metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-carb­­oxy­pyridine-2-carboxyl­ato-κ2N,O2)copper(II) di­methyl sulfoxide disolvate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 16 January 2011; accepted 26 January 2011; online 29 January 2011)

In the title complex, [Cu(C7H4NO4)2]·2C2H6OS, the CuII atom is situated on an inversion centre and is N,O-chelated by two monoanionic 4-carb­oxy­pyridine-2-carboxyl­ate ligands in a slightly distorted square-planar coordination geometry. The dimethyl sulfoxide solvent mol­ecules and CuII complex mol­ecules are linked by O—H⋯O hydrogen bonding. In addition, C—H⋯O contacts and ππ inter­actions [centroid–centroid distance = 3.590 (1) Å] occur.

Related literature

For the design and synthesis of coordination compounds and complexes derived from pyridine-2,4-dicarb­oxy­lic acid, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Noro et al. (2005[Noro, S.-L., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. & Mitani, T. (2005). Inorg. Chem. 44, 133-146.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4NO4)2]·2C2H6OS

  • Mr = 552.05

  • Triclinic, [P \overline 1]

  • a = 6.8831 (14) Å

  • b = 7.5218 (15) Å

  • c = 11.719 (2) Å

  • α = 102.95 (3)°

  • β = 91.86 (3)°

  • γ = 111.12 (3)°

  • V = 547.3 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 298 K

  • 0.2 × 0.10 × 0.05 mm

Data collection
  • Stoe IPDS II diffractometer

  • 6125 measured reflections

  • 2928 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.092

  • S = 1.08

  • 2928 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.84 (4) 1.68 (4) 2.518 (3) 173 (4)
C4—H4⋯O3ii 0.93 2.55 3.427 (3) 158
C5—H5⋯O5iii 0.93 2.55 3.370 (3) 147
C8—H8B⋯O2iv 0.96 2.38 3.223 (3) 147
C9—H9C⋯O4 0.96 2.51 3.448 (4) 164
Symmetry codes: (i) x+1, y, z; (ii) -x+3, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Great interest has been focused on the rapidly expanding field of supramolecular chemistry and crystal engineering of the coordination compounds in recent years because of their intriguing network topologies as well as their potential application as functional materials in many areas (Aghabozorg et al., 2008). Pyridine-2,4-dicarboxylic acid (2,4-pydcH2) is a good building block for constructing complexes. However, plenty of researches have focused on the supramolecular chemistry and coordination polymers which only include single carboxylic acid ligands, (Noro et al., 2005). In this paper, we report the crystal structure of the title compound prepared from Cu(NO3)2.3H2O, 2,4-pydcH2 and acridine.

The structure of title complex is shown in Fig. 1. In the complex, 2,4-pydcH ligands are bound to one CuII ion through pyridine N and deprotonated carboxylate O atoms at 2-positions, leading to a distorted square planar geometry around the metal ion. The carboxylic groups at the 4-position of 2,4-pydcH ligands are not coordinating. [Cu(C14H8N2O8)] complex is connected into two-dimensional layers through H-bonding interactions (Table 1). The crystal packing is additionally stabilized by π-π stacking interactions (Fig. 2).

Related literature top

For the design and synthesis of coordination compounds and complexes of pyridine-2,4-dicarboxylic acid, see: Aghabozorg et al. (2008); Noro et al. (2005).

Experimental top

A mixture of 2,4-pydcH2 (83 mg, 0.50 mmol), Cu(NO3)2.3H2O (120 mg, 0.50 mmol), acridine (179 mg, 1.0 mmol) in 18 ml me thanol/DMSO were heated and stirred for 2 hrs, and then cooled to room temperature. The reaction yielded purple plate crystals of the title compound after 2 months.

Refinement top

The hydrogen atoms of the carboxylic acid group was found in a difference Fourier map and refined isotropically without restraint. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for the methyl groups.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level (symmetry code: i: 1 - x,-y,1 - z).
[Figure 2] Fig. 2. Packing diagram of the title compound. The intermolecular O—H···O, and C—H···O hydrogen bonds and π···π contacts are shown as blue and orange dashed lines, respectively.
Bis(4-carboxypyridine-2-carboxylato-κ2N,O2)copper(II) dimethyl sulfoxide disolvate top
Crystal data top
[Cu(C7H4NO4)2]·2C2H6OSZ = 1
Mr = 552.05F(000) = 283
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8831 (14) ÅCell parameters from 2928 reflections
b = 7.5218 (15) Åθ = 3.0–29.1°
c = 11.719 (2) ŵ = 1.25 mm1
α = 102.95 (3)°T = 298 K
β = 91.86 (3)°Plate, purple
γ = 111.12 (3)°0.2 × 0.1 × 0.05 mm
V = 547.3 (2) Å3
Data collection top
Stoe IPDS II
diffractometer
2428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 29.1°, θmin = 3.0°
Detector resolution: 0.15 mm pixels mm-1h = 99
rotation method scansk = 1010
6125 measured reflectionsl = 1615
2928 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.2725P]
where P = (Fo2 + 2Fc2)/3
2928 reflections(Δ/σ)max = 0.002
157 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C7H4NO4)2]·2C2H6OSγ = 111.12 (3)°
Mr = 552.05V = 547.3 (2) Å3
Triclinic, P1Z = 1
a = 6.8831 (14) ÅMo Kα radiation
b = 7.5218 (15) ŵ = 1.25 mm1
c = 11.719 (2) ÅT = 298 K
α = 102.95 (3)°0.2 × 0.1 × 0.05 mm
β = 91.86 (3)°
Data collection top
Stoe IPDS II
diffractometer
2428 reflections with I > 2σ(I)
6125 measured reflectionsRint = 0.034
2928 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.38 e Å3
2928 reflectionsΔρmin = 0.30 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.7477 (3)0.7579 (3)0.25725 (15)0.0572 (5)
S10.74093 (10)0.67910 (10)0.12483 (5)0.04660 (16)
Cu10.50000.00000.50000.03607 (12)
O10.3689 (2)0.0279 (3)0.36230 (14)0.0448 (4)
C60.4947 (3)0.1284 (4)0.30111 (19)0.0383 (5)
C20.8846 (3)0.3107 (3)0.29424 (18)0.0362 (4)
H20.85510.34180.22490.043*
C10.7250 (3)0.2025 (3)0.34780 (18)0.0339 (4)
O20.4440 (3)0.1668 (3)0.21140 (16)0.0540 (5)
N10.7628 (3)0.1553 (3)0.44860 (15)0.0331 (4)
C71.2654 (4)0.4892 (4)0.28672 (19)0.0387 (5)
C50.9603 (3)0.2151 (3)0.49832 (18)0.0358 (4)
H50.98570.18250.56780.043*
C41.1283 (3)0.3242 (3)0.44914 (19)0.0368 (4)
H41.26480.36470.48530.044*
C31.0910 (3)0.3727 (3)0.34541 (19)0.0355 (4)
O31.4430 (3)0.5841 (3)0.35694 (15)0.0481 (4)
O41.2395 (3)0.4936 (3)0.18477 (15)0.0526 (5)
C80.6304 (5)0.8138 (5)0.0578 (2)0.0612 (7)
H8A0.48820.78470.07440.092*
H8B0.63230.77820.02600.092*
H8C0.71040.95220.08830.092*
C91.0046 (5)0.7850 (6)0.0982 (3)0.0713 (9)
H9A1.05770.92460.13230.107*
H9B1.01110.75970.01470.107*
H9C1.08790.72800.13320.107*
H31.538 (6)0.645 (5)0.320 (3)0.076 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0428 (9)0.0775 (13)0.0357 (9)0.0011 (9)0.0015 (7)0.0208 (9)
S10.0437 (3)0.0481 (4)0.0400 (3)0.0059 (3)0.0025 (2)0.0150 (3)
Cu10.03021 (19)0.0481 (2)0.03117 (19)0.01310 (16)0.00208 (14)0.01565 (16)
O10.0315 (8)0.0623 (11)0.0408 (8)0.0127 (7)0.0007 (6)0.0226 (8)
C60.0351 (11)0.0454 (12)0.0332 (10)0.0140 (9)0.0016 (8)0.0110 (9)
C20.0378 (11)0.0411 (11)0.0286 (9)0.0131 (9)0.0010 (8)0.0105 (8)
C10.0341 (10)0.0378 (11)0.0288 (9)0.0133 (8)0.0010 (8)0.0077 (8)
O20.0437 (9)0.0719 (12)0.0461 (10)0.0140 (9)0.0067 (7)0.0293 (9)
N10.0336 (8)0.0394 (9)0.0272 (8)0.0142 (7)0.0019 (6)0.0096 (7)
C70.0362 (11)0.0479 (13)0.0343 (10)0.0167 (10)0.0045 (8)0.0134 (9)
C50.0359 (10)0.0437 (12)0.0296 (9)0.0161 (9)0.0002 (8)0.0117 (8)
C40.0321 (10)0.0452 (12)0.0324 (10)0.0149 (9)0.0008 (8)0.0089 (9)
C30.0354 (10)0.0402 (11)0.0302 (9)0.0146 (9)0.0032 (8)0.0072 (8)
O30.0342 (8)0.0658 (12)0.0363 (8)0.0073 (8)0.0045 (7)0.0169 (8)
O40.0450 (10)0.0746 (13)0.0379 (9)0.0159 (9)0.0047 (7)0.0249 (9)
C80.0671 (18)0.079 (2)0.0426 (14)0.0313 (16)0.0007 (13)0.0185 (14)
C90.0473 (16)0.109 (3)0.0604 (18)0.0251 (17)0.0136 (14)0.0325 (18)
Geometric parameters (Å, º) top
O5—S11.5247 (19)C7—O41.212 (3)
S1—C81.760 (3)C7—O31.313 (3)
S1—C91.770 (3)C7—C31.499 (3)
Cu1—O11.9123 (16)C5—C41.384 (3)
Cu1—O1i1.9123 (16)C5—H50.9300
Cu1—N11.9657 (19)C4—C31.387 (3)
Cu1—N1i1.9657 (19)C4—H40.9300
O1—C61.284 (3)O3—H30.84 (4)
C6—O21.223 (3)C8—H8A0.9600
C6—C11.514 (3)C8—H8B0.9600
C2—C11.376 (3)C8—H8C0.9600
C2—C31.392 (3)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C1—N11.351 (3)C9—H9C0.9600
N1—C51.334 (3)
O5—S1—C8105.52 (14)O3—C7—C3113.21 (19)
O5—S1—C9104.03 (14)N1—C5—C4121.70 (19)
C8—S1—C999.68 (17)N1—C5—H5119.2
O1—Cu1—O1i180.00 (5)C4—C5—H5119.2
O1—Cu1—N184.57 (7)C5—C4—C3119.3 (2)
O1i—Cu1—N195.43 (7)C5—C4—H4120.4
O1—Cu1—N1i95.43 (7)C3—C4—H4120.4
O1i—Cu1—N1i84.57 (7)C4—C3—C2118.7 (2)
N1—Cu1—N1i180.0C4—C3—C7122.2 (2)
C6—O1—Cu1115.22 (14)C2—C3—C7119.08 (19)
O2—C6—O1125.9 (2)C7—O3—H3111 (2)
O2—C6—C1119.3 (2)S1—C8—H8A109.5
O1—C6—C1114.78 (18)S1—C8—H8B109.5
C1—C2—C3118.97 (19)H8A—C8—H8B109.5
C1—C2—H2120.5S1—C8—H8C109.5
C3—C2—H2120.5H8A—C8—H8C109.5
N1—C1—C2121.90 (19)H8B—C8—H8C109.5
N1—C1—C6114.33 (19)S1—C9—H9A109.5
C2—C1—C6123.77 (18)S1—C9—H9B109.5
C5—N1—C1119.41 (19)H9A—C9—H9B109.5
C5—N1—Cu1129.51 (15)S1—C9—H9C109.5
C1—N1—Cu1111.07 (14)H9A—C9—H9C109.5
O4—C7—O3124.8 (2)H9B—C9—H9C109.5
O4—C7—C3122.0 (2)
N1—Cu1—O1—C60.79 (18)O1i—Cu1—N1—C50.0 (2)
N1i—Cu1—O1—C6179.21 (18)O1—Cu1—N1—C10.07 (15)
Cu1—O1—C6—O2178.7 (2)O1i—Cu1—N1—C1179.93 (15)
Cu1—O1—C6—C11.4 (3)C1—N1—C5—C40.1 (3)
C3—C2—C1—N10.1 (3)Cu1—N1—C5—C4179.81 (16)
C3—C2—C1—C6179.5 (2)N1—C5—C4—C30.1 (3)
O2—C6—C1—N1178.6 (2)C5—C4—C3—C20.4 (3)
O1—C6—C1—N11.5 (3)C5—C4—C3—C7179.5 (2)
O2—C6—C1—C20.8 (4)C1—C2—C3—C40.4 (3)
O1—C6—C1—C2179.2 (2)C1—C2—C3—C7179.5 (2)
C2—C1—N1—C50.1 (3)O4—C7—C3—C4162.8 (2)
C6—C1—N1—C5179.27 (19)O3—C7—C3—C417.7 (3)
C2—C1—N1—Cu1179.83 (17)O4—C7—C3—C217.1 (4)
C6—C1—N1—Cu10.8 (2)O3—C7—C3—C2162.4 (2)
O1—Cu1—N1—C5180.0 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5ii0.84 (4)1.68 (4)2.518 (3)173 (4)
C4—H4···O3iii0.932.553.427 (3)158
C5—H5···O5iv0.932.553.370 (3)147
C8—H8B···O2v0.962.383.223 (3)147
C9—H9C···O40.962.513.448 (4)164
Symmetry codes: (ii) x+1, y, z; (iii) x+3, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO4)2]·2C2H6OS
Mr552.05
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.8831 (14), 7.5218 (15), 11.719 (2)
α, β, γ (°)102.95 (3), 91.86 (3), 111.12 (3)
V3)547.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.2 × 0.1 × 0.05
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6125, 2928, 2428
Rint0.034
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 1.08
No. of reflections2928
No. of parameters157
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.84 (4)1.68 (4)2.518 (3)173 (4)
C4—H4···O3ii0.932.553.427 (3)158
C5—H5···O5iii0.932.553.370 (3)147
C8—H8B···O2iv0.962.383.223 (3)147
C9—H9C···O40.962.513.448 (4)164
Symmetry codes: (i) x+1, y, z; (ii) x+3, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNoro, S.-L., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. & Mitani, T. (2005). Inorg. Chem. 44, 133–146.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds