metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-quinoline-2-carboxyl­ato)-κ3N,O1:O1;κ3O1:N,O1-bis­­[(acetato-κO)(ethanol-κO)lead(II)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 January 2011; accepted 18 January 2011; online 29 January 2011)

In the centrosymmetric dinuclear title compound, [Pb2(C10H6NO2)2(CH3COO)2(C2H5OH)2], one O atom of the carboxyl­ate group of the quinoline-2-carboxyl­ate anion connects the two PbII atoms. The PbII atom is surrounded by four O atoms and one N atom in a Ψ-octa­hedral PbO4NE geometry (E is the electron lone pair). Two longer Pb⋯O inter­actions distort the geometry towards a Ψ-square-anti­prism. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For the analogous methanol-coordinated compound, see: Mohammadnezhad et al. (2010[Mohammadnezhad, G., Ghanbarpour, A. R., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m963.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C10H6NO2)2(C2H3O2)2(C2H6O)2]

  • Mr = 968.92

  • Monoclinic, P 21 /c

  • a = 7.3419 (1) Å

  • b = 8.4004 (1) Å

  • c = 23.8008 (4) Å

  • β = 93.722 (1)°

  • V = 1464.82 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.54 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.206, Tmax = 0.596

  • 12668 measured reflections

  • 3314 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.08

  • 3314 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.57 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.377 (4)
Pb1—O3 2.384 (4)
Pb1—O1i 2.500 (3)
Pb1—N1 2.645 (4)
Pb1—O5 2.694 (4)
Pb1—O4 2.763 (3)
Pb1—O2ii 3.096 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O3i 0.84 2.36 2.710 (5) 106
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous study of the methanol adduct of the title dinuclear compound, [Pb(C10H6NO2)(C2H3O2)(CH3OH)2]2, has found a Ψ-octahedral geometry for the lead(II) atom. Two longer Pb···O interactions distort the geometry towards a Ψ-square-antiprism (Mohammadnezhad et al., 2010). Replacing the methanol solvent system by ethanol leads to the analogous ethanol adduct (Scheme I, Fig. 1), which has a similar structure.

Related literature top

For the analogous methanol-coordinated adduct, see: Mohammadnezhad et al. (2010).

Experimental top

Lead(II) acetate (1 mmol) and quinoline-2-carboxylic acid (1 mmol) were loaded into a convection tube; the tube was filled with dry ethanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

H atoms were placed in calculated positions [C—H 0.95 to 0.98, O—H 0.84 Å, Uiso(H) 1.2 to 1.5Ueq(C, O)] and were included in the refinement in the riding model approximation.

The final difference Fourier map had a peak/hole in the vicinity of Pb1.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The longer interactions that raise the coordination number are shown as dashed lines.
Bis(µ2-quinoline-2-carboxylato)-κ3N,O1:O1; κ3O1:N,O1-bis[(acetato-κO)(ethanol- κO)lead(II)] top
Crystal data top
[Pb2(C10H6NO2)2(C2H3O2)2(C2H6O)2]F(000) = 912
Mr = 968.92Dx = 2.197 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7627 reflections
a = 7.3419 (1) Åθ = 2.4–29.3°
b = 8.4004 (1) ŵ = 11.54 mm1
c = 23.8008 (4) ÅT = 100 K
β = 93.722 (1)°Prim, colorless
V = 1464.82 (4) Å30.20 × 0.20 × 0.05 mm
Z = 2
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
3314 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3010 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.049
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1010
Tmin = 0.206, Tmax = 0.596l = 3030
12668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.035P)2 + 1.3471P]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 1.57 e Å3
Crystal data top
[Pb2(C10H6NO2)2(C2H3O2)2(C2H6O)2]V = 1464.82 (4) Å3
Mr = 968.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3419 (1) ŵ = 11.54 mm1
b = 8.4004 (1) ÅT = 100 K
c = 23.8008 (4) Å0.20 × 0.20 × 0.05 mm
β = 93.722 (1)°
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
3314 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
3010 reflections with I > 2σ(I)
Tmin = 0.206, Tmax = 0.596Rint = 0.049
12668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.08Δρmax = 1.21 e Å3
3314 reflectionsΔρmin = 1.57 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.72555 (2)0.46532 (2)0.554759 (7)0.01208 (8)
O10.4023 (5)0.4525 (4)0.54078 (14)0.0149 (7)
O20.1288 (5)0.3557 (5)0.55875 (15)0.0225 (8)
O30.6357 (5)0.7354 (5)0.56638 (14)0.0225 (8)
O40.7982 (5)0.6708 (4)0.64405 (14)0.0215 (8)
O50.6307 (5)0.1781 (4)0.51184 (13)0.0206 (8)
H50.52300.14440.51190.031*
N10.5510 (5)0.3454 (5)0.63884 (16)0.0134 (8)
C10.2921 (7)0.3768 (6)0.57117 (19)0.0144 (10)
C20.3771 (7)0.3126 (6)0.62685 (19)0.0145 (10)
C30.2694 (7)0.2289 (6)0.66278 (19)0.0168 (10)
H30.14530.20660.65180.020*
C40.3433 (7)0.1795 (7)0.7138 (2)0.0199 (11)
H40.27120.12340.73900.024*
C50.5280 (7)0.2127 (6)0.72855 (19)0.0162 (10)
C60.6171 (7)0.1640 (7)0.7808 (2)0.0211 (11)
H60.55010.10910.80760.025*
C70.7974 (7)0.1958 (6)0.7925 (2)0.0206 (11)
H70.85590.16110.82710.025*
C80.8983 (7)0.2801 (6)0.7536 (2)0.0208 (11)
H81.02390.30170.76240.025*
C90.8177 (7)0.3308 (6)0.70336 (19)0.0168 (10)
H90.88620.38870.67770.020*
C100.6310 (7)0.2963 (6)0.68997 (19)0.0155 (10)
C110.7125 (7)0.7694 (6)0.61446 (19)0.0155 (10)
C120.6856 (8)0.9361 (6)0.6361 (2)0.0225 (12)
H12A0.80210.97740.65240.034*
H12B0.59640.93430.66500.034*
H12C0.64061.00490.60500.034*
C130.7704 (9)0.0864 (8)0.4891 (2)0.0311 (14)
H13A0.72380.02240.48100.037*
H13B0.87460.07750.51750.037*
C140.8359 (8)0.1573 (8)0.4361 (2)0.0315 (14)
H14A0.92440.08530.42040.047*
H14B0.89410.26020.44480.047*
H14C0.73190.17270.40870.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.00993 (11)0.01418 (12)0.01215 (12)0.00129 (7)0.00073 (7)0.00054 (6)
O10.0135 (18)0.0172 (19)0.0138 (17)0.0006 (14)0.0009 (14)0.0015 (13)
O20.0117 (18)0.032 (2)0.0239 (18)0.0019 (16)0.0002 (14)0.0063 (16)
O30.024 (2)0.022 (2)0.0209 (18)0.0037 (17)0.0060 (15)0.0039 (16)
O40.028 (2)0.0179 (19)0.0179 (17)0.0039 (17)0.0045 (15)0.0008 (15)
O50.0188 (19)0.0208 (19)0.0218 (18)0.0037 (16)0.0012 (14)0.0045 (15)
N10.013 (2)0.014 (2)0.0129 (19)0.0040 (17)0.0012 (15)0.0020 (16)
C10.012 (2)0.016 (3)0.015 (2)0.004 (2)0.0023 (18)0.0019 (19)
C20.016 (2)0.013 (2)0.015 (2)0.004 (2)0.0026 (18)0.0019 (19)
C30.015 (2)0.016 (3)0.020 (2)0.001 (2)0.0040 (19)0.002 (2)
C40.020 (3)0.020 (3)0.021 (2)0.000 (2)0.008 (2)0.005 (2)
C50.018 (3)0.017 (3)0.014 (2)0.006 (2)0.0017 (19)0.0030 (19)
C60.028 (3)0.024 (3)0.012 (2)0.002 (2)0.005 (2)0.003 (2)
C70.026 (3)0.021 (3)0.014 (2)0.006 (2)0.002 (2)0.004 (2)
C80.018 (3)0.025 (3)0.019 (2)0.007 (2)0.003 (2)0.004 (2)
C90.018 (3)0.018 (3)0.015 (2)0.002 (2)0.0029 (19)0.000 (2)
C100.019 (3)0.011 (2)0.017 (2)0.005 (2)0.0023 (19)0.0042 (19)
C110.014 (2)0.013 (2)0.020 (2)0.004 (2)0.0050 (19)0.000 (2)
C120.032 (3)0.012 (3)0.023 (3)0.003 (2)0.002 (2)0.003 (2)
C130.030 (3)0.031 (3)0.034 (3)0.019 (3)0.007 (3)0.003 (3)
C140.024 (3)0.039 (4)0.032 (3)0.009 (3)0.008 (2)0.003 (3)
Geometric parameters (Å, º) top
Pb1—O12.377 (4)C4—H40.9500
Pb1—O32.384 (4)C5—C101.414 (7)
Pb1—O1i2.500 (3)C5—C61.427 (7)
Pb1—N12.645 (4)C6—C71.362 (8)
Pb1—O52.694 (4)C6—H60.9500
Pb1—O42.763 (3)C7—C81.413 (7)
Pb1—O2ii3.096 (4)C7—H70.9500
O1—C11.288 (6)C8—C91.367 (7)
O1—Pb1i2.500 (3)C8—H80.9500
O2—C11.229 (6)C9—C101.417 (7)
O3—C111.275 (6)C9—H90.9500
O4—C111.233 (6)C11—C121.510 (7)
O5—C131.418 (6)C12—H12A0.9800
O5—H50.8400C12—H12B0.9800
N1—C21.319 (6)C12—H12C0.9800
N1—C101.380 (6)C13—C141.502 (8)
C1—C21.526 (7)C13—H13A0.9900
C2—C31.392 (7)C13—H13B0.9900
C3—C41.362 (7)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.407 (7)C14—H14C0.9800
O1—Pb1—O377.18 (12)C3—C4—H4120.5
O1—Pb1—O1i64.70 (14)C5—C4—H4120.5
O3—Pb1—O1i75.67 (11)C4—C5—C10119.0 (4)
O1—Pb1—N163.92 (12)C4—C5—C6122.7 (5)
O3—Pb1—N197.09 (12)C10—C5—C6118.3 (5)
O1i—Pb1—N1128.43 (12)C7—C6—C5120.4 (5)
O1—Pb1—O571.05 (11)C7—C6—H6119.8
O3—Pb1—O5146.07 (12)C5—C6—H6119.8
O1i—Pb1—O580.20 (11)C6—C7—C8120.5 (5)
N1—Pb1—O579.62 (11)C6—C7—H7119.7
O1—Pb1—O4106.08 (11)C8—C7—H7119.7
O3—Pb1—O450.00 (11)C9—C8—C7120.9 (5)
O1i—Pb1—O4124.72 (10)C9—C8—H8119.5
N1—Pb1—O474.61 (11)C7—C8—H8119.5
O5—Pb1—O4152.06 (10)C8—C9—C10119.4 (5)
O1—Pb1—O2ii159.18 (11)C8—C9—H9120.3
O3—Pb1—O2ii123.42 (12)C10—C9—H9120.3
O1i—Pb1—O2ii114.32 (10)N1—C10—C5120.4 (4)
N1—Pb1—O2ii111.89 (10)N1—C10—C9119.2 (4)
O5—Pb1—O2ii88.18 (11)C5—C10—C9120.4 (4)
O4—Pb1—O2ii91.48 (10)O4—C11—O3122.8 (5)
C1—O1—Pb1127.0 (3)O4—C11—C12120.1 (4)
C1—O1—Pb1i115.8 (3)O3—C11—C12117.0 (4)
Pb1—O1—Pb1i115.30 (14)C11—C12—H12A109.5
C11—O3—Pb1102.0 (3)C11—C12—H12B109.5
C11—O4—Pb185.1 (3)H12A—C12—H12B109.5
C13—O5—Pb1117.1 (4)C11—C12—H12C109.5
C13—O5—H5121.4H12A—C12—H12C109.5
Pb1—O5—H5121.4H12B—C12—H12C109.5
C2—N1—C10118.6 (4)O5—C13—C14112.5 (5)
C2—N1—Pb1115.2 (3)O5—C13—H13A109.1
C10—N1—Pb1125.6 (3)C14—C13—H13A109.1
O2—C1—O1125.1 (4)O5—C13—H13B109.1
O2—C1—C2119.7 (4)C14—C13—H13B109.1
O1—C1—C2115.2 (4)H13A—C13—H13B107.8
N1—C2—C3123.6 (4)C13—C14—H14A109.5
N1—C2—C1116.7 (4)C13—C14—H14B109.5
C3—C2—C1119.7 (4)H14A—C14—H14B109.5
C4—C3—C2119.5 (5)C13—C14—H14C109.5
C4—C3—H3120.3H14A—C14—H14C109.5
C2—C3—H3120.3H14B—C14—H14C109.5
C3—C4—C5118.9 (5)
O3—Pb1—O1—C1116.7 (4)O4—Pb1—N1—C1060.4 (4)
O1i—Pb1—O1—C1163.3 (4)O2ii—Pb1—N1—C1024.9 (4)
N1—Pb1—O1—C112.1 (3)Pb1—O1—C1—O2170.1 (4)
O5—Pb1—O1—C175.4 (4)Pb1i—O1—C1—O26.8 (6)
O4—Pb1—O1—C175.4 (4)Pb1—O1—C1—C210.8 (6)
O2ii—Pb1—O1—C171.1 (5)Pb1i—O1—C1—C2174.0 (3)
O3—Pb1—O1—Pb1i80.02 (15)C10—N1—C2—C30.8 (7)
O1i—Pb1—O1—Pb1i0.0Pb1—N1—C2—C3170.7 (4)
N1—Pb1—O1—Pb1i175.37 (19)C10—N1—C2—C1176.9 (4)
O5—Pb1—O1—Pb1i87.89 (15)Pb1—N1—C2—C111.6 (5)
O4—Pb1—O1—Pb1i121.29 (13)O2—C1—C2—N1177.0 (4)
O2ii—Pb1—O1—Pb1i92.2 (3)O1—C1—C2—N12.2 (6)
O1—Pb1—O3—C11126.0 (3)O2—C1—C2—C30.8 (7)
O1i—Pb1—O3—C11167.2 (3)O1—C1—C2—C3180.0 (4)
N1—Pb1—O3—C1164.9 (3)N1—C2—C3—C41.2 (8)
O5—Pb1—O3—C11146.8 (3)C1—C2—C3—C4176.4 (5)
O4—Pb1—O3—C111.8 (3)C2—C3—C4—C50.8 (7)
O2ii—Pb1—O3—C1157.3 (3)C3—C4—C5—C100.0 (7)
O1—Pb1—O4—C1159.0 (3)C3—C4—C5—C6179.4 (5)
O3—Pb1—O4—C111.9 (3)C4—C5—C6—C7178.4 (5)
O1i—Pb1—O4—C1111.1 (3)C10—C5—C6—C70.9 (8)
N1—Pb1—O4—C11115.3 (3)C5—C6—C7—C81.2 (8)
O5—Pb1—O4—C11138.7 (3)C6—C7—C8—C90.3 (8)
O2ii—Pb1—O4—C11132.4 (3)C7—C8—C9—C100.9 (8)
O1—Pb1—O5—C13164.3 (3)C2—N1—C10—C50.1 (7)
O3—Pb1—O5—C13142.8 (3)Pb1—N1—C10—C5170.6 (3)
O1i—Pb1—O5—C1397.8 (3)C2—N1—C10—C9180.0 (4)
N1—Pb1—O5—C13129.9 (3)Pb1—N1—C10—C99.4 (6)
O4—Pb1—O5—C13107.0 (4)C4—C5—C10—N10.4 (7)
O2ii—Pb1—O5—C1317.3 (3)C6—C5—C10—N1179.8 (4)
O1—Pb1—N1—C211.7 (3)C4—C5—C10—C9179.6 (5)
O3—Pb1—N1—C283.6 (3)C6—C5—C10—C90.2 (7)
O1i—Pb1—N1—C26.3 (4)C8—C9—C10—N1178.9 (5)
O5—Pb1—N1—C262.2 (3)C8—C9—C10—C51.1 (7)
O4—Pb1—N1—C2128.7 (3)Pb1—O4—C11—O33.2 (5)
O2ii—Pb1—N1—C2146.0 (3)Pb1—O4—C11—C12179.6 (4)
O1—Pb1—N1—C10177.5 (4)Pb1—O3—C11—O43.8 (5)
O3—Pb1—N1—C10105.5 (4)Pb1—O3—C11—C12179.7 (4)
O1i—Pb1—N1—C10177.2 (3)Pb1—O5—C13—C1468.5 (6)
O5—Pb1—N1—C10108.7 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.842.362.710 (5)106
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C10H6NO2)2(C2H3O2)2(C2H6O)2]
Mr968.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.3419 (1), 8.4004 (1), 23.8008 (4)
β (°) 93.722 (1)
V3)1464.82 (4)
Z2
Radiation typeMo Kα
µ (mm1)11.54
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.206, 0.596
No. of measured, independent and
observed [I > 2σ(I)] reflections
12668, 3314, 3010
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.08
No. of reflections3314
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.57

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb1—O12.377 (4)Pb1—O52.694 (4)
Pb1—O32.384 (4)Pb1—O42.763 (3)
Pb1—O1i2.500 (3)Pb1—O2ii3.096 (4)
Pb1—N12.645 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.842.362.710 (5)106
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationMohammadnezhad, G., Ghanbarpour, A. R., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds