—H15B109.5
C2—C1—H1A108.7H15A—C15—H15B109.5
Sn1—C1—H1A108.7C14—C15—H15C109.5
C2—C1—H1B108.7H15A—C15—H15C109.5
Sn1—C1—H1B108.7H15B—C15—H15C109.5
H1A—C1—H1B107.6N3—C16—C17122.2 (2)
C1—C2—C3112.9 (2)N3—C16—H16118.9
C1—C2—H2A109.0C17—C16—H16118.9
C3—C2—H2A109.0C18—C17—C16119.5 (2)
C1—C2—H2B109.0C18—C17—H17120.2
C3—C2—H2B109.0C16—C17—H17120.2
H2A—C2—H2B107.8C17—C18—C19119.8 (2)
C4—C3—C2111.7 (3)C17—C18—H18120.1
C4—C3—H3A109.3C19—C18—H18120.1
C2—C3—H3A109.3C20—C19—C18117.3 (2)
C4—C3—H3B109.3C20—C19—C21119.4 (2)
C2—C3—H3B109.3C18—C19—C21123.3 (2)
H3A—C3—H3B107.9N3—C20—C19122.4 (2)
C3—C4—H4A109.5N3—C20—C20ii117.94 (12)
C3—C4—H4B109.5C19—C20—C20ii119.61 (14)
H4A—C4—H4B109.5C21ii—C21—C19121.02 (14)
C3—C4—H4C109.5C21ii—C21—H21119.5
H4A—C4—H4C109.5C19—C21—H21119.5
H4B—C4—H4C109.5N4—C22—S2177.7 (2)
C1i—Sn1—N1—C583.32 (19)C6—C7—C8—C91.1 (4)
C1—Sn1—N1—C595.49 (18)C6—C7—C8—C10178.7 (3)
N2i—Sn1—N1—C5168.1 (2)C5—N1—C9—C81.6 (3)
N2—Sn1—N1—C54.76 (18)Sn1—N1—C9—C8179.73 (16)
N1i—Sn1—N1—C5178.3 (2)C5—N1—C9—C9i178.8 (2)
C1i—Sn1—N1—C994.70 (16)Sn1—N1—C9—C9i0.7 (3)
C1—Sn1—N1—C986.49 (16)C7—C8—C9—N10.5 (3)
N2i—Sn1—N1—C99.9 (3)C10—C8—C9—N1179.6 (2)
N2—Sn1—N1—C9177.21 (15)C7—C8—C9—C9i179.9 (3)
N1i—Sn1—N1—C90.24 (11)C10—C8—C9—C9i0.0 (4)
C1i—Sn1—N2—C1151.6 (10)C7—C8—C10—C10i179.9 (3)
C1—Sn1—N2—C11130.1 (10)C9—C8—C10—C10i0.3 (5)
N2i—Sn1—N2—C11141.7 (10)N4ii—Sn2—C12—C1367.64 (18)
N1—Sn1—N2—C1136.1 (10)N4—Sn2—C12—C13176.91 (18)
N1i—Sn1—N2—C1145.7 (11)N3—Sn2—C12—C1393.62 (17)
C12ii—Sn2—N3—C1688.13 (19)N3ii—Sn2—C12—C1321.90 (18)
C12—Sn2—N3—C1686.48 (19)Sn2—C12—C13—C14173.58 (16)
N4ii—Sn2—N3—C16179.2 (2)C12—C13—C14—C15177.8 (2)
N4—Sn2—N3—C160.05 (18)C20—N3—C16—C170.7 (3)
N3ii—Sn2—N3—C16179.6 (2)Sn2—N3—C16—C17179.63 (18)
C12ii—Sn2—N3—C2092.20 (16)N3—C16—C17—C180.2 (4)
C12—Sn2—N3—C2093.18 (16)C16—C17—C18—C190.8 (4)
N4ii—Sn2—N3—C201.1 (3)C17—C18—C19—C201.2 (4)
N4—Sn2—N3—C20179.71 (16)C17—C18—C19—C21179.1 (2)
N3ii—Sn2—N3—C200.09 (11)C16—N3—C20—C190.3 (3)
N2i—Sn1—C1—C262.44 (19)Sn2—N3—C20—C19179.99 (17)
N2—Sn1—C1—C242.61 (19)C16—N3—C20—C20ii179.4 (2)
N1—Sn1—C1—C2134.92 (19)Sn2—N3—C20—C20ii0.3 (3)
N1i—Sn1—C1—C2154.78 (19)C18—C19—C20—N30.6 (3)
Sn1—C1—C2—C3166.65 (18)C21—C19—C20—N3179.6 (2)
C1—C2—C3—C4176.4 (2)C18—C19—C20—C20ii179.6 (3)
C9—N1—C5—C61.0 (3)C21—C19—C20—C20ii0.1 (4)
Sn1—N1—C5—C6178.97 (18)C20—C19—C21—C21ii0.7 (5)
N1—C5—C6—C70.6 (4)C18—C19—C21—C21ii179.1 (3)
C5—C6—C7—C81.7 (4)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(NCS)2(C12H8N2]
Mr529.28
Crystal system, space groupMonoclinic, P2/n
Temperature (K)100
a, b, c (Å)15.0008 (3), 10.5220 (2), 15.8359 (3)
β (°) 107.452 (2)
V3)2384.46 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent Technologies SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
Absorption correctionMulti-scan
CrysAlis PRO (Agilent Technologies, 2010)
Tmin, Tmax0.703, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
11981, 5323, 4659
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.02
No. of reflections5323
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.61

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGanis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245–250.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds