organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-(1-benzyl-2-oxoindolin-3-yl­­idene)-1,3-di­thiole-4,5-di­carboxyl­ate

aDepartment of Chemistry, Islamic Azad University, Dooroud Branch, Dooroud 688173551, Iran
*Correspondence e-mail: a_bazgir@yahoo.com

(Received 16 January 2011; accepted 19 January 2011; online 22 January 2011)

In the title compound, C22H17NO5S2, the dithiole and oxindole rings are almost coplanar [dihedral angle = 2.71 (8)°] and the phenyl ring makes a dihedral angle of 73.65 (5)° with the oxindole ring. Inter­molecular ππ contacts between adjacent oxindole and dithiole rings [centroid–centroid distance = 3.7273 (11) Å] stabilize the crystal packing.

Related literature

For the superconducting and optical and electronic switching properties of derivatives of sulfur heterocycles such as thio­phene and 1,3-dithiole, see: Marcos et al. (1997[Marcos, C. F., Polo, C., Rakitin, O. A., Rees, C. W. & Torroba, T. (1997). Chem. Commun. pp. 879-880.]). For the use of 1,3-dithiol-2-ylidenes as building blocks for electronic materials due to their highly electron-donating properties, see: Segura & Martin (2001[Segura, J. L. & Martin, N. (2001). Angew. Chem. Int. Ed. 40, 1372-1409.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17NO5S2

  • Mr = 439.51

  • Monoclinic, C 2/c

  • a = 28.923 (2) Å

  • b = 9.3615 (5) Å

  • c = 15.0531 (12) Å

  • β = 101.319 (6)°

  • V = 3996.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.49 × 0.4 × 0.35 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.900

  • 14881 measured reflections

  • 5379 independent reflections

  • 4206 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.07

  • 5379 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Derivatives of sulfur heterocycles such as thiophene and 1,3-dithiole have been widely explored because of their superconducting and optical and electronic switching properties (Marcos et al., 1997). 1,3-Dithiol-2-ylidenes have attracted much attention as building blocks for electronic materials due to their highly electron-donating properties (Segura et al., 2001). In the title compound, the bond distances and angles are within normal ranges. The dihedral angles between the rings A (C8—C15/N1), B (C16/C17/C20/S1/S2) and C (C1—C6) are: A/B = 2.71 (6)°, A/C = 73.65 (5)° and B/C = 75.57 (6)°. Two molecules (symmetry operator: 1-x, y, 0.5-z) are connected by ππ interactions between adjacent A and B rings with a centroid···centroid distance of 3.727Å).

Related literature top

For the superconducting and optical and electronic switching properties of derivatives of sulfur heterocycles such as thiophene and 1,3-dithiole, see: Marcos et al. (1997). For the use of 1,3-dithiol-2-ylidenes as building blocks for electronic materials due to their highly electron-donating properties, see: Segura et al. (2001).

Experimental top

To a magnetically stirred solution of carbon disulfide (1 mmol) and tributylphosphine (1 mmol) in CH2Cl2 (5 ml) were added benzyl isatin (1 mmol) and dimethyl acetyenedicarboxylate (1 mmol) at room temperature. The mixture was stirred for 2.5 h. After completion of the reaction (TLC), the reaction mixture was filtered off and the residue was washed with ether (10 ml) to afford the pure product as a yellow powder (yield 90%, 0.395 g), mp 451–453 K.

Refinement top

All H atoms were positioned geometrically, with C—H=0.97 Å, 0.96Å and 0.93Å for CH2, methyl and aromatic hydrogen atoms, respectively, and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Dimethyl 2-(1-benzyl-2-oxoindolin-3-ylidene)-1,3-dithiole-4,5-dicarboxylate top
Crystal data top
C22H17NO5S2F(000) = 1824
Mr = 439.51Dx = 1.461 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 14881 reflections
a = 28.923 (2) Åθ = 2.3–29.3°
b = 9.3615 (5) ŵ = 0.30 mm1
c = 15.0531 (12) ÅT = 298 K
β = 101.319 (6)°Block, yellow
V = 3996.6 (5) Å30.49 × 0.4 × 0.35 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5379 independent reflections
Graphite monochromator4206 reflections with I > 2σ(I)
Detector resolution: 0.15 mm pixels mm-1Rint = 0.043
ϕ and ω scansθmax = 29.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 3939
Tmin = 0.869, Tmax = 0.900k = 1212
14881 measured reflectionsl = 1520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0447P)2 + 2.5812P]
where P = (Fo2 + 2Fc2)/3
5379 reflections(Δ/σ)max = 0.007
271 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H17NO5S2V = 3996.6 (5) Å3
Mr = 439.51Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.923 (2) ŵ = 0.30 mm1
b = 9.3615 (5) ÅT = 298 K
c = 15.0531 (12) Å0.49 × 0.4 × 0.35 mm
β = 101.319 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4206 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.900Rint = 0.043
14881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
5379 reflectionsΔρmin = 0.20 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69401 (6)0.1560 (2)0.15830 (13)0.0440 (4)
H10.66780.0970.14280.053*
C20.72780 (7)0.1575 (2)0.10498 (15)0.0517 (5)
H20.72430.09920.05410.062*
C30.76654 (7)0.2450 (3)0.12692 (16)0.0553 (5)
H30.78920.24590.09090.066*
C40.77168 (7)0.3309 (2)0.20198 (18)0.0574 (6)
H40.79780.39060.21650.069*
C50.73822 (7)0.3290 (2)0.25619 (16)0.0505 (5)
H50.74220.38660.30750.061*
C60.69882 (6)0.24178 (19)0.23467 (12)0.0387 (4)
C70.66189 (6)0.2389 (2)0.29233 (13)0.0463 (4)
H7A0.65880.1420.31320.056*
H7B0.67220.29850.34520.056*
C80.60243 (6)0.4311 (2)0.22905 (13)0.0405 (4)
C90.62848 (7)0.5531 (2)0.25334 (15)0.0512 (5)
H90.65970.5480.28350.061*
C100.60660 (8)0.6838 (2)0.23143 (17)0.0575 (5)
H100.62350.76750.24730.069*
C110.56030 (8)0.6924 (2)0.18661 (17)0.0579 (6)
H110.54640.78130.1730.069*
C120.53431 (7)0.5688 (2)0.16160 (15)0.0495 (5)
H120.50310.57470.13110.059*
C130.55522 (6)0.43703 (19)0.18238 (13)0.0400 (4)
C140.53962 (6)0.28985 (19)0.16840 (13)0.0394 (4)
C150.57937 (6)0.1980 (2)0.20878 (13)0.0413 (4)
C160.49754 (6)0.23430 (18)0.12636 (12)0.0371 (4)
C170.41162 (6)0.19850 (18)0.04219 (13)0.0383 (4)
C180.36382 (7)0.2325 (2)0.01156 (13)0.0432 (4)
C190.30976 (8)0.4193 (3)0.0566 (2)0.0695 (7)
H19A0.2850.36990.03510.083*
H19B0.30770.39920.11980.083*
H19C0.30660.52020.04820.083*
C200.42817 (6)0.06699 (18)0.06540 (13)0.0375 (4)
C210.40009 (6)0.06847 (18)0.05586 (13)0.0396 (4)
C220.40263 (9)0.3108 (2)0.01813 (17)0.0588 (6)
H22A0.37280.30550.02320.071*
H22B0.39780.34140.07650.071*
H22C0.42270.37790.00430.071*
S10.450578 (16)0.33875 (5)0.07467 (4)0.04225 (12)
S20.486715 (15)0.05076 (5)0.12000 (4)0.04242 (12)
O10.58087 (5)0.06729 (15)0.21051 (11)0.0533 (4)
O20.33748 (6)0.14837 (16)0.05296 (13)0.0725 (5)
O30.35496 (5)0.37174 (14)0.00634 (11)0.0525 (4)
O40.36255 (5)0.08135 (16)0.07518 (12)0.0573 (4)
O50.42460 (5)0.17201 (14)0.02619 (11)0.0524 (4)
N10.61588 (5)0.28852 (17)0.24442 (12)0.0434 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (9)0.0446 (9)0.0469 (10)0.0022 (7)0.0021 (8)0.0000 (8)
C20.0504 (11)0.0573 (12)0.0468 (11)0.0068 (9)0.0084 (9)0.0006 (9)
C30.0413 (10)0.0644 (13)0.0628 (13)0.0087 (9)0.0166 (9)0.0166 (11)
C40.0320 (9)0.0552 (12)0.0831 (16)0.0061 (8)0.0068 (9)0.0046 (11)
C50.0383 (9)0.0501 (11)0.0589 (12)0.0047 (8)0.0011 (8)0.0086 (9)
C60.0309 (7)0.0408 (9)0.0418 (9)0.0015 (7)0.0007 (7)0.0032 (7)
C70.0383 (9)0.0576 (11)0.0415 (10)0.0002 (8)0.0040 (8)0.0015 (9)
C80.0372 (8)0.0424 (9)0.0431 (10)0.0050 (7)0.0105 (7)0.0057 (8)
C90.0435 (10)0.0526 (11)0.0573 (12)0.0109 (9)0.0092 (9)0.0128 (10)
C100.0586 (12)0.0452 (11)0.0689 (15)0.0154 (9)0.0131 (11)0.0132 (10)
C110.0613 (13)0.0379 (10)0.0732 (15)0.0043 (9)0.0100 (11)0.0069 (10)
C120.0459 (10)0.0418 (10)0.0596 (13)0.0018 (8)0.0071 (9)0.0027 (9)
C130.0365 (8)0.0414 (9)0.0433 (10)0.0053 (7)0.0104 (7)0.0036 (7)
C140.0341 (8)0.0379 (9)0.0470 (10)0.0029 (7)0.0095 (7)0.0004 (7)
C150.0333 (8)0.0435 (9)0.0483 (10)0.0029 (7)0.0111 (7)0.0009 (8)
C160.0342 (8)0.0344 (8)0.0433 (9)0.0015 (6)0.0091 (7)0.0014 (7)
C170.0370 (8)0.0330 (8)0.0427 (10)0.0013 (6)0.0026 (7)0.0023 (7)
C180.0430 (9)0.0373 (9)0.0459 (10)0.0031 (7)0.0003 (8)0.0002 (8)
C190.0529 (12)0.0568 (13)0.0889 (19)0.0120 (10)0.0108 (12)0.0065 (13)
C200.0364 (8)0.0334 (8)0.0423 (9)0.0039 (6)0.0064 (7)0.0023 (7)
C210.0397 (9)0.0334 (8)0.0429 (9)0.0042 (7)0.0011 (7)0.0008 (7)
C220.0763 (15)0.0299 (9)0.0697 (15)0.0083 (9)0.0127 (12)0.0028 (9)
S10.0392 (2)0.0304 (2)0.0537 (3)0.00321 (17)0.00062 (19)0.00031 (19)
S20.0350 (2)0.0320 (2)0.0588 (3)0.00095 (16)0.00545 (19)0.00117 (19)
O10.0452 (7)0.0397 (7)0.0737 (10)0.0010 (6)0.0083 (7)0.0042 (7)
O20.0622 (9)0.0455 (8)0.0922 (13)0.0049 (7)0.0281 (9)0.0075 (8)
O30.0453 (7)0.0376 (7)0.0671 (10)0.0032 (5)0.0078 (7)0.0009 (6)
O40.0440 (7)0.0472 (8)0.0828 (11)0.0089 (6)0.0174 (7)0.0041 (7)
O50.0579 (8)0.0310 (6)0.0709 (10)0.0048 (6)0.0192 (7)0.0061 (6)
N10.0318 (7)0.0463 (8)0.0517 (9)0.0019 (6)0.0068 (6)0.0033 (7)
Geometric parameters (Å, º) top
C1—C21.381 (3)C12—H120.93
C1—C61.387 (3)C13—C141.452 (2)
C1—H10.93C14—C161.360 (2)
C2—C31.375 (3)C14—C151.469 (3)
C2—H20.93C15—O11.224 (2)
C3—C41.371 (3)C15—N11.378 (2)
C3—H30.93C16—S11.7297 (18)
C4—C51.383 (3)C16—S21.7458 (18)
C4—H40.93C17—C201.342 (2)
C5—C61.387 (2)C17—C181.493 (2)
C5—H50.93C17—S11.7368 (17)
C6—C71.503 (3)C18—O21.184 (2)
C7—N11.460 (2)C18—O31.334 (2)
C7—H7A0.97C19—O31.446 (2)
C7—H7B0.97C19—H19A0.96
C8—C91.377 (3)C19—H19B0.96
C8—N11.397 (2)C19—H19C0.96
C8—C131.409 (2)C20—C211.498 (2)
C9—C101.387 (3)C20—S21.7376 (18)
C9—H90.93C21—O41.184 (2)
C10—C111.378 (3)C21—O51.329 (2)
C10—H100.93C22—O51.441 (2)
C11—C121.391 (3)C22—H22A0.96
C11—H110.93C22—H22B0.96
C12—C131.382 (3)C22—H22C0.96
C2—C1—C6120.58 (18)C8—C13—C14106.16 (16)
C2—C1—H1119.7C16—C14—C13130.87 (17)
C6—C1—H1119.7C16—C14—C15121.66 (16)
C3—C2—C1120.2 (2)C13—C14—C15107.46 (15)
C3—C2—H2119.9O1—C15—N1125.82 (17)
C1—C2—H2119.9O1—C15—C14128.00 (17)
C4—C3—C2119.9 (2)N1—C15—C14106.17 (15)
C4—C3—H3120C14—C16—S1123.04 (14)
C2—C3—H3120C14—C16—S2122.44 (14)
C3—C4—C5120.24 (19)S1—C16—S2114.52 (10)
C3—C4—H4119.9C20—C17—C18125.59 (16)
C5—C4—H4119.9C20—C17—S1116.20 (13)
C4—C5—C6120.5 (2)C18—C17—S1118.16 (13)
C4—C5—H5119.7O2—C18—O3124.74 (18)
C6—C5—H5119.7O2—C18—C17125.09 (18)
C1—C6—C5118.57 (18)O3—C18—C17110.17 (15)
C1—C6—C7120.09 (16)O3—C19—H19A109.5
C5—C6—C7121.34 (18)O3—C19—H19B109.5
N1—C7—C6113.04 (16)H19A—C19—H19B109.5
N1—C7—H7A109O3—C19—H19C109.5
C6—C7—H7A109H19A—C19—H19C109.5
N1—C7—H7B109H19B—C19—H19C109.5
C6—C7—H7B109C17—C20—C21126.35 (16)
H7A—C7—H7B107.8C17—C20—S2117.91 (13)
C9—C8—N1128.91 (17)C21—C20—S2115.54 (13)
C9—C8—C13121.75 (18)O4—C21—O5125.71 (17)
N1—C8—C13109.33 (15)O4—C21—C20124.68 (17)
C8—C9—C10117.89 (19)O5—C21—C20109.56 (15)
C8—C9—H9121.1O5—C22—H22A109.5
C10—C9—H9121.1O5—C22—H22B109.5
C11—C10—C9121.45 (19)H22A—C22—H22B109.5
C11—C10—H10119.3O5—C22—H22C109.5
C9—C10—H10119.3H22A—C22—H22C109.5
C10—C11—C12120.4 (2)H22B—C22—H22C109.5
C10—C11—H11119.8C16—S1—C1796.21 (8)
C12—C11—H11119.8C20—S2—C1695.02 (8)
C13—C12—C11119.46 (19)C18—O3—C19115.73 (17)
C13—C12—H12120.3C21—O5—C22115.50 (16)
C11—C12—H12120.3C15—N1—C8110.87 (15)
C12—C13—C8119.08 (17)C15—N1—C7123.44 (16)
C12—C13—C14134.76 (17)C8—N1—C7125.68 (16)
C6—C1—C2—C30.4 (3)S1—C17—C18—O2164.3 (2)
C1—C2—C3—C40.1 (3)C20—C17—C18—O3166.85 (19)
C2—C3—C4—C50.6 (3)S1—C17—C18—O315.7 (2)
C3—C4—C5—C60.9 (3)C18—C17—C20—C2110.8 (3)
C2—C1—C6—C50.1 (3)S1—C17—C20—C21171.74 (15)
C2—C1—C6—C7179.80 (18)C18—C17—C20—S2174.62 (16)
C4—C5—C6—C10.5 (3)S1—C17—C20—S22.9 (2)
C4—C5—C6—C7179.58 (19)C17—C20—C21—O443.9 (3)
C1—C6—C7—N163.5 (2)S2—C20—C21—O4130.81 (19)
C5—C6—C7—N1116.6 (2)C17—C20—C21—O5138.6 (2)
N1—C8—C9—C10178.9 (2)S2—C20—C21—O546.6 (2)
C13—C8—C9—C100.8 (3)C14—C16—S1—C17178.17 (17)
C8—C9—C10—C110.1 (3)S2—C16—S1—C172.04 (12)
C9—C10—C11—C120.4 (4)C20—C17—S1—C160.44 (17)
C10—C11—C12—C130.3 (4)C18—C17—S1—C16177.23 (15)
C11—C12—C13—C80.4 (3)C17—C20—S2—C163.65 (17)
C11—C12—C13—C14179.3 (2)C21—C20—S2—C16171.53 (14)
C9—C8—C13—C120.9 (3)C14—C16—S2—C20177.01 (17)
N1—C8—C13—C12178.79 (18)S1—C16—S2—C203.19 (12)
C9—C8—C13—C14179.82 (18)O2—C18—O3—C190.7 (3)
N1—C8—C13—C140.4 (2)C17—C18—O3—C19179.30 (19)
C12—C13—C14—C161.8 (4)O4—C21—O5—C220.4 (3)
C8—C13—C14—C16179.2 (2)C20—C21—O5—C22177.06 (17)
C12—C13—C14—C15178.9 (2)O1—C15—N1—C8178.81 (19)
C8—C13—C14—C150.2 (2)C14—C15—N1—C80.5 (2)
C16—C14—C15—O10.3 (3)O1—C15—N1—C71.8 (3)
C13—C14—C15—O1179.1 (2)C14—C15—N1—C7178.90 (17)
C16—C14—C15—N1179.60 (17)C9—C8—N1—C15179.7 (2)
C13—C14—C15—N10.2 (2)C13—C8—N1—C150.6 (2)
C13—C14—C16—S11.5 (3)C9—C8—N1—C70.9 (3)
C15—C14—C16—S1177.74 (14)C13—C8—N1—C7178.76 (18)
C13—C14—C16—S2178.71 (16)C6—C7—N1—C15101.1 (2)
C15—C14—C16—S22.0 (3)C6—C7—N1—C879.6 (2)
C20—C17—C18—O213.2 (4)

Experimental details

Crystal data
Chemical formulaC22H17NO5S2
Mr439.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)28.923 (2), 9.3615 (5), 15.0531 (12)
β (°) 101.319 (6)
V3)3996.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.49 × 0.4 × 0.35
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.869, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
14881, 5379, 4206
Rint0.043
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.07
No. of reflections5379
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The author is grateful to the Islamic Azad University, Doroud Branch, for financial support.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMarcos, C. F., Polo, C., Rakitin, O. A., Rees, C. W. & Torroba, T. (1997). Chem. Commun. pp. 879–880.  CrossRef Web of Science Google Scholar
First citationSegura, J. L. & Martin, N. (2001). Angew. Chem. Int. Ed. 40, 1372–1409.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds