organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(Pyrazin-2-ylsulfan­yl)eth­yl]pyrazine-2(1H)-thione

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, and bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China
*Correspondence e-mail: zhaoxizai203887@163.com

(Received 1 November 2010; accepted 11 January 2011; online 15 January 2011)

The title multifunctional twisted organic ligand, C10H10N4S2, contains a short C=S bond [1.671 (2) Å]. The dihedral angle between the two pyrazine rings is 39.83 (6)°. In the crystal, inter­molecular C—H⋯N and C—H⋯S hydrogen bonds result in the formation of a supra­molecular network.

Related literature

The assembly of mol­ecular units in predefined arrangements is a key goal in the synthesis of crystal structures by design, see: Zheng et al. (2003[Zheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509-1514]). For bond lengths and angles in the ligand, see: Etter et al. (1992[Etter, M. C., Macdonald, J. C. & Wanke, R. A. (1992). J. Phys. Org. Chem. 5, 191-200.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For versatile ligands, see: Devel et al. (2003[Devel, L., Hamon, L., Becker, H., Thellend, A. & Vidal-Cros, A. (2003). Carbohydr. Res. 338, 1591-1601.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4S2

  • Mr = 250.34

  • Monoclinic, P 21 /n

  • a = 9.762 (7) Å

  • b = 11.737 (9) Å

  • c = 10.129 (8) Å

  • β = 92.628 (9)°

  • V = 1159.2 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.32 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.966

  • 6280 measured reflections

  • 2160 independent reflections

  • 1879 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.06

  • 2160 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N4i 0.93 2.56 3.298 (3) 137
C2—H2⋯S2ii 0.93 2.99 3.544 (3) 119
C3—H3⋯S2iii 0.93 2.92 3.741 (3) 148
C8—H8⋯S1iv 0.93 2.97 3.738 (3) 140
C9—H9⋯S1v 0.93 2.98 3.897 (3) 169
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Zheng et al., 2003). Pyrazine-2-thiol is a versatile ligand which may adopt a variety of bonding modes in its coordination compounds. We originally attempted to synthesize complexes featuring Co metal chains by reaction of the Co(II) ion with pyrazine-2-thiol ligand. Unfortunately, we obtained only the title ligand, and we report herein its crystal structure. In I (Fig. 1), the ligand bond lengths and angles are within normal ranges (Etter et al., 1992). The C=S bond length was compared with the mean C—S and C=S bond lengths retrieved from a search of thiol and thione crystal structures from the CSD (Allen, 2002). X-ray data from I give a C=S bond length of 1.671 (2) Å, which is shorter than the value of 1.698 (2) Å for 2-thiopyridone and indicates a C=S rather than C-S bond. In the crystal structure, intermolecular C—H···N and C—H···S hydrogen bonds (Table 1 and Fig. 2) result in the formation of a supramolecular network structure.

Related literature top

The assembly of molecular units in predefined arrangements is a key goal in the synthesis of crystal structures by design, see: Zheng et al. (2003). For bond lengths and angles in the ligand, see: Etter et al. (1992). For a description of the Cambridge Structural Database, see: Allen (2002). For related literature [on what subject?], see: Devel et al. (2003). AUTHOR: remember to subdivide the Related literature section in future submissions

Experimental top

For the preparation of (I), a solution of CoCl2.6H2O (47.9 mg, 0.2 mmol) in 5 ml distilled water was added dropwise to a solution of pyrazine-2-thiol (250 mg, 2 mmol) and 1,2-dibromoethane (0.09 ml, 1 mmol) in 15 ml sodium ethoxide/ethanol solution. The resulting solution was stirred at 352 K for 3 h, then cooled to room temperature and filtered. A yellow-block crystal suitable for X-ray diffraction were obtained by slow evaporation after several days.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
1-[2-(Pyrazin-2-ylsulfanyl)ethyl]pyrazine-2(1H)-thione top
Crystal data top
C10H10N4S2F(000) = 520
Mr = 250.34Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.762 (7) ÅCell parameters from 3231 reflections
b = 11.737 (9) Åθ = 2.7–27.9°
c = 10.129 (8) ŵ = 0.44 mm1
β = 92.628 (9)°T = 296 K
V = 1159.2 (15) Å3Block, yellow
Z = 40.32 × 0.20 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2160 independent reflections
Radiation source: fine-focus sealed tube1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1111
Tmin = 0.873, Tmax = 0.966k = 1412
6280 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.039P)2 + 0.347P]
where P = (Fo2 + 2Fc2)/3
2160 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H10N4S2V = 1159.2 (15) Å3
Mr = 250.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.762 (7) ŵ = 0.44 mm1
b = 11.737 (9) ÅT = 296 K
c = 10.129 (8) Å0.32 × 0.20 × 0.08 mm
β = 92.628 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2160 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1879 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.966Rint = 0.024
6280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
2160 reflectionsΔρmin = 0.22 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.86032 (16)0.00044 (13)0.30816 (17)0.0373 (4)
C20.83823 (17)0.05822 (14)0.42873 (18)0.0418 (4)
H20.83260.13720.42420.050*
C30.83014 (18)0.10299 (16)0.54879 (19)0.0464 (4)
H30.82050.13930.62950.056*
C40.84852 (16)0.16689 (14)0.44097 (18)0.0413 (4)
H40.85020.24590.44810.050*
C50.8960 (2)0.18947 (15)0.20807 (19)0.0460 (4)
H5A0.85720.26460.22030.055*
H5B0.85380.15720.12800.055*
C61.0492 (2)0.20010 (15)0.19297 (18)0.0479 (4)
H6A1.06490.23990.11110.058*
H6B1.08790.12430.18610.058*
C71.08904 (17)0.41615 (14)0.29421 (17)0.0373 (4)
C81.1302 (2)0.49827 (17)0.3863 (2)0.0593 (5)
H81.18000.47570.46230.071*
C91.0294 (2)0.63363 (17)0.2595 (2)0.0587 (5)
H91.00530.70930.24430.070*
C100.99020 (19)0.55385 (15)0.1681 (2)0.0494 (5)
H100.94190.57710.09150.059*
N10.86480 (13)0.11696 (11)0.32118 (14)0.0366 (3)
N20.82515 (15)0.01237 (13)0.54431 (15)0.0464 (4)
N31.01858 (15)0.44304 (12)0.18458 (15)0.0435 (4)
N41.1012 (2)0.60692 (15)0.3698 (2)0.0706 (5)
S21.13825 (5)0.27417 (4)0.32673 (5)0.04440 (15)
S10.87993 (6)0.06784 (4)0.16546 (5)0.05616 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (9)0.0282 (8)0.0447 (9)0.0010 (6)0.0081 (7)0.0002 (7)
C20.0419 (9)0.0322 (9)0.0504 (11)0.0052 (7)0.0058 (8)0.0033 (7)
C30.0401 (9)0.0512 (11)0.0483 (10)0.0018 (8)0.0067 (8)0.0111 (9)
C40.0360 (9)0.0328 (9)0.0549 (11)0.0003 (7)0.0008 (8)0.0097 (8)
C50.0614 (11)0.0279 (9)0.0477 (10)0.0020 (8)0.0083 (9)0.0071 (7)
C60.0671 (12)0.0311 (9)0.0463 (10)0.0027 (8)0.0097 (9)0.0012 (7)
C70.0380 (9)0.0327 (8)0.0415 (9)0.0037 (7)0.0035 (7)0.0037 (7)
C80.0782 (14)0.0452 (11)0.0527 (12)0.0052 (10)0.0172 (10)0.0010 (9)
C90.0630 (12)0.0311 (10)0.0815 (15)0.0021 (8)0.0012 (11)0.0003 (10)
C100.0481 (10)0.0384 (10)0.0610 (12)0.0015 (8)0.0052 (9)0.0091 (8)
N10.0382 (7)0.0266 (7)0.0445 (8)0.0006 (5)0.0043 (6)0.0001 (6)
N20.0426 (8)0.0493 (9)0.0473 (9)0.0054 (7)0.0015 (7)0.0029 (7)
N30.0496 (9)0.0339 (8)0.0464 (9)0.0016 (6)0.0042 (7)0.0035 (6)
N40.0953 (14)0.0412 (10)0.0735 (13)0.0043 (9)0.0152 (11)0.0117 (9)
S20.0490 (3)0.0346 (3)0.0494 (3)0.00021 (18)0.0004 (2)0.01038 (18)
S10.0878 (4)0.0359 (3)0.0439 (3)0.0014 (2)0.0074 (3)0.00664 (19)
Geometric parameters (Å, º) top
C1—N11.374 (2)C6—S21.800 (2)
C1—C21.427 (3)C6—H6A0.9700
C1—S11.671 (2)C6—H6B0.9700
C2—N21.300 (2)C7—N31.317 (2)
C2—H20.9300C7—C81.388 (3)
C3—C41.344 (3)C7—S21.761 (2)
C3—N21.356 (3)C8—N41.315 (3)
C3—H30.9300C8—H80.9300
C4—N11.363 (2)C9—N41.328 (3)
C4—H40.9300C9—C101.359 (3)
C5—N11.470 (2)C9—H90.9300
C5—C61.515 (3)C10—N31.339 (2)
C5—H5A0.9700C10—H100.9300
C5—H5B0.9700
N1—C1—C2113.79 (15)S2—C6—H6B108.7
N1—C1—S1123.76 (13)H6A—C6—H6B107.6
C2—C1—S1122.45 (14)N3—C7—C8121.60 (17)
N2—C2—C1126.58 (17)N3—C7—S2120.77 (13)
N2—C2—H2116.7C8—C7—S2117.60 (15)
C1—C2—H2116.7N4—C8—C7122.3 (2)
C4—C3—N2122.43 (17)N4—C8—H8118.9
C4—C3—H3118.8C7—C8—H8118.9
N2—C3—H3118.8N4—C9—C10122.09 (19)
C3—C4—N1120.59 (16)N4—C9—H9119.0
C3—C4—H4119.7C10—C9—H9119.0
N1—C4—H4119.7N3—C10—C9122.29 (19)
N1—C5—C6111.51 (15)N3—C10—H10118.9
N1—C5—H5A109.3C9—C10—H10118.9
C6—C5—H5A109.3C4—N1—C1120.57 (14)
N1—C5—H5B109.3C4—N1—C5118.78 (15)
C6—C5—H5B109.3C1—N1—C5120.53 (14)
H5A—C5—H5B108.0C2—N2—C3116.02 (16)
C5—C6—S2114.12 (13)C7—N3—C10115.77 (16)
C5—C6—H6A108.7C8—N4—C9115.98 (18)
S2—C6—H6A108.7C7—S2—C6101.42 (9)
C5—C6—H6B108.7
N1—C1—C2—N21.3 (3)C6—C5—N1—C492.37 (18)
S1—C1—C2—N2178.29 (14)C6—C5—N1—C183.77 (19)
N2—C3—C4—N10.8 (3)C1—C2—N2—C31.6 (3)
N1—C5—C6—S265.89 (18)C4—C3—N2—C20.5 (3)
N3—C7—C8—N40.2 (3)C8—C7—N3—C100.2 (3)
S2—C7—C8—N4178.53 (18)S2—C7—N3—C10178.07 (13)
N4—C9—C10—N31.5 (3)C9—C10—N3—C71.0 (3)
C3—C4—N1—C11.1 (2)C7—C8—N4—C90.2 (3)
C3—C4—N1—C5175.01 (16)C10—C9—N4—C81.0 (3)
C2—C1—N1—C40.2 (2)N3—C7—S2—C67.14 (16)
S1—C1—N1—C4179.72 (12)C8—C7—S2—C6174.49 (16)
C2—C1—N1—C5175.90 (15)C5—C6—S2—C774.03 (14)
S1—C1—N1—C53.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.932.563.298 (3)137
C2—H2···S2ii0.932.993.544 (3)119
C3—H3···S2iii0.932.923.741 (3)148
C8—H8···S1iv0.932.973.738 (3)140
C9—H9···S1v0.932.983.897 (3)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H10N4S2
Mr250.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.762 (7), 11.737 (9), 10.129 (8)
β (°) 92.628 (9)
V3)1159.2 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.32 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.873, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6280, 2160, 1879
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.06
No. of reflections2160
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.932.563.298 (3)137
C2—H2···S2ii0.932.993.544 (3)119
C3—H3···S2iii0.932.923.741 (3)148
C8—H8···S1iv0.932.973.738 (3)140
C9—H9···S1v0.932.983.897 (3)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

This work was funded by the Guangxi Science Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 2010GXNSFD 013017).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevel, L., Hamon, L., Becker, H., Thellend, A. & Vidal-Cros, A. (2003). Carbohydr. Res. 338, 1591–1601.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., Macdonald, J. C. & Wanke, R. A. (1992). J. Phys. Org. Chem. 5, 191–200.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509–1514  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds