metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic modification of bis­­(μ2-pyridine-2,6-di­carboxyl­ato)-κ4O2,N,O6:O6;κ4O2:O2,N,O6-bis­­[aqua­di­butyl­tin(IV)]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 January 2011; accepted 21 January 2011; online 29 January 2011)

The SnIV atom in the centrosymmetric dinuclear title compound, [Sn2(C4H9)4(C7H3NO4)2(H2O)2], exists in a trans-C2SnNO4 penta­gonal–bipyramidal geometry. There are two half-mol­ecules in the asymmetric unit that are completed by inversion symmetry. The crystal studied was a non-merohedral twin with a ratio of 47.3 (1)% for the minor twin component. Bond dimensions are similar to those found in the tetra­gonal polymorph [Huber et al. (1989[Huber, F., Preut, H., Hoffmann, E. & Gielen, M. (1989). Acta Cryst. C45, 51-54.]). Acta Cryst. C45, 51–54]. O—H⋯O hydrogen-bonding interactions stabilize the crystal packing.

Related literature

For the tetra­gonal polymorph, see: Huber et al. (1989[Huber, F., Preut, H., Hoffmann, E. & Gielen, M. (1989). Acta Cryst. C45, 51-54.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C4H9)4(C7H3NO4)2(H2O)2]

  • Mr = 832.07

  • Monoclinic, P 2/n

  • a = 16.8882 (8) Å

  • b = 11.0957 (4) Å

  • c = 18.0940 (8) Å

  • β = 90.251 (4)°

  • V = 3390.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual with Atlas detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.767, Tmax = 1.000

  • 25121 measured reflections

  • 12181 independent reflections

  • 9129 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.126

  • S = 1.05

  • 12181 reflections

  • 400 parameters

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −1.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O4i 0.84 1.81 2.635 (4) 166
O1w—H1w2⋯O6 0.84 1.98 2.695 (4) 142
O2w—H2w1⋯O8ii 0.84 1.83 2.647 (4) 165
O2w—H2w2⋯O2iii 0.84 1.94 2.719 (4) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) [-x+{\script{1\over 2}}, y+1, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Bis[aquadibutyl(2,6-pyridinedicarboxylato)tin] (Scheme I), which was synthesized by condensing dibutyltin oxide with 2,6-pyridinedicarboxylic acid in methanol, is reported to belong to the tetragonal P42/n space group [a 17.684 (2), c 11.148 (12) Å; V 3486 (5) Å3]. The carboxylate dianion chelates to the tin atom in a tridentate manner; the asymmetric unit is connected to an inversion-related molecule by a long oxygencarboxyl–tin bond [2.783 (4) Å] (Huber et al., 1989). A different synthetic route but with the same solvent has yielded the title monoclinic polymorph (Fig. 1). The tin atom shows trans-pentagonal bipyramidal coordination with the alkyl groups being in the apical positions [C–Sn–C 166.2 (3) °]. The chelating carboxylate uses one of the two carboxyl oxygen atoms (that which is not involved in chelation) to bind about a center-of-inversion to generate a dinuclear molecule [Sn–O 2.671 (3), 2.689 (3) Å]. The C2Sn angles are similar to those of the tetragonal modification. The two independent molecules are linked by extensive O···H···O hydrogen bonds to form a three-dimensional nework.

Related literature top

For the tetragonal polymorph, see: Huber et al. (1989).

Experimental top

Di-n-butyltin diisothiocyanate (1 mmol) and 2,6-pyridinedicarboxylic acid (1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Hydrogen were placed in calculated positions [C—H 0.95 to 0.99 and O–H 0.84 Å; Uiso(H) 1.2 to 1.5Ueq(C,O)] and were included in the refinement in the riding model approximation.

The crystal studied is a non-merohedral twin (twin law: 0.069, 0, 0.931/0, -1, 0/1.069, 0, -0.069) with a ratio of 47.3 (1) % for the minor twin component. The final difference Fourier map had a peak at 0.93 Å from Sn2 and a hole at 1.09 Å from C2. The twin law was given by the CrysAlis PRO software.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of one of the independent molecules of [Sn(H2O)(C4H9)2(C7H3NO4)]2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the second dinuclear molecule.
bis(µ2-pyridine-2,6-dicarboxylato)- κ4O2,N,O6:O6; κ4O2:O2,N,O6-bis[aquadibutyltin(IV)] top
Crystal data top
[Sn2(C4H9)4(C7H3NO4)2(H2O)2]F(000) = 1680
Mr = 832.07Dx = 1.631 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 11217 reflections
a = 16.8882 (8) Åθ = 2.2–29.4°
b = 11.0957 (4) ŵ = 1.53 mm1
c = 18.0940 (8) ÅT = 100 K
β = 90.251 (4)°Block, colorless
V = 3390.5 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual with Atlas detector
diffractometer
12181 independent reflections
Radiation source: SuperNova (Mo) X-ray Source9129 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.2°
ω scansh = 2120
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1414
Tmin = 0.767, Tmax = 1.000l = 2323
25121 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
12181 reflections(Δ/σ)max = 0.001
400 parametersΔρmax = 1.58 e Å3
0 restraintsΔρmin = 1.81 e Å3
Crystal data top
[Sn2(C4H9)4(C7H3NO4)2(H2O)2]V = 3390.5 (3) Å3
Mr = 832.07Z = 4
Monoclinic, P2/nMo Kα radiation
a = 16.8882 (8) ŵ = 1.53 mm1
b = 11.0957 (4) ÅT = 100 K
c = 18.0940 (8) Å0.30 × 0.25 × 0.20 mm
β = 90.251 (4)°
Data collection top
Agilent SuperNova Dual with Atlas detector
diffractometer
12181 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
9129 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 1.000Rint = 0.054
25121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 1.58 e Å3
12181 reflectionsΔρmin = 1.81 e Å3
400 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.399301 (17)0.48229 (3)0.572478 (16)0.01440 (8)
Sn20.432572 (17)0.98366 (3)0.898790 (16)0.01470 (9)
O10.29816 (18)0.4421 (3)0.64381 (16)0.0175 (7)
O20.21061 (17)0.3039 (3)0.67936 (17)0.0187 (7)
O30.50412 (17)0.3733 (3)0.50538 (16)0.0173 (7)
O40.5499 (2)0.1918 (3)0.47472 (18)0.0279 (8)
O50.36299 (18)0.9449 (3)0.79949 (16)0.0188 (7)
O60.32794 (19)0.8071 (3)0.71597 (17)0.0229 (7)
O70.48802 (16)0.8760 (3)1.00654 (15)0.0159 (6)
O80.50111 (19)0.6946 (3)1.06117 (18)0.0240 (7)
O1w0.34736 (18)0.6700 (3)0.59441 (17)0.0210 (7)
H1w10.37780.72280.57730.032*
H1w20.34240.68030.64020.032*
O2w0.42201 (18)1.1692 (3)0.84214 (17)0.0193 (7)
H2w10.44761.22060.86660.029*
H2w20.37421.18970.84000.029*
N10.3915 (2)0.2801 (3)0.58810 (19)0.0158 (8)
N20.4107 (2)0.7816 (3)0.8935 (2)0.0159 (8)
C10.3352 (3)0.4873 (4)0.4731 (3)0.0230 (10)
H1A0.31720.57110.46490.028*
H1B0.37180.46680.43240.028*
C20.2646 (3)0.4061 (4)0.4674 (2)0.0227 (10)
H2A0.23060.42020.51100.027*
H2B0.28320.32160.46980.027*
C30.2144 (3)0.4204 (4)0.3988 (3)0.0249 (11)
H3A0.24750.40340.35490.030*
H3B0.19650.50510.39530.030*
C40.1424 (3)0.3386 (5)0.3968 (3)0.0373 (13)
H4A0.11290.35200.35080.056*
H4B0.10830.35660.43910.056*
H4C0.15950.25430.39940.056*
C50.4806 (3)0.5117 (4)0.6600 (3)0.0207 (10)
H5A0.52110.56970.64280.025*
H5B0.45180.55040.70120.025*
C60.5233 (3)0.4003 (4)0.6903 (2)0.0212 (10)
H6A0.55400.36260.64990.025*
H6B0.48330.34110.70690.025*
C70.5797 (3)0.4278 (5)0.7551 (3)0.0279 (11)
H7A0.61870.48930.73950.033*
H7B0.54890.46150.79680.033*
C80.6233 (3)0.3152 (5)0.7809 (3)0.0384 (14)
H8A0.65830.33580.82240.058*
H8B0.65490.28300.74020.058*
H8C0.58490.25450.79680.058*
C90.2753 (3)0.3336 (4)0.6549 (2)0.0173 (9)
C100.3346 (3)0.2387 (4)0.6322 (2)0.0150 (9)
C110.3312 (3)0.1182 (4)0.6541 (2)0.0167 (9)
H110.29060.09050.68610.020*
C120.3885 (3)0.0404 (4)0.6278 (2)0.0201 (10)
H120.38830.04190.64230.024*
C130.4459 (3)0.0826 (4)0.5804 (2)0.0192 (10)
H130.48500.02970.56130.023*
C140.4457 (3)0.2041 (4)0.5609 (2)0.0154 (9)
C150.5051 (3)0.2612 (4)0.5090 (2)0.0189 (10)
C160.5466 (3)0.9732 (4)0.8504 (2)0.0183 (9)
H16A0.56731.05590.84360.022*
H16B0.58260.93070.88490.022*
C170.5478 (3)0.9083 (4)0.7758 (2)0.0233 (10)
H17A0.52400.82740.78190.028*
H17B0.51450.95370.74030.028*
C180.6303 (3)0.8940 (5)0.7435 (3)0.0299 (12)
H18A0.66510.85470.78050.036*
H18B0.65250.97470.73280.036*
C190.6300 (4)0.8194 (5)0.6728 (3)0.0496 (18)
H19A0.68420.81200.65420.074*
H19B0.59680.85920.63550.074*
H19C0.60870.73900.68310.074*
C200.3346 (3)1.0267 (4)0.9664 (3)0.0200 (10)
H20A0.35251.08491.00440.024*
H20B0.29451.06800.93540.024*
C210.2945 (3)0.9221 (4)1.0054 (3)0.0207 (10)
H21A0.33440.87761.03480.025*
H21B0.27260.86620.96790.025*
C220.2278 (3)0.9627 (5)1.0564 (3)0.0277 (11)
H22A0.24831.02501.09070.033*
H22B0.18500.99961.02640.033*
C230.1939 (3)0.8590 (5)1.1008 (3)0.0349 (13)
H23A0.15040.88841.13160.052*
H23B0.23550.82481.13250.052*
H23C0.17410.79671.06710.052*
C240.4781 (3)0.7627 (4)1.0112 (3)0.0187 (9)
C250.4334 (2)0.7055 (4)0.9464 (2)0.0167 (9)
C260.4195 (3)0.5834 (4)0.9416 (3)0.0232 (10)
H260.43690.53030.97960.028*
C270.3793 (3)0.5397 (4)0.8800 (3)0.0248 (11)
H270.36840.45600.87550.030*
C280.3552 (3)0.6188 (4)0.8250 (3)0.0206 (10)
H280.32810.59060.78230.025*
C290.3718 (3)0.7404 (4)0.8340 (2)0.0183 (9)
C300.3515 (3)0.8379 (4)0.7786 (3)0.0194 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01628 (16)0.00938 (14)0.01755 (16)0.00094 (11)0.00007 (12)0.00030 (11)
Sn20.01571 (16)0.01010 (15)0.01830 (17)0.00106 (11)0.00022 (12)0.00099 (11)
O10.0229 (17)0.0106 (14)0.0191 (16)0.0012 (12)0.0024 (13)0.0019 (12)
O20.0172 (16)0.0179 (16)0.0208 (17)0.0013 (13)0.0003 (13)0.0046 (13)
O30.0208 (16)0.0107 (15)0.0205 (16)0.0007 (12)0.0010 (13)0.0006 (12)
O40.039 (2)0.0124 (16)0.032 (2)0.0010 (14)0.0171 (17)0.0029 (14)
O50.0219 (17)0.0168 (15)0.0175 (16)0.0018 (13)0.0019 (13)0.0019 (13)
O60.0253 (19)0.0262 (18)0.0172 (17)0.0086 (14)0.0010 (14)0.0001 (14)
O70.0160 (16)0.0123 (15)0.0195 (16)0.0022 (12)0.0021 (13)0.0018 (12)
O80.0295 (19)0.0124 (15)0.0299 (19)0.0023 (13)0.0089 (15)0.0049 (13)
O1w0.0275 (18)0.0133 (15)0.0224 (17)0.0016 (13)0.0083 (14)0.0008 (13)
O2w0.0202 (17)0.0111 (14)0.0267 (18)0.0017 (12)0.0045 (14)0.0018 (13)
N10.019 (2)0.0130 (17)0.0154 (19)0.0037 (14)0.0050 (15)0.0033 (15)
N20.0150 (19)0.0149 (18)0.0177 (19)0.0002 (14)0.0038 (15)0.0020 (15)
C10.023 (3)0.020 (2)0.026 (3)0.0022 (19)0.002 (2)0.0073 (19)
C20.032 (3)0.023 (2)0.014 (2)0.003 (2)0.001 (2)0.0015 (18)
C30.025 (3)0.020 (2)0.029 (3)0.003 (2)0.008 (2)0.001 (2)
C40.039 (3)0.048 (3)0.025 (3)0.012 (3)0.007 (2)0.005 (2)
C50.021 (2)0.024 (2)0.018 (2)0.0018 (19)0.0028 (18)0.0009 (18)
C60.023 (3)0.020 (2)0.020 (2)0.0039 (19)0.0019 (19)0.0002 (18)
C70.030 (3)0.028 (3)0.025 (3)0.003 (2)0.009 (2)0.010 (2)
C80.048 (4)0.036 (3)0.032 (3)0.007 (3)0.011 (3)0.009 (2)
C90.020 (2)0.016 (2)0.015 (2)0.0026 (18)0.0008 (18)0.0010 (17)
C100.018 (2)0.014 (2)0.013 (2)0.0029 (17)0.0051 (17)0.0015 (16)
C110.022 (2)0.017 (2)0.011 (2)0.0041 (17)0.0005 (18)0.0001 (17)
C120.035 (3)0.008 (2)0.017 (2)0.0010 (18)0.0030 (19)0.0022 (17)
C130.030 (3)0.013 (2)0.014 (2)0.0043 (19)0.0029 (19)0.0027 (17)
C140.025 (2)0.012 (2)0.010 (2)0.0004 (17)0.0020 (18)0.0026 (16)
C150.027 (3)0.017 (2)0.012 (2)0.0039 (18)0.0005 (19)0.0010 (17)
C160.015 (2)0.022 (2)0.018 (2)0.0042 (18)0.0051 (18)0.0000 (18)
C170.025 (3)0.027 (2)0.018 (2)0.007 (2)0.005 (2)0.0028 (19)
C180.024 (3)0.027 (3)0.038 (3)0.005 (2)0.012 (2)0.003 (2)
C190.047 (4)0.042 (3)0.060 (4)0.012 (3)0.034 (3)0.022 (3)
C200.019 (2)0.019 (2)0.022 (2)0.0018 (18)0.0036 (19)0.0000 (18)
C210.023 (2)0.015 (2)0.025 (3)0.0070 (18)0.003 (2)0.0005 (18)
C220.024 (3)0.038 (3)0.021 (2)0.003 (2)0.003 (2)0.004 (2)
C230.026 (3)0.044 (3)0.035 (3)0.001 (2)0.009 (2)0.006 (3)
C240.013 (2)0.016 (2)0.026 (3)0.0012 (17)0.0009 (18)0.0023 (18)
C250.013 (2)0.015 (2)0.022 (2)0.0008 (17)0.0007 (18)0.0039 (18)
C260.016 (2)0.016 (2)0.037 (3)0.0010 (18)0.005 (2)0.003 (2)
C270.018 (2)0.018 (2)0.038 (3)0.0097 (19)0.002 (2)0.007 (2)
C280.014 (2)0.024 (2)0.024 (2)0.0018 (18)0.0025 (18)0.0076 (19)
C290.013 (2)0.022 (2)0.021 (2)0.0035 (17)0.0022 (18)0.0017 (18)
C300.013 (2)0.022 (2)0.023 (2)0.0013 (18)0.0043 (18)0.0024 (19)
Geometric parameters (Å, º) top
Sn1—C12.095 (5)C7—C81.523 (7)
Sn1—C52.116 (5)C7—H7A0.9900
Sn1—O12.191 (3)C7—H7B0.9900
Sn1—N12.265 (3)C8—H8A0.9800
Sn1—O1w2.296 (3)C8—H8B0.9800
Sn1—O32.468 (3)C8—H8C0.9800
Sn1—O3i2.689 (3)C9—C101.511 (6)
Sn2—C202.116 (4)C10—C111.395 (6)
Sn2—C162.122 (4)C11—C121.383 (6)
Sn2—O52.185 (3)C11—H110.9500
Sn2—N22.274 (4)C12—C131.380 (6)
Sn2—O2w2.307 (3)C12—H120.9500
Sn2—O72.467 (3)C13—C141.393 (6)
Sn2—O7ii2.671 (3)C13—H130.9500
O1—C91.281 (5)C14—C151.516 (6)
O2—C91.226 (5)C16—C171.529 (6)
O3—C151.246 (5)C16—H16A0.9900
O4—C151.246 (5)C16—H16B0.9900
O5—C301.261 (5)C17—C181.522 (6)
O6—C301.247 (5)C17—H17A0.9900
O7—C241.272 (5)C17—H17B0.9900
O8—C241.239 (5)C18—C191.524 (7)
O1w—H1w10.8400C18—H18A0.9900
O1w—H1w20.8400C18—H18B0.9900
O2w—H2w10.8400C19—H19A0.9800
O2w—H2w20.8400C19—H19B0.9800
N1—C101.333 (5)C19—H19C0.9800
N1—C141.340 (5)C20—C211.519 (6)
N2—C251.331 (5)C20—H20A0.9900
N2—C291.339 (5)C20—H20B0.9900
C1—C21.498 (6)C21—C221.526 (6)
C1—H1A0.9900C21—H21A0.9900
C1—H1B0.9900C21—H21B0.9900
C2—C31.509 (6)C22—C231.518 (7)
C2—H2A0.9900C22—H22A0.9900
C2—H2B0.9900C22—H22B0.9900
C3—C41.518 (7)C23—H23A0.9800
C3—H3A0.9900C23—H23B0.9800
C3—H3B0.9900C23—H23C0.9800
C4—H4A0.9800C24—C251.530 (6)
C4—H4B0.9800C25—C261.378 (6)
C4—H4C0.9800C26—C271.391 (6)
C5—C61.532 (6)C26—H260.9500
C5—H5A0.9900C27—C281.386 (7)
C5—H5B0.9900C27—H270.9500
C6—C71.538 (6)C28—C291.387 (6)
C6—H6A0.9900C28—H280.9500
C6—H6B0.9900C29—C301.514 (6)
C1—Sn1—C5165.64 (17)C6—C7—H7B109.3
C1—Sn1—O196.31 (15)H7A—C7—H7B108.0
C5—Sn1—O195.48 (15)C7—C8—H8A109.5
C1—Sn1—N195.91 (15)C7—C8—H8B109.5
C5—Sn1—N195.61 (15)H8A—C8—H8B109.5
O1—Sn1—N171.27 (12)C7—C8—H8C109.5
C1—Sn1—O1w85.88 (15)H8A—C8—H8C109.5
C5—Sn1—O1w88.72 (15)H8B—C8—H8C109.5
O1—Sn1—O1w77.48 (11)O2—C9—O1125.4 (4)
N1—Sn1—O1w148.72 (12)O2—C9—C10120.2 (4)
C1—Sn1—O387.68 (15)O1—C9—C10114.4 (4)
C5—Sn1—O388.82 (14)N1—C10—C11122.0 (4)
O1—Sn1—O3138.84 (10)N1—C10—C9113.7 (4)
N1—Sn1—O367.57 (11)C11—C10—C9124.2 (4)
O1w—Sn1—O3143.64 (11)C12—C11—C10118.1 (4)
C1—Sn1—O3i81.19 (14)C12—C11—H11121.0
C5—Sn1—O3i84.66 (14)C10—C11—H11121.0
O1—Sn1—O3i154.94 (10)C13—C12—C11119.8 (4)
N1—Sn1—O3i133.74 (11)C13—C12—H12120.1
O1w—Sn1—O3i77.47 (10)C11—C12—H12120.1
O3—Sn1—O3i66.18 (11)C12—C13—C14119.0 (4)
C20—Sn2—C16164.57 (17)C12—C13—H13120.5
C20—Sn2—O595.78 (15)C14—C13—H13120.5
C16—Sn2—O597.78 (14)N1—C14—C13121.1 (4)
C20—Sn2—N296.85 (15)N1—C14—C15114.9 (4)
C16—Sn2—N294.39 (15)C13—C14—C15124.0 (4)
O5—Sn2—N271.61 (12)O4—C15—O3126.8 (4)
C20—Sn2—O2w89.79 (15)O4—C15—C14117.0 (4)
C16—Sn2—O2w86.22 (14)O3—C15—C14116.1 (4)
O5—Sn2—O2w76.71 (11)C17—C16—Sn2113.9 (3)
N2—Sn2—O2w148.11 (12)C17—C16—H16A108.8
C20—Sn2—O786.99 (14)Sn2—C16—H16A108.8
C16—Sn2—O787.57 (14)C17—C16—H16B108.8
O5—Sn2—O7139.04 (10)Sn2—C16—H16B108.8
N2—Sn2—O767.49 (11)H16A—C16—H16B107.7
O2w—Sn2—O7144.24 (10)C18—C17—C16113.9 (4)
C20—Sn2—O7ii83.65 (14)C18—C17—H17A108.8
C16—Sn2—O7ii80.95 (13)C16—C17—H17A108.8
O5—Sn2—O7ii155.31 (10)C18—C17—H17B108.8
N2—Sn2—O7ii133.04 (11)C16—C17—H17B108.8
O2w—Sn2—O7ii78.60 (10)H17A—C17—H17B107.7
O7—Sn2—O7ii65.65 (11)C17—C18—C19112.3 (4)
C9—O1—Sn1121.3 (3)C17—C18—H18A109.1
C15—O3—Sn1118.3 (3)C19—C18—H18A109.1
C30—O5—Sn2120.9 (3)C17—C18—H18B109.1
C24—O7—Sn2118.8 (3)C19—C18—H18B109.1
Sn1—O1w—H1w1109.5H18A—C18—H18B107.9
Sn1—O1w—H1w2109.5C18—C19—H19A109.5
H1w1—O1w—H1w2109.5C18—C19—H19B109.5
Sn2—O2w—H2w1109.5H19A—C19—H19B109.5
Sn2—O2w—H2w2109.5C18—C19—H19C109.5
H2w1—O2w—H2w2109.5H19A—C19—H19C109.5
C10—N1—C14119.9 (4)H19B—C19—H19C109.5
C10—N1—Sn1117.3 (3)C21—C20—Sn2116.6 (3)
C14—N1—Sn1122.5 (3)C21—C20—H20A108.1
C25—N2—C29119.9 (4)Sn2—C20—H20A108.1
C25—N2—Sn2123.3 (3)C21—C20—H20B108.1
C29—N2—Sn2116.7 (3)Sn2—C20—H20B108.1
C2—C1—Sn1116.8 (3)H20A—C20—H20B107.3
C2—C1—H1A108.1C20—C21—C22112.8 (4)
Sn1—C1—H1A108.1C20—C21—H21A109.0
C2—C1—H1B108.1C22—C21—H21A109.0
Sn1—C1—H1B108.1C20—C21—H21B109.0
H1A—C1—H1B107.3C22—C21—H21B109.0
C1—C2—C3116.0 (4)H21A—C21—H21B107.8
C1—C2—H2A108.3C23—C22—C21112.2 (4)
C3—C2—H2A108.3C23—C22—H22A109.2
C1—C2—H2B108.3C21—C22—H22A109.2
C3—C2—H2B108.3C23—C22—H22B109.2
H2A—C2—H2B107.4C21—C22—H22B109.2
C2—C3—C4113.8 (4)H22A—C22—H22B107.9
C2—C3—H3A108.8C22—C23—H23A109.5
C4—C3—H3A108.8C22—C23—H23B109.5
C2—C3—H3B108.8H23A—C23—H23B109.5
C4—C3—H3B108.8C22—C23—H23C109.5
H3A—C3—H3B107.7H23A—C23—H23C109.5
C3—C4—H4A109.5H23B—C23—H23C109.5
C3—C4—H4B109.5O8—C24—O7127.6 (4)
H4A—C4—H4B109.5O8—C24—C25117.3 (4)
C3—C4—H4C109.5O7—C24—C25115.1 (4)
H4A—C4—H4C109.5N2—C25—C26122.1 (4)
H4B—C4—H4C109.5N2—C25—C24115.3 (4)
C6—C5—Sn1116.5 (3)C26—C25—C24122.6 (4)
C6—C5—H5A108.2C25—C26—C27118.4 (4)
Sn1—C5—H5A108.2C25—C26—H26120.8
C6—C5—H5B108.2C27—C26—H26120.8
Sn1—C5—H5B108.2C28—C27—C26119.7 (4)
H5A—C5—H5B107.3C28—C27—H27120.2
C5—C6—C7113.7 (4)C26—C27—H27120.2
C5—C6—H6A108.8C27—C28—C29118.3 (4)
C7—C6—H6A108.8C27—C28—H28120.9
C5—C6—H6B108.8C29—C28—H28120.9
C7—C6—H6B108.8N2—C29—C28121.7 (4)
H6A—C6—H6B107.7N2—C29—C30113.4 (4)
C8—C7—C6111.6 (4)C28—C29—C30124.9 (4)
C8—C7—H7A109.3O6—C30—O5125.3 (4)
C6—C7—H7A109.3O6—C30—C29118.5 (4)
C8—C7—H7B109.3O5—C30—C29116.1 (4)
C1—Sn1—O1—C986.4 (3)C14—N1—C10—C112.9 (6)
C5—Sn1—O1—C9101.8 (3)Sn1—N1—C10—C11170.7 (3)
N1—Sn1—O1—C97.7 (3)C14—N1—C10—C9176.7 (4)
O1w—Sn1—O1—C9170.7 (3)Sn1—N1—C10—C99.8 (5)
O3—Sn1—O1—C97.3 (4)O2—C9—C10—N1162.0 (4)
O3i—Sn1—O1—C9169.1 (3)O1—C9—C10—N115.9 (5)
C1—Sn1—O3—C1596.4 (3)O2—C9—C10—C1117.6 (7)
C5—Sn1—O3—C1597.6 (3)O1—C9—C10—C11164.5 (4)
O1—Sn1—O3—C150.6 (4)N1—C10—C11—C120.9 (6)
N1—Sn1—O3—C151.0 (3)C9—C10—C11—C12178.6 (4)
O1w—Sn1—O3—C15176.2 (3)C10—C11—C12—C131.0 (6)
O3i—Sn1—O3—C15177.8 (4)C11—C12—C13—C141.1 (7)
C20—Sn2—O5—C30104.5 (3)C10—N1—C14—C132.8 (6)
C16—Sn2—O5—C3082.8 (3)Sn1—N1—C14—C13170.4 (3)
N2—Sn2—O5—C309.2 (3)C10—N1—C14—C15177.6 (4)
O2w—Sn2—O5—C30167.1 (3)Sn1—N1—C14—C159.1 (5)
O7—Sn2—O5—C3012.4 (4)C12—C13—C14—N10.9 (7)
O7ii—Sn2—O5—C30168.1 (3)C12—C13—C14—C15179.6 (4)
C20—Sn2—O7—C2497.0 (3)Sn1—O3—C15—O4174.6 (4)
C16—Sn2—O7—C2497.4 (3)Sn1—O3—C15—C145.7 (5)
O5—Sn2—O7—C241.6 (4)N1—C14—C15—O4170.7 (4)
N2—Sn2—O7—C241.7 (3)C13—C14—C15—O49.8 (7)
O2w—Sn2—O7—C24177.6 (3)N1—C14—C15—O39.5 (6)
O7ii—Sn2—O7—C24178.6 (4)C13—C14—C15—O3170.0 (4)
C1—Sn1—N1—C1096.8 (3)C20—Sn2—C16—C17168.9 (5)
C5—Sn1—N1—C1091.8 (3)O5—Sn2—C16—C1717.5 (3)
O1—Sn1—N1—C102.1 (3)N2—Sn2—C16—C1754.5 (3)
O1w—Sn1—N1—C105.0 (4)O2w—Sn2—C16—C1793.6 (3)
O3—Sn1—N1—C10178.2 (3)O7—Sn2—C16—C17121.7 (3)
O3i—Sn1—N1—C10179.7 (2)O7ii—Sn2—C16—C17172.6 (3)
C1—Sn1—N1—C1489.8 (3)Sn2—C16—C17—C18176.4 (3)
C5—Sn1—N1—C1481.6 (3)C16—C17—C18—C19175.0 (4)
O1—Sn1—N1—C14175.5 (3)C16—Sn2—C20—C21121.9 (6)
O1w—Sn1—N1—C14178.4 (3)O5—Sn2—C20—C2186.6 (3)
O3—Sn1—N1—C144.8 (3)N2—Sn2—C20—C2114.5 (3)
O3i—Sn1—N1—C146.3 (4)O2w—Sn2—C20—C21163.2 (3)
C20—Sn2—N2—C2582.1 (4)O7—Sn2—C20—C2152.4 (3)
C16—Sn2—N2—C2587.3 (3)O7ii—Sn2—C20—C21118.2 (3)
O5—Sn2—N2—C25176.0 (4)Sn2—C20—C21—C22176.5 (3)
O2w—Sn2—N2—C25177.2 (3)C20—C21—C22—C23174.1 (4)
O7—Sn2—N2—C251.7 (3)Sn2—O7—C24—O8179.4 (4)
O7ii—Sn2—N2—C255.6 (4)Sn2—O7—C24—C251.5 (5)
C20—Sn2—N2—C2996.9 (3)C29—N2—C25—C261.2 (7)
C16—Sn2—N2—C2993.7 (3)Sn2—N2—C25—C26179.9 (3)
O5—Sn2—N2—C293.1 (3)C29—N2—C25—C24179.3 (4)
O2w—Sn2—N2—C293.8 (4)Sn2—N2—C25—C241.7 (5)
O7—Sn2—N2—C29179.2 (3)O8—C24—C25—N2179.2 (4)
O7ii—Sn2—N2—C29175.4 (3)O7—C24—C25—N20.0 (6)
C5—Sn1—C1—C2176.9 (6)O8—C24—C25—C261.0 (7)
O1—Sn1—C1—C231.8 (4)O7—C24—C25—C26178.2 (4)
N1—Sn1—C1—C239.9 (4)N2—C25—C26—C271.0 (7)
O1w—Sn1—C1—C2108.7 (4)C24—C25—C26—C27179.0 (4)
O3—Sn1—C1—C2107.1 (4)C25—C26—C27—C280.7 (7)
O3i—Sn1—C1—C2173.4 (4)C26—C27—C28—C290.5 (7)
Sn1—C1—C2—C3173.8 (3)C25—N2—C29—C281.0 (6)
C1—C2—C3—C4178.3 (4)Sn2—N2—C29—C28180.0 (3)
C1—Sn1—C5—C6128.1 (7)C25—N2—C29—C30179.0 (4)
O1—Sn1—C5—C686.7 (3)Sn2—N2—C29—C302.0 (5)
N1—Sn1—C5—C615.1 (3)C27—C28—C29—N20.6 (7)
O1w—Sn1—C5—C6164.0 (3)C27—C28—C29—C30178.4 (4)
O3—Sn1—C5—C652.3 (3)Sn2—O5—C30—O6163.8 (3)
O3i—Sn1—C5—C6118.4 (3)Sn2—O5—C30—C2913.3 (5)
Sn1—C5—C6—C7178.4 (3)N2—C29—C30—O6167.6 (4)
C5—C6—C7—C8177.4 (4)C28—C29—C30—O610.3 (7)
Sn1—O1—C9—O2162.7 (3)N2—C29—C30—O59.7 (6)
Sn1—O1—C9—C1015.1 (5)C28—C29—C30—O5172.4 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O4i0.841.812.635 (4)166
O1w—H1w2···O60.841.982.695 (4)142
O2w—H2w1···O8ii0.841.832.647 (4)165
O2w—H2w2···O2iii0.841.942.719 (4)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+1/2, y+1, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn2(C4H9)4(C7H3NO4)2(H2O)2]
Mr832.07
Crystal system, space groupMonoclinic, P2/n
Temperature (K)100
a, b, c (Å)16.8882 (8), 11.0957 (4), 18.0940 (8)
β (°) 90.251 (4)
V3)3390.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual with Atlas detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.767, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25121, 12181, 9129
Rint0.054
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.126, 1.05
No. of reflections12181
No. of parameters400
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.58, 1.81

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O4i0.841.812.635 (4)166
O1w—H1w2···O60.841.982.695 (4)142
O2w—H2w1···O8ii0.841.832.647 (4)165
O2w—H2w2···O2iii0.841.942.719 (4)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+1/2, y+1, z+3/2.
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHuber, F., Preut, H., Hoffmann, E. & Gielen, M. (1989). Acta Cryst. C45, 51–54.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds