metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,7-Di­phenyl-1,10-phenanthroline-κ2N,N′)di­methyl­bis­­(thio­cyanato-κN)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 January 2011; accepted 12 January 2011; online 22 January 2011)

In the title compound, [Sn(CH3)2(NSC)2(C24H16N2)], a 1:1 adduct of dimethyl­tin diisothio­cyanate with 4,7-diphenyl-1,10-phenanthroline, the SnIV atom shows a slightly distorted octa­hedral SnC2N4 coordination. The methyl groups are trans to each other in the octa­hedron surrounding the metal atom [C—Sn—C = 176.61 (12)°].

Related literature

For the ethanol-solvated di-n-butyl­tin dichloride adduct of the N-heterocycle, see: Hu et al. (1989[Hu, S.-Z., Lin, W.-F., Wan, J. Z. & Huang, Z.-X. (1989). Chin. J. Struct. Chem. 8, 36-39.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(NSC)2(C24H16N2)]

  • Mr = 597.31

  • Monoclinic, P 21 /n

  • a = 17.1918 (2) Å

  • b = 8.1907 (2) Å

  • c = 18.3045 (3) Å

  • β = 98.042 (1)°

  • V = 2552.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.797, Tmax = 0.890

  • 13167 measured reflections

  • 5710 independent reflections

  • 4833 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.03

  • 5710 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diorganotin dihalides/pseudohalides form a number of adducts with 1,10-phenanthroline and its derivatives. The dibutytlin dichloride adduct with 4,7-diphenyl-1,10-phenanthroline exists as an ethanol solvate (Hu et al., 1989). The dimethyltin diisothiocyanate adduct is anhydrous (Scheme I, Fig. 1). It also features the chelated tin atom in an octahedral geometry.

Related literature top

For the ethanol-solvated di-n-butyltin dichloride adduct of the N-heterocycle, see: Hu et al. (1989).

Experimental top

Dimethyltin diisothiocyanate and 4,7-diphenyl-1,10-phenanthroline (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Sn(NCS)2(CH3)2(C22H16N2)at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(4,7-Diphenyl-1,10-phenanthroline- κ2N,N')dimethylbis(thiocyanato-κN)tin(IV) top
Crystal data top
[Sn(CH3)2(NSC)2(C24H16N2)]F(000) = 1200
Mr = 597.31Dx = 1.555 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6689 reflections
a = 17.1918 (2) Åθ = 2.2–29.4°
b = 8.1907 (2) ŵ = 1.19 mm1
c = 18.3045 (3) ÅT = 100 K
β = 98.042 (1)°Prism, colorless
V = 2552.16 (8) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent Technologies SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
5710 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4833 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 1722
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 108
Tmin = 0.797, Tmax = 0.890l = 2323
13167 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0372P)2 + 1.3448P]
where P = (Fo2 + 2Fc2)/3
5710 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Sn(CH3)2(NSC)2(C24H16N2)]V = 2552.16 (8) Å3
Mr = 597.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.1918 (2) ŵ = 1.19 mm1
b = 8.1907 (2) ÅT = 100 K
c = 18.3045 (3) Å0.20 × 0.15 × 0.10 mm
β = 98.042 (1)°
Data collection top
Agilent Technologies SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
5710 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
4833 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.890Rint = 0.031
13167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.03Δρmax = 1.02 e Å3
5710 reflectionsΔρmin = 0.89 e Å3
318 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.430971 (9)0.35713 (2)0.153313 (10)0.02007 (7)
S10.39425 (6)0.14565 (14)0.10042 (6)0.0523 (3)
S20.15135 (4)0.31635 (11)0.17421 (5)0.03287 (19)
N10.50393 (11)0.4293 (3)0.26740 (12)0.0188 (5)
N20.56572 (12)0.3760 (3)0.14104 (13)0.0183 (5)
N30.39761 (16)0.3004 (3)0.03302 (14)0.0346 (6)
N40.31366 (17)0.3499 (4)0.1919 (2)0.0528 (9)
C10.44834 (17)0.1079 (4)0.17985 (18)0.0308 (7)
H1A0.40900.07220.21040.046*
H1B0.50110.09240.20720.046*
H1C0.44300.04330.13440.046*
C20.41642 (17)0.6092 (4)0.13329 (18)0.0291 (7)
H2A0.37110.62710.09530.044*
H2B0.46380.65340.11630.044*
H2C0.40760.66450.17890.044*
C30.59521 (15)0.3505 (4)0.07902 (16)0.0225 (6)
H30.56130.31030.03750.027*
C40.67354 (15)0.3796 (3)0.07169 (15)0.0207 (6)
H40.69190.35840.02600.025*
C50.72464 (14)0.4391 (3)0.13051 (15)0.0178 (5)
C60.69505 (14)0.4625 (3)0.19856 (15)0.0169 (5)
C70.61521 (14)0.4290 (3)0.20143 (14)0.0174 (5)
C80.74140 (14)0.5247 (3)0.26383 (15)0.0196 (6)
H80.79440.55530.26190.023*
C90.71173 (14)0.5409 (4)0.32806 (15)0.0202 (6)
H90.74510.57730.37070.024*
C100.63136 (14)0.5044 (3)0.33323 (15)0.0171 (5)
C110.58269 (13)0.4536 (3)0.26895 (14)0.0165 (5)
C120.59669 (14)0.5299 (3)0.39857 (15)0.0176 (5)
C130.51612 (14)0.5121 (4)0.39372 (15)0.0197 (6)
H130.49060.53460.43540.024*
C140.47207 (14)0.4613 (4)0.32769 (15)0.0208 (6)
H140.41690.44910.32590.025*
C150.80687 (14)0.4777 (3)0.11987 (15)0.0184 (6)
C160.81958 (15)0.5699 (4)0.05879 (16)0.0230 (6)
H160.77610.60700.02510.028*
C170.89580 (17)0.6081 (4)0.04668 (18)0.0286 (7)
H170.90420.67460.00600.034*
C180.95916 (16)0.5487 (4)0.09433 (17)0.0290 (7)
H181.01110.57340.08580.035*
C190.94723 (15)0.4538 (4)0.15416 (16)0.0249 (6)
H190.99100.41150.18600.030*
C200.87128 (14)0.4198 (4)0.16795 (15)0.0204 (6)
H200.86330.35740.21000.024*
C210.64392 (14)0.5755 (3)0.46954 (14)0.0173 (5)
C220.71205 (15)0.4890 (4)0.49706 (16)0.0228 (6)
H220.72950.40200.46910.027*
C230.75401 (15)0.5293 (4)0.56471 (16)0.0252 (6)
H230.79950.46840.58340.030*
C240.73016 (16)0.6579 (4)0.60538 (16)0.0246 (6)
H240.75910.68510.65180.030*
C250.66399 (15)0.7464 (4)0.57809 (15)0.0238 (6)
H250.64840.83650.60530.029*
C260.62034 (14)0.7044 (3)0.51140 (15)0.0185 (6)
H260.57400.76370.49390.022*
C270.39747 (15)0.2339 (4)0.02074 (18)0.0276 (7)
C280.24557 (18)0.3359 (4)0.18306 (19)0.0323 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01425 (10)0.02700 (13)0.01784 (12)0.00130 (7)0.00165 (7)0.00103 (8)
S10.0643 (6)0.0581 (7)0.0384 (5)0.0235 (5)0.0209 (5)0.0208 (5)
S20.0185 (3)0.0407 (5)0.0401 (5)0.0003 (3)0.0063 (3)0.0046 (4)
N10.0156 (10)0.0238 (13)0.0168 (11)0.0006 (9)0.0011 (9)0.0047 (10)
N20.0172 (10)0.0224 (13)0.0150 (11)0.0005 (9)0.0010 (9)0.0011 (10)
N30.0547 (17)0.0268 (15)0.0194 (14)0.0013 (13)0.0052 (12)0.0013 (12)
N40.0261 (15)0.053 (2)0.083 (3)0.0066 (13)0.0204 (16)0.0049 (18)
C10.0262 (14)0.0320 (18)0.0321 (17)0.0039 (12)0.0038 (13)0.0119 (14)
C20.0287 (15)0.0300 (18)0.0275 (16)0.0092 (12)0.0004 (13)0.0032 (14)
C30.0210 (13)0.0283 (17)0.0169 (14)0.0005 (11)0.0017 (11)0.0015 (12)
C40.0206 (13)0.0257 (16)0.0161 (14)0.0016 (11)0.0037 (11)0.0004 (12)
C50.0189 (12)0.0152 (14)0.0198 (14)0.0023 (10)0.0042 (10)0.0011 (11)
C60.0151 (11)0.0163 (14)0.0196 (13)0.0001 (10)0.0038 (10)0.0008 (11)
C70.0159 (12)0.0173 (14)0.0184 (13)0.0011 (10)0.0000 (10)0.0032 (11)
C80.0150 (11)0.0192 (14)0.0248 (15)0.0007 (10)0.0042 (10)0.0043 (12)
C90.0151 (12)0.0243 (15)0.0207 (14)0.0010 (10)0.0008 (10)0.0038 (12)
C100.0184 (12)0.0133 (13)0.0194 (14)0.0013 (10)0.0026 (10)0.0025 (11)
C110.0151 (11)0.0155 (14)0.0185 (13)0.0004 (10)0.0013 (10)0.0016 (11)
C120.0175 (12)0.0164 (14)0.0191 (14)0.0017 (10)0.0027 (10)0.0028 (11)
C130.0189 (12)0.0241 (15)0.0170 (14)0.0007 (11)0.0054 (10)0.0031 (12)
C140.0152 (12)0.0295 (16)0.0177 (14)0.0023 (11)0.0025 (10)0.0041 (12)
C150.0190 (12)0.0161 (14)0.0212 (14)0.0004 (10)0.0070 (11)0.0067 (11)
C160.0250 (13)0.0191 (15)0.0254 (15)0.0019 (11)0.0057 (11)0.0014 (13)
C170.0326 (15)0.0247 (17)0.0315 (17)0.0055 (12)0.0148 (14)0.0041 (14)
C180.0230 (14)0.0298 (18)0.0365 (18)0.0092 (12)0.0125 (13)0.0131 (15)
C190.0166 (12)0.0310 (17)0.0266 (16)0.0002 (11)0.0021 (11)0.0131 (13)
C200.0213 (12)0.0199 (15)0.0203 (14)0.0014 (11)0.0047 (11)0.0064 (12)
C210.0174 (12)0.0188 (14)0.0160 (13)0.0029 (10)0.0031 (10)0.0004 (12)
C220.0211 (13)0.0184 (15)0.0281 (16)0.0003 (10)0.0014 (11)0.0013 (12)
C230.0179 (12)0.0290 (17)0.0269 (16)0.0004 (11)0.0030 (11)0.0037 (13)
C240.0205 (13)0.0340 (18)0.0191 (15)0.0082 (12)0.0016 (11)0.0003 (13)
C250.0271 (14)0.0257 (16)0.0204 (15)0.0036 (12)0.0102 (11)0.0046 (13)
C260.0167 (12)0.0197 (14)0.0192 (14)0.0005 (10)0.0034 (10)0.0016 (12)
C270.0185 (13)0.0306 (18)0.0321 (18)0.0043 (12)0.0017 (12)0.0093 (15)
C280.0285 (16)0.0304 (18)0.040 (2)0.0006 (12)0.0132 (14)0.0021 (15)
Geometric parameters (Å, º) top
Sn1—C22.106 (3)C9—C101.430 (3)
Sn1—C12.110 (3)C9—H90.9500
Sn1—N42.229 (3)C10—C111.408 (4)
Sn1—N32.245 (3)C10—C121.424 (4)
Sn1—N12.356 (2)C12—C131.383 (3)
Sn1—N22.364 (2)C12—C211.480 (4)
S1—C271.622 (3)C13—C141.397 (4)
S2—C281.613 (3)C13—H130.9500
N1—C141.325 (3)C14—H140.9500
N1—C111.365 (3)C15—C161.392 (4)
N2—C31.323 (4)C15—C201.397 (4)
N2—C71.368 (3)C16—C171.395 (4)
N3—C271.125 (4)C16—H160.9500
N4—C281.165 (4)C17—C181.385 (4)
C1—H1A0.9800C17—H170.9500
C1—H1B0.9800C18—C191.382 (4)
C1—H1C0.9800C18—H180.9500
C2—H2A0.9800C19—C201.392 (3)
C2—H2B0.9800C19—H190.9500
C2—H2C0.9800C20—H200.9500
C3—C41.392 (4)C21—C261.397 (4)
C3—H30.9500C21—C221.401 (4)
C4—C51.380 (4)C22—C231.383 (4)
C4—H40.9500C22—H220.9500
C5—C61.423 (4)C23—C241.384 (4)
C5—C151.488 (3)C23—H230.9500
C6—C71.408 (3)C24—C251.382 (4)
C6—C81.434 (4)C24—H240.9500
C7—C111.440 (4)C25—C261.384 (4)
C8—C91.352 (4)C25—H250.9500
C8—H80.9500C26—H260.9500
C2—Sn1—C1176.61 (12)C10—C9—H9119.2
C2—Sn1—N489.45 (12)C11—C10—C12118.4 (2)
C1—Sn1—N490.38 (12)C11—C10—C9118.2 (2)
C2—Sn1—N391.41 (12)C12—C10—C9123.1 (2)
C1—Sn1—N391.95 (12)N1—C11—C10122.2 (2)
N4—Sn1—N3100.76 (12)N1—C11—C7117.7 (2)
C2—Sn1—N186.78 (11)C10—C11—C7120.1 (2)
C1—Sn1—N189.89 (11)C13—C12—C10117.6 (2)
N4—Sn1—N196.84 (11)C13—C12—C21120.3 (2)
N3—Sn1—N1162.29 (9)C10—C12—C21122.1 (2)
C2—Sn1—N290.76 (10)C12—C13—C14120.2 (2)
C1—Sn1—N288.64 (10)C12—C13—H13119.9
N4—Sn1—N2166.95 (11)C14—C13—H13119.9
N3—Sn1—N292.27 (9)N1—C14—C13122.9 (2)
N1—Sn1—N270.15 (7)N1—C14—H14118.6
C14—N1—C11118.6 (2)C13—C14—H14118.6
C14—N1—Sn1123.85 (16)C16—C15—C20119.4 (2)
C11—N1—Sn1117.30 (16)C16—C15—C5118.7 (2)
C3—N2—C7118.3 (2)C20—C15—C5122.0 (2)
C3—N2—Sn1124.71 (18)C15—C16—C17120.4 (3)
C7—N2—Sn1116.81 (16)C15—C16—H16119.8
C27—N3—Sn1158.1 (3)C17—C16—H16119.8
C28—N4—Sn1153.5 (3)C18—C17—C16119.6 (3)
Sn1—C1—H1A109.5C18—C17—H17120.2
Sn1—C1—H1B109.5C16—C17—H17120.2
H1A—C1—H1B109.5C19—C18—C17120.4 (2)
Sn1—C1—H1C109.5C19—C18—H18119.8
H1A—C1—H1C109.5C17—C18—H18119.8
H1B—C1—H1C109.5C18—C19—C20120.2 (3)
Sn1—C2—H2A109.5C18—C19—H19119.9
Sn1—C2—H2B109.5C20—C19—H19119.9
H2A—C2—H2B109.5C19—C20—C15119.9 (3)
Sn1—C2—H2C109.5C19—C20—H20120.0
H2A—C2—H2C109.5C15—C20—H20120.0
H2B—C2—H2C109.5C26—C21—C22118.5 (2)
N2—C3—C4123.2 (3)C26—C21—C12120.4 (2)
N2—C3—H3118.4C22—C21—C12121.1 (3)
C4—C3—H3118.4C23—C22—C21120.4 (3)
C5—C4—C3120.3 (3)C23—C22—H22119.8
C5—C4—H4119.9C21—C22—H22119.8
C3—C4—H4119.9C22—C23—C24120.4 (3)
C4—C5—C6117.6 (2)C22—C23—H23119.8
C4—C5—C15119.1 (2)C24—C23—H23119.8
C6—C5—C15123.3 (2)C25—C24—C23119.7 (3)
C7—C6—C5118.4 (2)C25—C24—H24120.2
C7—C6—C8118.0 (2)C23—C24—H24120.2
C5—C6—C8123.5 (2)C24—C25—C26120.4 (3)
N2—C7—C6122.1 (2)C24—C25—H25119.8
N2—C7—C11117.8 (2)C26—C25—H25119.8
C6—C7—C11120.1 (2)C25—C26—C21120.6 (2)
C9—C8—C6121.8 (2)C25—C26—H26119.7
C9—C8—H8119.1C21—C26—H26119.7
C6—C8—H8119.1N3—C27—S1176.9 (3)
C8—C9—C10121.5 (2)N4—C28—S2177.8 (4)
C8—C9—H9119.2
C2—Sn1—N1—C1485.1 (2)C8—C9—C10—C111.2 (4)
C1—Sn1—N1—C1494.3 (2)C8—C9—C10—C12175.8 (3)
N4—Sn1—N1—C143.9 (2)C14—N1—C11—C102.8 (4)
N3—Sn1—N1—C14169.6 (3)Sn1—N1—C11—C10177.00 (19)
N2—Sn1—N1—C14177.1 (2)C14—N1—C11—C7175.8 (2)
C2—Sn1—N1—C1188.7 (2)Sn1—N1—C11—C71.6 (3)
C1—Sn1—N1—C1191.9 (2)C12—C10—C11—N10.4 (4)
N4—Sn1—N1—C11177.7 (2)C9—C10—C11—N1174.5 (3)
N3—Sn1—N1—C114.2 (4)C12—C10—C11—C7179.0 (2)
N2—Sn1—N1—C113.29 (19)C9—C10—C11—C74.1 (4)
C2—Sn1—N2—C393.4 (2)N2—C7—C11—N12.8 (4)
C1—Sn1—N2—C389.9 (2)C6—C7—C11—N1175.9 (3)
N4—Sn1—N2—C3175.8 (4)N2—C7—C11—C10178.6 (2)
N3—Sn1—N2—C32.0 (2)C6—C7—C11—C102.8 (4)
N1—Sn1—N2—C3179.7 (2)C11—C10—C12—C133.6 (4)
C2—Sn1—N2—C781.6 (2)C9—C10—C12—C13171.0 (3)
C1—Sn1—N2—C795.1 (2)C11—C10—C12—C21177.0 (3)
N4—Sn1—N2—C79.3 (6)C9—C10—C12—C218.4 (4)
N3—Sn1—N2—C7173.0 (2)C10—C12—C13—C143.7 (4)
N1—Sn1—N2—C74.72 (18)C21—C12—C13—C14176.8 (3)
C2—Sn1—N3—C27147.3 (7)C11—N1—C14—C132.8 (4)
C1—Sn1—N3—C2732.2 (7)Sn1—N1—C14—C13176.6 (2)
N4—Sn1—N3—C27123.0 (7)C12—C13—C14—N10.5 (4)
N1—Sn1—N3—C2763.5 (8)C4—C5—C15—C1647.9 (4)
N2—Sn1—N3—C2756.5 (7)C6—C5—C15—C16131.2 (3)
C2—Sn1—N4—C2888.5 (7)C4—C5—C15—C20130.0 (3)
C1—Sn1—N4—C2894.8 (7)C6—C5—C15—C2050.9 (4)
N3—Sn1—N4—C282.8 (7)C20—C15—C16—C171.8 (4)
N1—Sn1—N4—C28175.2 (7)C5—C15—C16—C17179.7 (3)
N2—Sn1—N4—C28179.5 (5)C15—C16—C17—C182.4 (4)
C7—N2—C3—C42.0 (4)C16—C17—C18—C190.8 (5)
Sn1—N2—C3—C4172.9 (2)C17—C18—C19—C201.4 (4)
N2—C3—C4—C50.5 (4)C18—C19—C20—C152.0 (4)
C3—C4—C5—C62.5 (4)C16—C15—C20—C190.4 (4)
C3—C4—C5—C15176.6 (3)C5—C15—C20—C19177.5 (3)
C4—C5—C6—C72.0 (4)C13—C12—C21—C2647.3 (4)
C15—C5—C6—C7177.1 (3)C10—C12—C21—C26132.1 (3)
C4—C5—C6—C8179.4 (3)C13—C12—C21—C22131.4 (3)
C15—C5—C6—C80.3 (4)C10—C12—C21—C2249.3 (4)
C3—N2—C7—C62.4 (4)C26—C21—C22—C231.0 (4)
Sn1—N2—C7—C6172.9 (2)C12—C21—C22—C23177.7 (3)
C3—N2—C7—C11178.9 (2)C21—C22—C23—C241.3 (4)
Sn1—N2—C7—C115.8 (3)C22—C23—C24—C250.0 (4)
C5—C6—C7—N20.4 (4)C23—C24—C25—C261.8 (4)
C8—C6—C7—N2177.1 (2)C24—C25—C26—C212.1 (4)
C5—C6—C7—C11179.0 (2)C22—C21—C26—C250.8 (4)
C8—C6—C7—C111.4 (4)C12—C21—C26—C25179.4 (2)
C7—C6—C8—C94.5 (4)Sn1—N3—C27—S1174 (5)
C5—C6—C8—C9178.1 (3)Sn1—N4—C28—S2171 (8)
C6—C8—C9—C103.2 (4)

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(NSC)2(C24H16N2)]
Mr597.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)17.1918 (2), 8.1907 (2), 18.3045 (3)
β (°) 98.042 (1)
V3)2552.16 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent Technologies SuperNova Dual (Cu at zero)
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.797, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
13167, 5710, 4833
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.03
No. of reflections5710
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.89

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHu, S.-Z., Lin, W.-F., Wan, J. Z. & Huang, Z.-X. (1989). Chin. J. Struct. Chem. 8, 36–39.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds