metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dimeth­yl(4′-pyridyl-2,2′:6′,2′′-terpyridine-κ3N1,N1′,N1′′)bis­(thio­cyanato-κN)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 January 2011; accepted 10 January 2011; online 15 January 2011)

The Sn atom in the title compound, [Sn(CH3)2(NCS)2(C20H14N4)], is N,N′,N′′-chelated by the terpyridine part of the N-heterocycle. The Sn atom exists in a trans-C2SnN5 penta­gonal–bipyramidal geometry [C—Sn—C = 173.66 (8)°] with the methyl groups in axial and the N atoms in equatorial positions.

Related literature

For the dimethyl­tin dichloride–terpyridine adduct, see: Naik & Scheidt (1973[Naik, D. N. & Scheidt, W. R. (1973). Inorg. Chem. 12, 272-276.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(NCS)2(C20H14N4)]

  • Mr = 575.27

  • Triclinic, [P \overline 1]

  • a = 9.3269 (3) Å

  • b = 10.5017 (3) Å

  • c = 13.1503 (4) Å

  • α = 66.814 (3)°

  • β = 87.665 (3)°

  • γ = 83.552 (2)°

  • V = 1176.52 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Agilent Technologies SuperNova diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.783, Tmax = 0.882

  • 15704 measured reflections

  • 5168 independent reflections

  • 4728 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.04

  • 5168 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diorganotin dihalides/pseudohalides form a number of adducts with terpyridine and its derivatives. The dimethyltin diisocyanate forms an adduct with terpyridine itself (Naik & Scheidt, 1973); the ligand chelates to the tin atom through its three N atoms. The 4'-pyridylterpyridine has a similar seven-coordinate structure (Scheme I, Fig. 1). It also features the chelated tin atom in a seven-coordinate geometry.

Related literature top

For the dimethyltin dichloride–terpyridine adduct, see: Naik & Scheidt (1973).

Experimental top

Dimethyltin diisothiocyanate and 4'-pyridyl-2,2':6',2"-terpyridine (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of diisothiocyanatodimethyl(4'-pyridylterpyridine)tin at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Dimethyl(4'-pyridyl-2,2':6',2''-terpyridine- κ3N1,N1',N1'')bis(thiocyanato-κN)tin(IV) top
Crystal data top
[Sn(CH3)2(NCS)2(C20H14N4)]Z = 2
Mr = 575.27F(000) = 576
Triclinic, P1Dx = 1.624 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3269 (3) ÅCell parameters from 10240 reflections
b = 10.5017 (3) Åθ = 2.2–29.4°
c = 13.1503 (4) ŵ = 1.29 mm1
α = 66.814 (3)°T = 100 K
β = 87.665 (3)°Prism, colorless
γ = 83.552 (2)°0.20 × 0.20 × 0.10 mm
V = 1176.52 (6) Å3
Data collection top
Agilent Technologies SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
5168 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4728 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1313
Tmin = 0.783, Tmax = 0.882l = 1716
15704 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.027P)2 + 0.2766P]
where P = (Fo2 + 2Fc2)/3
5168 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Sn(CH3)2(NCS)2(C20H14N4)]γ = 83.552 (2)°
Mr = 575.27V = 1176.52 (6) Å3
Triclinic, P1Z = 2
a = 9.3269 (3) ÅMo Kα radiation
b = 10.5017 (3) ŵ = 1.29 mm1
c = 13.1503 (4) ÅT = 100 K
α = 66.814 (3)°0.20 × 0.20 × 0.10 mm
β = 87.665 (3)°
Data collection top
Agilent Technologies SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
5168 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
4728 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.882Rint = 0.028
15704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
5168 reflectionsΔρmin = 0.49 e Å3
300 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.670329 (15)0.378196 (13)0.343774 (11)0.01570 (6)
S10.14249 (6)0.55757 (6)0.27483 (5)0.02139 (12)
S20.54381 (7)0.07411 (6)0.72375 (5)0.02716 (14)
N10.65080 (18)0.52567 (17)0.13746 (14)0.0154 (4)
N20.88281 (18)0.34503 (16)0.22361 (14)0.0137 (4)
N30.90522 (19)0.26172 (17)0.44304 (14)0.0166 (4)
N41.26459 (19)0.03774 (18)0.05850 (15)0.0184 (4)
N50.4323 (2)0.45490 (19)0.32114 (15)0.0241 (4)
N60.5991 (2)0.2807 (2)0.51867 (15)0.0256 (4)
C10.6332 (2)0.1957 (2)0.3225 (2)0.0232 (5)
H1A0.63430.21390.24340.035*
H1B0.53910.16730.35360.035*
H1C0.70910.12100.36060.035*
C20.7301 (2)0.5579 (2)0.35758 (18)0.0201 (5)
H2A0.73500.54260.43590.030*
H2B0.65830.63690.31980.030*
H2C0.82470.57790.32350.030*
C30.5515 (2)0.6360 (2)0.09447 (18)0.0183 (4)
H30.48990.66210.14390.022*
C40.5342 (2)0.7135 (2)0.01779 (18)0.0200 (5)
H40.46320.79150.04470.024*
C50.6229 (2)0.6748 (2)0.08986 (17)0.0185 (4)
H50.61210.72440.16750.022*
C60.7274 (2)0.5631 (2)0.04746 (17)0.0166 (4)
H60.79000.53550.09560.020*
C70.7396 (2)0.4917 (2)0.06618 (17)0.0142 (4)
C80.8551 (2)0.3767 (2)0.11653 (17)0.0138 (4)
C90.9287 (2)0.3065 (2)0.05728 (17)0.0152 (4)
H90.90770.33270.01880.018*
C101.0339 (2)0.1968 (2)0.11041 (17)0.0146 (4)
C111.0643 (2)0.1662 (2)0.22092 (17)0.0155 (4)
H111.13660.09350.25940.019*
C120.9879 (2)0.2429 (2)0.27423 (17)0.0142 (4)
C131.0163 (2)0.2199 (2)0.39065 (17)0.0158 (4)
C141.1508 (2)0.1658 (2)0.43977 (18)0.0186 (5)
H141.22600.13460.40150.022*
C151.1733 (2)0.1583 (2)0.54597 (18)0.0206 (5)
H151.26470.12380.58110.025*
C161.0606 (2)0.2018 (2)0.59894 (18)0.0214 (5)
H161.07310.19740.67160.026*
C170.9282 (2)0.2523 (2)0.54579 (18)0.0202 (5)
H170.85090.28130.58370.024*
C181.1117 (2)0.1161 (2)0.05122 (17)0.0148 (4)
C191.1493 (2)0.1789 (2)0.05975 (17)0.0165 (4)
H191.12250.27530.10050.020*
C201.2262 (2)0.0990 (2)0.11010 (17)0.0172 (4)
H201.25310.14390.18530.021*
C211.2265 (2)0.0968 (2)0.04727 (18)0.0176 (4)
H211.25230.19400.08530.021*
C221.1520 (2)0.0258 (2)0.10523 (17)0.0156 (4)
H221.12860.07330.18090.019*
C230.3116 (2)0.4974 (2)0.30293 (17)0.0173 (4)
C240.5756 (2)0.1937 (2)0.60383 (18)0.0198 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01512 (9)0.01554 (8)0.01612 (9)0.00096 (6)0.00146 (6)0.00616 (6)
S10.0158 (3)0.0253 (3)0.0245 (3)0.0018 (2)0.0006 (2)0.0123 (2)
S20.0260 (3)0.0268 (3)0.0212 (3)0.0053 (2)0.0007 (3)0.0008 (2)
N10.0135 (9)0.0140 (8)0.0186 (9)0.0003 (7)0.0013 (7)0.0068 (7)
N20.0137 (8)0.0124 (8)0.0152 (9)0.0003 (7)0.0017 (7)0.0059 (7)
N30.0198 (9)0.0161 (9)0.0148 (9)0.0019 (7)0.0007 (8)0.0069 (7)
N40.0171 (9)0.0202 (9)0.0200 (10)0.0007 (7)0.0010 (8)0.0107 (8)
N50.0177 (10)0.0272 (10)0.0232 (10)0.0003 (8)0.0035 (8)0.0065 (8)
N60.0252 (11)0.0283 (10)0.0178 (10)0.0040 (8)0.0061 (9)0.0034 (8)
C10.0242 (12)0.0159 (10)0.0304 (13)0.0034 (9)0.0040 (10)0.0091 (10)
C20.0256 (12)0.0136 (10)0.0220 (12)0.0013 (9)0.0013 (10)0.0082 (9)
C30.0154 (11)0.0178 (10)0.0224 (12)0.0005 (8)0.0033 (9)0.0096 (9)
C40.0172 (11)0.0154 (10)0.0244 (12)0.0043 (9)0.0036 (10)0.0057 (9)
C50.0198 (11)0.0189 (10)0.0141 (11)0.0002 (9)0.0040 (9)0.0040 (9)
C60.0170 (11)0.0184 (10)0.0166 (11)0.0009 (8)0.0001 (9)0.0094 (9)
C70.0133 (10)0.0127 (9)0.0185 (11)0.0009 (8)0.0019 (9)0.0081 (8)
C80.0125 (10)0.0120 (9)0.0164 (10)0.0012 (8)0.0001 (8)0.0049 (8)
C90.0155 (10)0.0155 (10)0.0148 (10)0.0016 (8)0.0002 (9)0.0064 (8)
C100.0133 (10)0.0142 (9)0.0177 (11)0.0030 (8)0.0028 (9)0.0076 (8)
C110.0141 (10)0.0130 (9)0.0174 (11)0.0004 (8)0.0003 (9)0.0041 (8)
C120.0124 (10)0.0153 (10)0.0151 (10)0.0014 (8)0.0003 (8)0.0062 (8)
C130.0182 (11)0.0111 (9)0.0171 (11)0.0009 (8)0.0005 (9)0.0046 (8)
C140.0173 (11)0.0178 (10)0.0199 (11)0.0039 (9)0.0038 (9)0.0078 (9)
C150.0208 (11)0.0162 (10)0.0226 (12)0.0007 (9)0.0102 (10)0.0049 (9)
C160.0287 (12)0.0208 (11)0.0155 (11)0.0032 (10)0.0044 (10)0.0075 (9)
C170.0230 (12)0.0212 (11)0.0181 (11)0.0026 (9)0.0011 (10)0.0095 (9)
C180.0120 (10)0.0163 (10)0.0186 (11)0.0013 (8)0.0001 (9)0.0097 (9)
C190.0156 (10)0.0154 (10)0.0179 (11)0.0001 (8)0.0007 (9)0.0063 (8)
C200.0160 (11)0.0203 (10)0.0147 (11)0.0020 (9)0.0011 (9)0.0063 (9)
C210.0153 (10)0.0146 (10)0.0224 (12)0.0014 (8)0.0006 (9)0.0075 (9)
C220.0133 (10)0.0172 (10)0.0154 (10)0.0006 (8)0.0007 (9)0.0057 (8)
C230.0216 (12)0.0164 (10)0.0131 (10)0.0041 (9)0.0058 (9)0.0050 (8)
C240.0131 (10)0.0261 (11)0.0228 (12)0.0001 (9)0.0008 (9)0.0129 (10)
Geometric parameters (Å, º) top
Sn1—C22.102 (2)C5—C61.382 (3)
Sn1—C12.110 (2)C5—H50.9500
Sn1—N62.2258 (18)C6—C71.386 (3)
Sn1—N52.2645 (19)C6—H60.9500
Sn1—N32.5246 (17)C7—C81.481 (3)
Sn1—N12.5418 (17)C8—C91.385 (3)
Sn1—N22.5630 (17)C9—C101.395 (3)
S1—C231.632 (2)C9—H90.9500
S2—C241.624 (2)C10—C111.393 (3)
N1—C31.343 (3)C10—C181.478 (3)
N1—C71.351 (3)C11—C121.387 (3)
N2—C81.342 (3)C11—H110.9500
N2—C121.345 (3)C12—C131.483 (3)
N3—C171.340 (3)C13—C141.389 (3)
N3—C131.349 (3)C14—C151.391 (3)
N4—C211.332 (3)C14—H140.9500
N4—C201.337 (3)C15—C161.372 (3)
N5—C231.161 (3)C15—H150.9500
N6—C241.164 (3)C16—C171.388 (3)
C1—H1A0.9800C16—H160.9500
C1—H1B0.9800C17—H170.9500
C1—H1C0.9800C18—C221.389 (3)
C2—H2A0.9800C18—C191.393 (3)
C2—H2B0.9800C19—C201.385 (3)
C2—H2C0.9800C19—H190.9500
C3—C41.383 (3)C20—H200.9500
C3—H30.9500C21—C221.382 (3)
C4—C51.383 (3)C21—H210.9500
C4—H40.9500C22—H220.9500
C2—Sn1—C1173.66 (8)C7—C6—C5119.20 (19)
C2—Sn1—N695.00 (8)C7—C6—H6120.4
C1—Sn1—N688.97 (8)C5—C6—H6120.4
C2—Sn1—N594.55 (8)N1—C7—C6122.26 (18)
C1—Sn1—N590.97 (8)N1—C7—C8116.12 (18)
N6—Sn1—N580.75 (7)C6—C7—C8121.57 (18)
C2—Sn1—N384.97 (7)N2—C8—C9122.46 (18)
C1—Sn1—N391.04 (7)N2—C8—C7115.30 (17)
N6—Sn1—N377.94 (6)C9—C8—C7122.25 (18)
N5—Sn1—N3158.55 (6)C8—C9—C10119.37 (19)
C2—Sn1—N185.50 (7)C8—C9—H9120.3
C1—Sn1—N192.67 (7)C10—C9—H9120.3
N6—Sn1—N1158.04 (6)C11—C10—C9117.91 (18)
N5—Sn1—N177.33 (6)C11—C10—C18120.97 (18)
N3—Sn1—N1123.89 (5)C9—C10—C18121.12 (19)
C2—Sn1—N297.06 (7)C12—C11—C10119.39 (19)
C1—Sn1—N276.72 (7)C12—C11—H11120.3
N6—Sn1—N2138.11 (6)C10—C11—H11120.3
N5—Sn1—N2137.58 (6)N2—C12—C11122.32 (19)
N3—Sn1—N263.44 (5)N2—C12—C13114.86 (17)
N1—Sn1—N263.18 (5)C11—C12—C13122.81 (18)
C3—N1—C7117.48 (17)N3—C13—C14122.62 (19)
C3—N1—Sn1122.53 (13)N3—C13—C12115.37 (18)
C7—N1—Sn1119.96 (12)C14—C13—C12121.93 (19)
C8—N2—C12118.48 (17)C15—C14—C13118.8 (2)
C8—N2—Sn1117.17 (13)C15—C14—H14120.6
C12—N2—Sn1116.78 (13)C13—C14—H14120.6
C17—N3—C13117.84 (18)C16—C15—C14118.5 (2)
C17—N3—Sn1120.77 (14)C16—C15—H15120.7
C13—N3—Sn1121.07 (13)C14—C15—H15120.7
C21—N4—C20116.62 (17)C15—C16—C17119.7 (2)
C23—N5—Sn1176.01 (17)C15—C16—H16120.2
C24—N6—Sn1159.06 (18)C17—C16—H16120.2
Sn1—C1—H1A109.5N3—C17—C16122.5 (2)
Sn1—C1—H1B109.5N3—C17—H17118.7
H1A—C1—H1B109.5C16—C17—H17118.7
Sn1—C1—H1C109.5C22—C18—C19117.38 (18)
H1A—C1—H1C109.5C22—C18—C10120.88 (18)
H1B—C1—H1C109.5C19—C18—C10121.73 (18)
Sn1—C2—H2A109.5C20—C19—C18119.26 (19)
Sn1—C2—H2B109.5C20—C19—H19120.4
H2A—C2—H2B109.5C18—C19—H19120.4
Sn1—C2—H2C109.5N4—C20—C19123.52 (19)
H2A—C2—H2C109.5N4—C20—H20118.2
H2B—C2—H2C109.5C19—C20—H20118.2
N1—C3—C4123.57 (19)N4—C21—C22124.19 (19)
N1—C3—H3118.2N4—C21—H21117.9
C4—C3—H3118.2C22—C21—H21117.9
C3—C4—C5118.28 (19)C21—C22—C18119.01 (19)
C3—C4—H4120.9C21—C22—H22120.5
C5—C4—H4120.9C18—C22—H22120.5
C6—C5—C4119.17 (19)N5—C23—S1178.9 (2)
C6—C5—H5120.4N6—C24—S2178.9 (2)
C4—C5—H5120.4
C2—Sn1—N1—C365.95 (16)Sn1—N1—C7—C86.5 (2)
C1—Sn1—N1—C3120.14 (17)C5—C6—C7—N11.4 (3)
N6—Sn1—N1—C326.3 (3)C5—C6—C7—C8176.24 (19)
N5—Sn1—N1—C329.74 (16)C12—N2—C8—C91.2 (3)
N3—Sn1—N1—C3146.81 (15)Sn1—N2—C8—C9147.48 (16)
N2—Sn1—N1—C3166.20 (17)C12—N2—C8—C7179.06 (17)
C2—Sn1—N1—C7116.06 (16)Sn1—N2—C8—C732.2 (2)
C1—Sn1—N1—C757.86 (16)N1—C7—C8—N217.1 (3)
N6—Sn1—N1—C7151.74 (18)C6—C7—C8—N2160.63 (18)
N5—Sn1—N1—C7148.25 (16)N1—C7—C8—C9162.59 (18)
N3—Sn1—N1—C735.19 (16)C6—C7—C8—C919.7 (3)
N2—Sn1—N1—C715.81 (13)N2—C8—C9—C101.2 (3)
C2—Sn1—N2—C8106.42 (14)C7—C8—C9—C10178.43 (18)
C1—Sn1—N2—C874.85 (14)C8—C9—C10—C112.5 (3)
N6—Sn1—N2—C8147.95 (14)C8—C9—C10—C18177.98 (18)
N5—Sn1—N2—C81.71 (18)C9—C10—C11—C121.3 (3)
N3—Sn1—N2—C8172.83 (15)C18—C10—C11—C12179.16 (18)
N1—Sn1—N2—C825.11 (13)C8—N2—C12—C112.5 (3)
C2—Sn1—N2—C12104.32 (15)Sn1—N2—C12—C11146.34 (16)
C1—Sn1—N2—C1274.41 (15)C8—N2—C12—C13176.96 (17)
N6—Sn1—N2—C121.31 (19)Sn1—N2—C12—C1334.2 (2)
N5—Sn1—N2—C12150.97 (14)C10—C11—C12—N21.2 (3)
N3—Sn1—N2—C1223.57 (13)C10—C11—C12—C13178.18 (18)
N1—Sn1—N2—C12174.37 (16)C17—N3—C13—C141.2 (3)
C2—Sn1—N3—C1762.31 (16)Sn1—N3—C13—C14174.64 (15)
C1—Sn1—N3—C17122.63 (16)C17—N3—C13—C12175.43 (18)
N6—Sn1—N3—C1733.91 (16)Sn1—N3—C13—C122.0 (2)
N5—Sn1—N3—C1727.3 (3)N2—C12—C13—N324.1 (3)
N1—Sn1—N3—C17143.45 (14)C11—C12—C13—N3156.48 (19)
N2—Sn1—N3—C17162.79 (17)N2—C12—C13—C14152.59 (19)
C2—Sn1—N3—C13110.95 (16)C11—C12—C13—C1426.9 (3)
C1—Sn1—N3—C1364.12 (16)N3—C13—C14—C152.0 (3)
N6—Sn1—N3—C13152.84 (16)C12—C13—C14—C15174.45 (19)
N5—Sn1—N3—C13159.42 (17)C13—C14—C15—C161.4 (3)
N1—Sn1—N3—C1329.80 (17)C14—C15—C16—C170.2 (3)
N2—Sn1—N3—C1310.47 (14)C13—N3—C17—C160.1 (3)
C2—Sn1—N6—C24150.2 (5)Sn1—N3—C17—C16173.39 (15)
C1—Sn1—N6—C2424.8 (5)C15—C16—C17—N30.5 (3)
N5—Sn1—N6—C24116.0 (5)C11—C10—C18—C2235.8 (3)
N3—Sn1—N6—C2466.5 (5)C9—C10—C18—C22144.7 (2)
N1—Sn1—N6—C24119.4 (5)C11—C10—C18—C19143.3 (2)
N2—Sn1—N6—C2443.8 (5)C9—C10—C18—C1936.3 (3)
C7—N1—C3—C41.3 (3)C22—C18—C19—C201.2 (3)
Sn1—N1—C3—C4176.70 (15)C10—C18—C19—C20177.93 (19)
N1—C3—C4—C50.7 (3)C21—N4—C20—C190.7 (3)
C3—C4—C5—C61.7 (3)C18—C19—C20—N41.5 (3)
C4—C5—C6—C70.7 (3)C20—N4—C21—C220.4 (3)
C3—N1—C7—C62.4 (3)N4—C21—C22—C180.7 (3)
Sn1—N1—C7—C6175.74 (15)C19—C18—C22—C210.1 (3)
C3—N1—C7—C8175.36 (18)C10—C18—C22—C21178.98 (19)

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(NCS)2(C20H14N4)]
Mr575.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3269 (3), 10.5017 (3), 13.1503 (4)
α, β, γ (°)66.814 (3), 87.665 (3), 83.552 (2)
V3)1176.52 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerAgilent Technologies SuperNova (Dual, Cu at zero)
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.783, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
15704, 5168, 4728
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.04
No. of reflections5168
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.49

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNaik, D. N. & Scheidt, W. R. (1973). Inorg. Chem. 12, 272–276.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds