organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro-4-(3,4-di­chloro­phen­yl)-3,4-di­hydro­naphthalene-2-carbaldehyde

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Chemistry, Bharathi College, Bharathinagar 571 422, Mandya District, Karnataka, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 7 November 2010; accepted 7 January 2011; online 15 January 2011)

The title compound, C17H11Cl3O, was synthesized via the Vilsmeier–Haack reaction. The dihydro­naphthalene ring system is non-planar, the dihedral angle between the two fused rings being 10.87 (13)°; it forms a dihedral angle of 81.45 (10)° with the dichloro­phenyl ring. The crystal structure features inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to 4-(3,4-dichloro­phen­yl)-3,4- dihydro­naphthalen-1(2H)-one, see: Zhengxu et al. (2007[Zhengxu, H., Koenig, S. G., Zhao, H., Su, X., Singh, S. P. & Bakale, R. P. (2007). Chemical Process Reseach and Development. Massachusetts: Sepracor Inc.]); Jerussi et al. (2004[Jerussi, T. P., Fang, Q. K. & Currie, M. G. (2004). PCT Int. Appl. WO 2004042669 A1 200440325.]); Taber et al. (2004[Taber, G. P., Pfisterer, D. M. & Colberg, J. C. (2004). Org. Process Res. Dev. 8, 385-388.]); Ray et al. (2003[Ray, J. K., Roy, B. C., Pan, D., Canle L., M., Santaballa, J. A. & Mahía, J. (2003). Acta Cryst. E59, o514-o516.]); Meth-Cohn & Stanforth (1991[Meth-Cohn, O. & Stanforth, S. P. (1991). Comprehensive Organic Synthesis, Vol. 2, edited by B. M. Trost & I. Fleming, pp. 777-794. Amsterdam: Elsevier.]); Hurd & Webb (1941[Hurd, C. D. & Webb, C. N. (1941). Org. Synth. Coll. 1, 217.]); Mallegol et al. (2005[Mallegol, T., Gmouh, S., Meziane, M. A. A., Blanchard-Desce, M. & Mongin, O. (2005). Synthesis, pp. 1771-1774.]). For the synthesis, see Vilsmeier et al. (1937[Vilsmeier, A. & Haack, A. (1937). Chem. Ber. 60, 119.]). For a related structure, see: Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11Cl3O

  • Mr = 337.61

  • Monoclinic, P 21 /c

  • a = 10.2969 (5) Å

  • b = 10.8849 (5) Å

  • c = 13.6144 (7) Å

  • β = 91.436 (5)°

  • V = 1525.43 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.546, Tmax = 1.000

  • 15902 measured reflections

  • 3006 independent reflections

  • 2143 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.149

  • S = 1.09

  • 3006 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O4i 0.90 (3) 2.58 (3) 3.201 (3) 128 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently drug candidates for blocking the monoamine reuptake trasporters have considerable interest in the pharmaceutical industry for treatment of central nervous system disorders (Zhengxu et al., 2007). 1,2,3,4-tetrahydronaphthalene derivatives are for the treatment of central nervous system disorders (Jerussi et al., 2004; Taber et al., 2004). Tetrahydronaphthalene derivatives are also used in liquid crystal display elements (Ray et al., 2003). Potent pharmaceutically active 1-chloro-4-(3,4-dichlorophenyl)-3, 4-dihydronaphthalene-2-carbaldehyde was prepared by the Vilsmeier- Haack reaction (Vilsmeier et al., 1937; Meth-Cohn et al. , 1991; Hurd et al., 1941; Mallegol et al., 2005) of 4-(3,4-dichlorophenyl)-3,4-dihydronaphthalen-1(2H)-one.

The asymmetric unit of the 1-chloro-4-(3,4-dichlorophenyl)-3,4- dihydronaphthalene-2-carbaldehyde contains one molecule (Fig. 1). The dihydronaphthalene ring system is non-planar; the dihedral angle between the two ring system of the naphthalene ring is 10.87 (13)° and also the dihedral angle between the dihydronaphthalene ring system and the dichlorophenyl ring is 81.45 (10)°. The crystal structure shows intramolecular C5—H5···Cl1, C9—H9···Cl1, C15—H15B···O4 and C18—H18···O4 intermolecular hydrogen bonds. Bond distances within the aromatic rings are in agreement with those observed related structures (Gowda et al., 2008). The packing of the molecules shows when viewed along the a axis (Fig.2).

Related literature top

For general background to 4-(3,4-dichlorophenyl)-3,4- dihydronaphthalen-1(2H)-one, see: Zhengxu et al. (2007); Jerussi et al. (2004); Taber et al. (2004); Ray et al. (2003); Meth-Cohn & Stanforth (1991); Hurd & Webb (1941); Mallegol et al. (2005). For the synthesis, see Vilsmeier et al. (1937). For a related structure, see: Gowda et al. (2008).

Experimental top

To the Vilsmeier-Haack complex prepared from DMF and POCl3 (0.03 mol) at 0°C, the compound 4-(3,4-dichlorophenyl)-3,4-dihydronaphthalen-1(2H)-one (0.01 mol) was added and the reaction mixture was stirred at 65°C for 4 h. The reaction completion was monitored by TLC. The contents were cooled, poured in to ice-cold water and neutralized using Na2CO3 solution. The product that separated was filtered and dried. X-ray quality crystals were obtained from an ethyl acetate solution.

Refinement top

Hydrogen atoms were located in a difference Fourier map and were allowed to refine isotropically.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.Dashed lines indicate hydrogen bonds
[Figure 2] Fig. 2. A view of the structure down the axis a.
1-Chloro-4-(3,4-dichlorophenyl)-3,4-dihydronaphthalene-2-carbaldehyde top
Crystal data top
C17H11Cl3OF(000) = 688
Mr = 337.61Dx = 1.470 Mg m3
Monoclinic, P21/cMelting point: 383 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.2969 (5) ÅCell parameters from 3006 reflections
b = 10.8849 (5) Åθ = 2.4–26.0°
c = 13.6144 (7) ŵ = 0.60 mm1
β = 91.436 (5)°T = 293 K
V = 1525.43 (13) Å3Plate, colourless
Z = 40.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3006 independent reflections
Radiation source: Enhance (Mo) X-ray Source2143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.546, Tmax = 1.000l = 1616
15902 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0885P)2]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H11Cl3OV = 1525.43 (13) Å3
Mr = 337.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2969 (5) ŵ = 0.60 mm1
b = 10.8849 (5) ÅT = 293 K
c = 13.6144 (7) Å0.22 × 0.15 × 0.12 mm
β = 91.436 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3006 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2143 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 1.000Rint = 0.043
15902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.52 e Å3
3006 reflectionsΔρmin = 0.33 e Å3
234 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

1H NMR (CDCl3, 400 MHz): δ, 10.33 (s, 1H, -CHO), 6.92-8.00 (m, 7H, Ar-H), 4.13 (t, 1H, –CH proton of fused cyclohexane ring, J=10.0 Hz), 2.86-3.01(m, 2H, –CH2 proton of fused cyclohexane ring)

IR (KBr, cm-1): 3443.28 (-CHO), 1662.34 (C=O of aldehyde), 1595.81(C=C,aromatic), 838.883 (C-Cl), 1255.43 (C-H stretch).

FAB MASS: m/z = 337, mol. formulae: C17H11Cl3O).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40177 (8)0.17987 (7)0.18417 (6)0.0642 (3)
Cl21.03593 (8)0.22018 (9)0.40674 (6)0.0809 (3)
Cl31.07383 (9)0.35613 (9)0.20272 (7)0.0853 (3)
O40.3558 (2)0.4375 (2)0.04817 (19)0.0873 (8)
C50.3745 (3)0.3618 (3)0.0142 (3)0.0654 (8)
C60.4835 (3)0.2751 (2)0.01503 (19)0.0461 (6)
C70.5053 (2)0.1922 (2)0.08561 (18)0.0410 (6)
C80.6168 (2)0.1084 (2)0.08586 (17)0.0389 (6)
C90.6561 (3)0.0405 (2)0.16846 (19)0.0474 (6)
C100.7619 (3)0.0361 (3)0.1655 (2)0.0604 (8)
C110.8291 (3)0.0479 (3)0.0801 (2)0.0595 (8)
C120.7912 (3)0.0171 (2)0.0023 (2)0.0520 (7)
C130.6860 (2)0.0965 (2)0.00149 (17)0.0409 (6)
C140.6365 (3)0.1633 (2)0.09391 (19)0.0462 (6)
C150.5787 (3)0.2861 (3)0.0664 (2)0.0539 (7)
C160.7379 (2)0.1794 (2)0.17227 (19)0.0433 (6)
C170.7223 (3)0.1248 (2)0.26254 (19)0.0447 (6)
C180.8128 (3)0.1384 (2)0.3336 (2)0.0475 (6)
C190.9213 (3)0.2083 (2)0.31643 (19)0.0451 (6)
C200.9393 (3)0.2661 (2)0.2272 (2)0.0476 (6)
C210.8493 (3)0.2513 (2)0.1548 (2)0.0503 (7)
H50.327 (3)0.359 (3)0.067 (2)0.080 (11)*
H90.616 (3)0.050 (2)0.224 (2)0.061 (8)*
H100.792 (3)0.082 (3)0.218 (2)0.088 (11)*
H110.904 (3)0.096 (2)0.0799 (18)0.050 (7)*
H120.836 (3)0.009 (2)0.054 (2)0.057 (8)*
H140.561 (2)0.111 (2)0.1275 (17)0.040 (6)*
H170.653 (3)0.068 (2)0.2739 (18)0.049 (7)*
H180.807 (3)0.103 (2)0.393 (2)0.055 (8)*
H15A0.668 (4)0.339 (3)0.040 (3)0.101 (12)*
H15B0.536 (3)0.324 (2)0.121 (2)0.057 (8)*
H210.867 (3)0.291 (3)0.090 (2)0.061 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0575 (5)0.0748 (5)0.0613 (5)0.0080 (3)0.0232 (4)0.0094 (4)
Cl20.0618 (5)0.1218 (8)0.0600 (5)0.0032 (5)0.0216 (4)0.0190 (5)
Cl30.0590 (5)0.0868 (6)0.1103 (8)0.0339 (4)0.0057 (5)0.0100 (5)
O40.0824 (17)0.0849 (16)0.0945 (18)0.0370 (13)0.0004 (14)0.0272 (14)
C50.0517 (19)0.073 (2)0.072 (2)0.0171 (15)0.0058 (17)0.0092 (18)
C60.0425 (14)0.0474 (14)0.0484 (15)0.0052 (11)0.0004 (12)0.0029 (11)
C70.0372 (13)0.0438 (13)0.0421 (13)0.0044 (11)0.0042 (11)0.0034 (11)
C80.0386 (13)0.0339 (12)0.0442 (13)0.0052 (10)0.0001 (11)0.0009 (10)
C90.0547 (17)0.0480 (14)0.0396 (14)0.0000 (12)0.0037 (13)0.0049 (12)
C100.071 (2)0.0574 (17)0.0522 (17)0.0116 (15)0.0045 (16)0.0149 (14)
C110.0551 (18)0.0571 (17)0.0664 (19)0.0192 (14)0.0034 (15)0.0116 (14)
C120.0526 (17)0.0517 (15)0.0521 (17)0.0102 (13)0.0116 (14)0.0049 (13)
C130.0409 (13)0.0389 (13)0.0430 (13)0.0027 (10)0.0021 (11)0.0042 (10)
C140.0415 (14)0.0513 (15)0.0458 (14)0.0039 (12)0.0028 (12)0.0036 (12)
C150.0569 (18)0.0555 (16)0.0496 (16)0.0149 (14)0.0075 (14)0.0144 (13)
C160.0392 (14)0.0436 (13)0.0472 (15)0.0002 (11)0.0037 (11)0.0098 (11)
C170.0467 (15)0.0380 (13)0.0493 (15)0.0048 (11)0.0035 (12)0.0064 (11)
C180.0510 (16)0.0484 (14)0.0430 (15)0.0036 (12)0.0020 (12)0.0014 (12)
C190.0425 (14)0.0483 (14)0.0446 (14)0.0042 (11)0.0053 (12)0.0112 (12)
C200.0395 (14)0.0460 (14)0.0570 (17)0.0077 (11)0.0005 (12)0.0046 (12)
C210.0529 (16)0.0534 (15)0.0444 (15)0.0016 (12)0.0017 (13)0.0031 (13)
Geometric parameters (Å, º) top
Cl1—C71.740 (2)C12—C131.386 (3)
Cl2—C191.731 (2)C12—H120.86 (3)
Cl3—C201.722 (3)C13—C141.530 (3)
O4—C51.195 (4)C14—C151.514 (4)
C5—C61.466 (4)C14—C161.521 (3)
C5—H50.88 (3)C14—H141.06 (2)
C6—C71.333 (3)C15—H15A1.14 (4)
C6—C151.503 (3)C15—H15B0.94 (3)
C7—C81.465 (3)C16—C171.371 (4)
C8—C91.398 (3)C16—C211.404 (4)
C8—C131.408 (3)C17—C181.368 (4)
C9—C101.373 (4)C17—H170.95 (3)
C9—H90.88 (3)C18—C191.367 (4)
C10—C111.374 (4)C18—H180.89 (3)
C10—H100.92 (3)C19—C201.377 (4)
C11—C121.375 (4)C20—C211.379 (4)
C11—H110.93 (3)C21—H210.99 (3)
O4—C5—C6123.9 (3)C16—C14—C13114.3 (2)
O4—C5—H5121 (2)C15—C14—H14106.9 (12)
C6—C5—H5115 (2)C16—C14—H14105.6 (12)
C7—C6—C5123.8 (2)C13—C14—H14109.1 (12)
C7—C6—C15119.0 (2)C6—C15—C14112.3 (2)
C5—C6—C15117.1 (2)C6—C15—H15A110.4 (19)
C6—C7—C8122.7 (2)C14—C15—H15A101.8 (18)
C6—C7—Cl1120.84 (19)C6—C15—H15B108.2 (16)
C8—C7—Cl1116.44 (17)C14—C15—H15B111.5 (16)
C9—C8—C13119.2 (2)H15A—C15—H15B113 (2)
C9—C8—C7122.8 (2)C17—C16—C21118.1 (2)
C13—C8—C7117.9 (2)C17—C16—C14120.8 (2)
C10—C9—C8120.8 (2)C21—C16—C14121.2 (2)
C10—C9—H9119.4 (19)C18—C17—C16121.4 (3)
C8—C9—H9119.7 (19)C18—C17—H17118.4 (15)
C9—C10—C11119.9 (3)C16—C17—H17119.8 (15)
C9—C10—H10124 (2)C19—C18—C17120.5 (3)
C11—C10—H10116 (2)C19—C18—H18115.4 (18)
C10—C11—C12120.2 (3)C17—C18—H18124.1 (18)
C10—C11—H11119.2 (16)C18—C19—C20119.8 (2)
C12—C11—H11120.4 (16)C18—C19—Cl2119.3 (2)
C11—C12—C13121.3 (3)C20—C19—Cl2120.9 (2)
C11—C12—H12117.9 (19)C19—C20—C21119.9 (2)
C13—C12—H12120.7 (19)C19—C20—Cl3121.4 (2)
C12—C13—C8118.5 (2)C21—C20—Cl3118.7 (2)
C12—C13—C14122.3 (2)C20—C21—C16120.3 (3)
C8—C13—C14119.1 (2)C20—C21—H21118.3 (17)
C15—C14—C16110.7 (2)C16—C21—H21121.3 (17)
C15—C14—C13110.0 (2)
O4—C5—C6—C7178.8 (3)C12—C13—C14—C1624.0 (3)
O4—C5—C6—C152.0 (5)C8—C13—C14—C16160.9 (2)
C5—C6—C7—C8178.5 (3)C7—C6—C15—C1434.9 (4)
C15—C6—C7—C81.7 (4)C5—C6—C15—C14148.1 (3)
C5—C6—C7—Cl10.6 (4)C16—C14—C15—C6176.7 (2)
C15—C6—C7—Cl1177.4 (2)C13—C14—C15—C649.5 (3)
C6—C7—C8—C9165.8 (3)C15—C14—C16—C17118.7 (3)
Cl1—C7—C8—C913.4 (3)C13—C14—C16—C17116.5 (3)
C6—C7—C8—C1314.4 (4)C15—C14—C16—C2160.7 (3)
Cl1—C7—C8—C13166.37 (17)C13—C14—C16—C2164.1 (3)
C13—C8—C9—C100.8 (4)C21—C16—C17—C180.7 (4)
C7—C8—C9—C10179.4 (2)C14—C16—C17—C18179.9 (2)
C8—C9—C10—C111.0 (5)C16—C17—C18—C190.6 (4)
C9—C10—C11—C120.2 (5)C17—C18—C19—C200.4 (4)
C10—C11—C12—C130.6 (5)C17—C18—C19—Cl2178.27 (19)
C11—C12—C13—C80.8 (4)C18—C19—C20—C211.3 (4)
C11—C12—C13—C14175.9 (3)Cl2—C19—C20—C21177.3 (2)
C9—C8—C13—C120.1 (4)C18—C19—C20—Cl3179.4 (2)
C7—C8—C13—C12179.7 (2)Cl2—C19—C20—Cl31.9 (3)
C9—C8—C13—C14175.4 (2)C19—C20—C21—C161.3 (4)
C7—C8—C13—C144.4 (3)Cl3—C20—C21—C16179.5 (2)
C12—C13—C14—C15149.2 (3)C17—C16—C21—C200.3 (4)
C8—C13—C14—C1535.7 (3)C14—C16—C21—C20179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl10.88 (3)2.62 (3)3.053 (4)111 (2)
C9—H9···Cl10.88 (3)2.66 (3)3.039 (3)107 (2)
C15—H15B···O40.94 (3)2.46 (3)2.841 (4)103.8 (19)
C18—H18···O4i0.90 (3)2.58 (3)3.201 (3)128 (2)
Symmetry code: (i) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H11Cl3O
Mr337.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2969 (5), 10.8849 (5), 13.6144 (7)
β (°) 91.436 (5)
V3)1525.43 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.546, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15902, 3006, 2143
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.149, 1.09
No. of reflections3006
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.33

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O4i0.90 (3)2.58 (3)3.201 (3)128 (2)
Symmetry code: (i) x+1, y1/2, z1/2.
 

Acknowledgements

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHurd, C. D. & Webb, C. N. (1941). Org. Synth. Coll. 1, 217.  Google Scholar
First citationJerussi, T. P., Fang, Q. K. & Currie, M. G. (2004). PCT Int. Appl. WO 2004042669 A1 200440325.  Google Scholar
First citationMallegol, T., Gmouh, S., Meziane, M. A. A., Blanchard-Desce, M. & Mongin, O. (2005). Synthesis, pp. 1771–1774.  Google Scholar
First citationMeth-Cohn, O. & Stanforth, S. P. (1991). Comprehensive Organic Synthesis, Vol. 2, edited by B. M. Trost & I. Fleming, pp. 777–794. Amsterdam: Elsevier.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRay, J. K., Roy, B. C., Pan, D., Canle L., M., Santaballa, J. A. & Mahía, J. (2003). Acta Cryst. E59, o514–o516.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaber, G. P., Pfisterer, D. M. & Colberg, J. C. (2004). Org. Process Res. Dev. 8, 385–388.  Web of Science CrossRef CAS Google Scholar
First citationVilsmeier, A. & Haack, A. (1937). Chem. Ber. 60, 119.  CrossRef Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZhengxu, H., Koenig, S. G., Zhao, H., Su, X., Singh, S. P. & Bakale, R. P. (2007). Chemical Process Reseach and Development. Massachusetts: Sepracor Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds