organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o537-o538

1-(4-Meth­­oxy­phen­yl)-4-(3-nitro­phen­yl)-3-phen­­oxy­azetidin-2-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 January 2011; accepted 25 January 2011; online 29 January 2011)

In the title compound, C22H18N2O5, the four-membered β-lactam ring is nearly planar, with a maximum deviation of 0.023 (2) Å for the N atom, and has long C—C distances of 1.525 (5) and 1.571 (5) Å. The mean plane of this group makes dihedral angles of 11.61 (19), 74.5 (2) and 72.3 (2)° with three aromatic rings. An intra­molecular C—H⋯O hydrogen bond occurs. The packing of the mol­ecules in the crystal structure is governed mainly by inter­molecular C—H⋯O hydrogen-bonding and C—H⋯π stacking inter­actions. Furthermore, a ππ inter­action [centroid–centroid distance = 3.6129 (19) Å] helps to stabilize the crystal structure.

Related literature

For general background to β-lactams, see: Jubie et al. (2009[Jubie, S., Gowramma, B., Muthal, N. K., Kalirajan, R., Gomathi, S. & Elango, K. (2009). Int. J. ChemTech Res. 1, 153-157.]); Mehta et al. (2010[Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541-5560.]); Vatmurge et al. (2008[Vatmurge, N. S., Hazra, B. G., Pore, V. S., Shirazi, F., Chavan, P. S. & Deshpande, M. W. (2008). Bioorg. Med. Chem. Lett. 18, 2043-2047.]); Von Nussbaum et al. (2006[Von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S. & Häbich, D. (2006). Angew. Chem. Int. Ed. 45, 5072-5129.]). For related structures, see: Akkurt et al. (2006[Akkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866-o868.]); Ercan et al. (1996a[Ercan, F., Ülkü, D. & Güner, V. (1996a). Acta Cryst. C52, 1779-1780.],b[Ercan, F., Ülkü, D. & Güner, V. (1996b). Z. Kristallogr. 211, 735-736.]); Kabak et al. (1999[Kabak, M., Elerman, Y., Güner, V., Yildirir, S. & Durlu, T. N. (1999). Acta Cryst. C55, 1511-1512.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O5

  • Mr = 390.38

  • Triclinic, [P \overline 1]

  • a = 7.7934 (4) Å

  • b = 11.2813 (3) Å

  • c = 11.8818 (2) Å

  • α = 77.771 (4)°

  • β = 80.948 (5)°

  • γ = 71.052 (4)°

  • V = 961.18 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.981, Tmax = 0.981

  • 3928 measured reflections

  • 3928 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.155

  • S = 1.01

  • 3927 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.93 2.53 3.125 (4) 122
C2—H2⋯O2i 0.93 2.59 3.464 (4) 156
C16—H16⋯O4ii 0.93 2.52 3.164 (5) 126
C4—H4⋯Cg4iii 0.93 2.89 3.716 (4) 149
C9—H9⋯Cg2iv 0.98 2.55 3.463 (4) 154
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Azetidine-2-ones (β-lactams) were the first group of antibacterial natural products introduced as a therapeutic treatment of bacterial infections (Von Nussbaum et al.. 2006). The biological activity of β-lactams is mostly believed to be associated with the chemical reactivity of their β-lactam ring and on its substituents, especially at the nitrogen of the 2-azetidinone ring (Mehta et al. 2010). p-Anisidine derivatives have been found to be biologically interesting for many years (Jubie et al. 2009). Continuous change in the structures of known active compounds and the preparation of new types (Vatmurge et al. 2008) has been forced by the development of bacterial resistance to known compounds (Vatmurge et al. 2008).

In the title compound (I), (Fig. 1), the β-lactam ring (N1/C8–C10) is nearly planar, with a maximum deviation of 0.023 (2)Å for N1. The bond lengths in the β-lactam ring are comparable with those found in previous similar studies (Akkurt et al. 2006; Ercan et al., 1996a,b; Kabak et al., 1999).

Its mean plane makes dihedral angles of 11.61 (19), 74.5 (2) and 72.3 (2)°, respectively, with three aromatic rings (C1–C6), (C11–C16) and (C17–C22). The details of the dihedral angles between the planes of the rings are given in Table 2.

A weak intramolecular C—H···O hydrogen bond contributes to the stability of the molecular configuration (Table 1). The crystal structure is stabilized by intermolecular C—H···O hydrogen-bonding (Table 1, Fig. 2) and C—H···π stacking interactions (Table 1). Furthermore, a π-π interaction [Cg1···Cg3(x, y, z) = 3.6129 (19) Å, Cg1 and Cg3 are the centroids of the N1/C8–C10 β-lactam ring and the C11–CC16 benzene rings, respectively] helps to stabilize the crystal structure.

Related literature top

For general background to β-lactams, see: Jubie et al. (2009); Mehta et al. (2010); Vatmurge et al. (2008); Von Nussbaum et al. (2006). For related structures, see: Akkurt et al. (2006); Ercan et al. (1996a,b); Kabak et al. (1999).

Experimental top

A mixture of N-(3-nitrobenzylidene)-4-methoxybenzeneamine (1.28 g, 5.00 mmol) and triethylamine (2.53 g, 25.00 mmol), phenoxyacetic acid (1.14 g, 7.50 mmol) and tosyl chloride (1.43 g, 7.50 mmol) in CH2Cl2 (30 ml) was stirred at room temperature overnight. Then it was washed with HCl 1 N, saturated sodium bicarbonate solution and brine, dried with Na2SO4 and the solvent was evaporated to give the crude product as a white crystal which was then purified by recrystallization from ethyl acetate (Yield 47%). [mp: 415° K]. IR (KBr, cm-1): 1739.7 (CO β-lactam). 1H NMR (250 MHz, CDCl3) δ 3.75 (Me, s, 3H), 5.48 (H-8, d, 1H, J = 4.75), 5.63 (H-9, d, 1H, J = 4.75), 6.75–8.23 (ArH, m, 13H); 13C NMR (62.9 MHz, CDCl3) δ 55.46 (Me), 61.02 (C-8), 81.01 (C-9), 114.62–156.83 (aromatic carbons), 161.86 (CO β-lactam); GC—MS m/z =390 [M+].

Refinement top

H atoms were placed in geometrically idealized positions [d(C—H) = 0.93 - 0.98 Å], and refined as riding with Uiso(H) = 1.2 Ueq(C) for methine and aromatic H atoms or 1.5Ueq(C) for methyl H atoms. The reflection 6 0 2 was omitted in final refinement.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram and the hydrogen bonding interactions of (I), viewing down the a axis.
1-(4-Methoxyphenyl)-4-(3-nitrophenyl)-3-phenoxyazetidin-2-one top
Crystal data top
C22H18N2O5Z = 2
Mr = 390.38F(000) = 408
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7934 (4) ÅCell parameters from 2243 reflections
b = 11.2813 (3) Åθ = 2.4–26.4°
c = 11.8818 (2) ŵ = 0.10 mm1
α = 77.771 (4)°T = 294 K
β = 80.948 (5)°Block, white
γ = 71.052 (4)°0.20 × 0.20 × 0.20 mm
V = 961.18 (6) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3928 independent reflections
Radiation source: Sealed Tube1872 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.104
Detector resolution: 10.0000 pixels mm-1θmax = 26.4°, θmin = 2.4°
dtprofit.ref scansh = 98
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1414
Tmin = 0.981, Tmax = 0.981l = 1414
3928 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.1692P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3927 reflectionsΔρmax = 0.14 e Å3
265 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C22H18N2O5γ = 71.052 (4)°
Mr = 390.38V = 961.18 (6) Å3
Triclinic, P1Z = 2
a = 7.7934 (4) ÅMo Kα radiation
b = 11.2813 (3) ŵ = 0.10 mm1
c = 11.8818 (2) ÅT = 294 K
α = 77.771 (4)°0.20 × 0.20 × 0.20 mm
β = 80.948 (5)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3928 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1872 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.981Rint = 0.104
3928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
3927 reflectionsΔρmin = 0.15 e Å3
265 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3243 (3)0.0941 (2)0.8790 (2)0.0917 (11)
O20.1966 (3)0.7038 (2)0.9341 (2)0.0857 (10)
O30.4720 (3)0.83418 (19)0.77456 (17)0.0652 (8)
O41.1375 (4)0.6731 (3)0.5285 (3)0.1139 (15)
O51.0633 (4)0.6949 (3)0.3578 (2)0.1081 (12)
N10.4469 (3)0.5569 (2)0.85135 (19)0.0577 (9)
N21.0324 (4)0.6750 (3)0.4631 (3)0.0780 (12)
C10.2353 (4)0.4324 (3)0.8902 (2)0.0624 (11)
C20.2021 (4)0.3172 (3)0.8986 (2)0.0647 (12)
C30.3412 (5)0.2117 (3)0.8731 (3)0.0666 (12)
C40.5155 (4)0.2219 (3)0.8378 (3)0.0671 (12)
C50.5496 (4)0.3360 (3)0.8297 (2)0.0610 (11)
C60.4099 (4)0.4414 (3)0.8569 (2)0.0553 (11)
C70.1492 (5)0.0772 (4)0.9103 (4)0.1053 (17)
C80.6129 (4)0.5948 (3)0.8068 (2)0.0558 (11)
C90.5111 (4)0.7211 (3)0.8556 (3)0.0615 (11)
C100.3500 (5)0.6679 (3)0.8888 (3)0.0644 (11)
C110.6576 (4)0.6108 (3)0.6781 (2)0.0508 (10)
C120.8247 (4)0.6260 (3)0.6300 (2)0.0540 (11)
C130.8581 (4)0.6524 (3)0.5124 (3)0.0581 (11)
C140.7338 (4)0.6619 (3)0.4389 (3)0.0670 (11)
C150.5691 (4)0.6437 (3)0.4861 (3)0.0686 (14)
C160.5310 (4)0.6203 (3)0.6038 (2)0.0587 (11)
C170.6128 (5)0.8875 (3)0.7357 (3)0.0613 (11)
C180.7756 (5)0.8490 (3)0.7842 (3)0.0723 (14)
C190.9081 (5)0.9080 (4)0.7365 (3)0.0854 (17)
C200.8791 (6)1.0018 (4)0.6426 (4)0.0912 (17)
C210.7173 (6)1.0394 (4)0.5945 (3)0.0921 (19)
C220.5827 (5)0.9832 (3)0.6415 (3)0.0776 (14)
H10.140700.503500.906900.0750*
H20.085100.311200.921600.0780*
H40.609700.151200.819500.0800*
H50.666400.342200.806000.0730*
H7A0.103400.099200.985400.1580*
H7B0.158000.010000.912000.1580*
H7C0.067700.131000.854500.1580*
H80.718200.542100.848600.0670*
H90.563900.727600.922800.0740*
H120.913400.618200.677400.0650*
H140.759700.680200.359100.0800*
H150.483700.647400.437900.0820*
H160.418100.610500.634600.0700*
H180.796700.784300.848200.0870*
H191.017900.882900.769400.1020*
H200.968801.040300.610900.1100*
H210.697701.103200.529800.1110*
H220.472201.010300.609300.0930*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0952 (19)0.0874 (18)0.110 (2)0.0523 (15)0.0269 (15)0.0420 (15)
O20.0738 (17)0.0895 (18)0.0920 (18)0.0269 (13)0.0240 (14)0.0320 (14)
O30.0733 (15)0.0599 (14)0.0622 (14)0.0235 (11)0.0041 (11)0.0064 (11)
O40.0638 (18)0.150 (3)0.132 (3)0.0557 (18)0.0014 (17)0.002 (2)
O50.100 (2)0.125 (2)0.093 (2)0.0523 (17)0.0469 (16)0.0176 (17)
N10.0566 (16)0.0636 (17)0.0527 (15)0.0266 (13)0.0096 (12)0.0074 (13)
N20.066 (2)0.073 (2)0.089 (2)0.0289 (16)0.0230 (18)0.0109 (18)
C10.061 (2)0.068 (2)0.0576 (19)0.0229 (17)0.0046 (15)0.0116 (16)
C20.060 (2)0.082 (2)0.058 (2)0.0335 (19)0.0078 (15)0.0154 (18)
C30.078 (2)0.073 (2)0.058 (2)0.040 (2)0.0147 (17)0.0195 (17)
C40.071 (2)0.074 (2)0.060 (2)0.0284 (18)0.0115 (16)0.0220 (17)
C50.059 (2)0.072 (2)0.0531 (18)0.0277 (17)0.0127 (15)0.0139 (16)
C60.062 (2)0.063 (2)0.0427 (17)0.0280 (16)0.0036 (14)0.0046 (14)
C70.109 (3)0.104 (3)0.129 (3)0.072 (3)0.032 (3)0.045 (3)
C80.0566 (18)0.064 (2)0.0481 (17)0.0249 (16)0.0026 (14)0.0034 (15)
C90.073 (2)0.066 (2)0.0484 (17)0.0280 (17)0.0021 (15)0.0074 (16)
C100.067 (2)0.071 (2)0.0538 (19)0.0251 (18)0.0074 (16)0.0105 (17)
C110.0441 (16)0.0544 (18)0.0525 (17)0.0175 (14)0.0017 (13)0.0069 (14)
C120.0482 (18)0.0548 (18)0.0591 (19)0.0182 (14)0.0016 (14)0.0084 (15)
C130.0485 (18)0.0530 (18)0.068 (2)0.0188 (14)0.0132 (15)0.0084 (16)
C140.068 (2)0.075 (2)0.0521 (19)0.0229 (18)0.0069 (16)0.0058 (16)
C150.064 (2)0.090 (3)0.056 (2)0.0313 (19)0.0026 (16)0.0112 (18)
C160.0503 (18)0.072 (2)0.0570 (19)0.0273 (16)0.0007 (14)0.0085 (16)
C170.074 (2)0.057 (2)0.0542 (19)0.0249 (17)0.0033 (16)0.0115 (16)
C180.087 (3)0.072 (2)0.065 (2)0.036 (2)0.0066 (19)0.0086 (18)
C190.092 (3)0.086 (3)0.087 (3)0.044 (2)0.000 (2)0.013 (2)
C200.109 (3)0.081 (3)0.089 (3)0.049 (3)0.020 (3)0.016 (2)
C210.120 (4)0.067 (3)0.075 (3)0.030 (3)0.014 (3)0.004 (2)
C220.093 (3)0.067 (2)0.061 (2)0.018 (2)0.0005 (19)0.0004 (18)
Geometric parameters (Å, º) top
O1—C31.361 (4)C15—C161.370 (4)
O1—C71.420 (5)C17—C181.377 (6)
O2—C101.208 (5)C17—C221.371 (5)
O3—C91.403 (4)C18—C191.390 (6)
O3—C171.390 (5)C19—C201.356 (6)
O4—N21.207 (5)C20—C211.369 (7)
O5—N21.223 (4)C21—C221.383 (6)
N1—C61.410 (4)C1—H10.9300
N1—C81.478 (4)C2—H20.9300
N1—C101.361 (4)C4—H40.9300
N2—C131.471 (5)C5—H50.9300
C1—C21.386 (5)C7—H7A0.9600
C1—C61.386 (5)C7—H7B0.9600
C2—C31.377 (5)C7—H7C0.9600
C3—C41.392 (5)C8—H80.9800
C4—C51.378 (5)C9—H90.9800
C5—C61.384 (5)C12—H120.9300
C8—C91.571 (5)C14—H140.9300
C8—C111.500 (3)C15—H150.9300
C9—C101.525 (5)C16—H160.9300
C11—C121.386 (5)C18—H180.9300
C11—C161.389 (4)C19—H190.9300
C12—C131.367 (4)C20—H200.9300
C13—C141.368 (5)C21—H210.9300
C14—C151.378 (5)C22—H220.9300
O1···O3i3.219 (3)C5···H9vii2.9400
O1···C17i3.234 (4)C5···H83.0800
O1···C22i3.414 (4)C6···H162.9200
O2···O33.155 (3)C6···H9vii2.8900
O2···C13.125 (4)C7···H22.5500
O3···C163.348 (4)C8···H183.0900
O3···O1ii3.219 (3)C8···H52.7400
O3···O23.155 (3)C9···H182.5300
O3···N13.129 (3)C10···H12.8000
O4···C15iii3.239 (5)C11···H53.0700
O4···C16iii3.164 (5)C15···H21ix2.9200
O5···C12iv3.414 (5)C18···H92.6400
O2···H7Av2.8500C18···H122.9500
O2···H19vi2.6800C20···H4ii3.0800
O2···H2v2.5900C21···H4ii3.0800
O2···H12.5300C22···H22ix3.0600
O4···H122.4100H1···O22.5300
O4···H16iii2.5200H1···C102.8000
O4···H15iii2.6900H2···C72.5500
O5···H142.4200H2···H7A2.3200
O5···H5iv2.6200H2···H7C2.3800
N1···O33.129 (3)H2···O2v2.5900
N1···H162.5500H4···C20i3.0800
C1···O23.125 (4)H4···C21i3.0800
C5···C10vii3.541 (4)H5···C82.7400
C5···C113.524 (4)H5···C113.0700
C6···C9vii3.562 (4)H5···H82.5800
C6···C163.432 (4)H5···O5iv2.6200
C6···C10vii3.585 (5)H7A···C22.7600
C7···C7viii3.533 (6)H7A···H22.3200
C8···C183.440 (5)H7A···O2v2.8500
C9···C6vii3.562 (4)H7A···H7Bviii2.5800
C10···C6vii3.585 (5)H7B···H7Aviii2.5800
C10···C5vii3.541 (4)H7C···C22.8000
C10···C163.539 (4)H7C···H22.3800
C11···C173.234 (5)H8···C53.0800
C11···C53.524 (4)H8···H52.5800
C12···C183.307 (5)H8···H122.5100
C12···C173.280 (5)H9···C182.6400
C12···O5iv3.414 (5)H9···H182.1200
C13···C13iv3.477 (5)H9···C1vii2.8600
C15···C21ix3.567 (5)H9···C2vii2.8700
C15···O4vi3.239 (5)H9···C3vii2.9100
C16···O33.348 (4)H9···C4vii2.9500
C16···C63.432 (4)H9···C5vii2.9400
C16···C103.539 (4)H9···C6vii2.8900
C16···O4vi3.164 (5)H12···O42.4100
C17···C123.280 (5)H12···C182.9500
C17···O1ii3.234 (4)H12···H82.5100
C17···C113.234 (5)H14···O52.4200
C18···C83.440 (5)H14···C2x3.0200
C18···C123.307 (5)H14···C3x2.8900
C21···C15ix3.567 (5)H15···O4vi2.6900
C22···O1ii3.414 (4)H16···O4vi2.5200
C1···H9vii2.8600H16···N12.5500
C2···H7C2.8000H16···C62.9200
C2···H18vii2.9800H18···C83.0900
C2···H14x3.0200H18···C92.5300
C2···H9vii2.8700H18···H92.1200
C2···H7A2.7600H18···C2vii2.9800
C3···H14x2.8900H19···O2iii2.6800
C3···H9vii2.9100H21···C15ix2.9200
C4···H9vii2.9500H22···C22ix3.0600
C3—O1—C7118.6 (3)C19—C20—C21119.7 (4)
C9—O3—C17116.9 (3)C20—C21—C22120.5 (4)
C6—N1—C8130.9 (2)C17—C22—C21119.8 (4)
C6—N1—C10133.3 (3)C2—C1—H1120.00
C8—N1—C1095.8 (2)C6—C1—H1120.00
O4—N2—O5123.3 (4)C1—C2—H2120.00
O4—N2—C13118.4 (3)C3—C2—H2120.00
O5—N2—C13118.2 (3)C3—C4—H4120.00
C2—C1—C6119.9 (3)C5—C4—H4120.00
C1—C2—C3120.4 (3)C4—C5—H5120.00
O1—C3—C2125.4 (3)C6—C5—H5120.00
O1—C3—C4115.2 (3)O1—C7—H7A109.00
C2—C3—C4119.4 (3)O1—C7—H7B109.00
C3—C4—C5120.5 (3)O1—C7—H7C109.00
C4—C5—C6119.9 (3)H7A—C7—H7B109.00
N1—C6—C1120.6 (3)H7A—C7—H7C110.00
N1—C6—C5119.6 (3)H7B—C7—H7C109.00
C1—C6—C5119.9 (3)N1—C8—H8112.00
N1—C8—C986.1 (2)C9—C8—H8112.00
N1—C8—C11115.7 (2)C11—C8—H8112.00
C9—C8—C11115.3 (3)O3—C9—H9113.00
O3—C9—C8116.7 (3)C8—C9—H9113.00
O3—C9—C10112.6 (3)C10—C9—H9113.00
C8—C9—C1085.8 (2)C11—C12—H12120.00
O2—C10—N1131.9 (3)C13—C12—H12120.00
O2—C10—C9135.9 (3)C13—C14—H14121.00
N1—C10—C992.2 (3)C15—C14—H14121.00
C8—C11—C12119.8 (3)C14—C15—H15120.00
C8—C11—C16121.9 (3)C16—C15—H15120.00
C12—C11—C16118.2 (2)C11—C16—H16119.00
C11—C12—C13119.5 (3)C15—C16—H16119.00
N2—C13—C12118.7 (3)C17—C18—H18120.00
N2—C13—C14118.7 (3)C19—C18—H18120.00
C12—C13—C14122.5 (3)C18—C19—H19120.00
C13—C14—C15118.3 (3)C20—C19—H19120.00
C14—C15—C16120.2 (3)C19—C20—H20120.00
C11—C16—C15121.4 (3)C21—C20—H20120.00
O3—C17—C18124.4 (3)C20—C21—H21120.00
O3—C17—C22115.6 (3)C22—C21—H21120.00
C18—C17—C22120.0 (4)C17—C22—H22120.00
C17—C18—C19119.3 (3)C21—C22—H22120.00
C18—C19—C20120.7 (4)
C7—O1—C3—C4177.8 (3)C4—C5—C6—N1178.3 (3)
C7—O1—C3—C22.1 (5)C9—C8—C11—C1292.0 (4)
C17—O3—C9—C10177.7 (3)N1—C8—C11—C1615.1 (4)
C9—O3—C17—C22168.1 (3)N1—C8—C11—C12169.7 (3)
C17—O3—C9—C880.8 (3)N1—C8—C9—O3116.3 (3)
C9—O3—C17—C1810.9 (4)N1—C8—C9—C103.0 (2)
C6—N1—C10—O24.2 (6)C9—C8—C11—C1683.2 (4)
C6—N1—C8—C9173.9 (3)C11—C8—C9—O30.4 (4)
C10—N1—C8—C93.4 (2)C11—C8—C9—C10113.7 (3)
C8—N1—C6—C1172.3 (2)C8—C9—C10—N13.2 (2)
C8—N1—C10—O2178.7 (4)C8—C9—C10—O2179.0 (4)
C8—N1—C10—C93.4 (2)O3—C9—C10—N1120.5 (3)
C8—N1—C6—C58.2 (4)O3—C9—C10—O261.8 (5)
C10—N1—C8—C11113.0 (3)C12—C11—C16—C150.2 (5)
C6—N1—C8—C1169.8 (4)C16—C11—C12—C131.5 (5)
C10—N1—C6—C5168.0 (3)C8—C11—C16—C15175.4 (3)
C6—N1—C10—C9173.7 (3)C8—C11—C12—C13173.9 (3)
C10—N1—C6—C111.5 (4)C11—C12—C13—N2176.8 (3)
O5—N2—C13—C12177.9 (3)C11—C12—C13—C141.5 (5)
O4—N2—C13—C14176.2 (3)N2—C13—C14—C15178.4 (3)
O5—N2—C13—C143.8 (5)C12—C13—C14—C150.2 (5)
O4—N2—C13—C122.2 (5)C13—C14—C15—C161.8 (5)
C2—C1—C6—N1178.1 (2)C14—C15—C16—C111.8 (5)
C2—C1—C6—C51.4 (4)O3—C17—C18—C19178.8 (3)
C6—C1—C2—C30.6 (4)C22—C17—C18—C190.1 (5)
C1—C2—C3—O1179.6 (3)O3—C17—C22—C21178.1 (3)
C1—C2—C3—C40.5 (5)C18—C17—C22—C211.0 (5)
O1—C3—C4—C5179.4 (3)C17—C18—C19—C200.6 (6)
C2—C3—C4—C50.8 (5)C18—C19—C20—C210.4 (6)
C3—C4—C5—C60.1 (5)C19—C20—C21—C220.5 (6)
C4—C5—C6—C11.2 (4)C20—C21—C22—C171.2 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x, y+1, z+2; (vi) x1, y, z; (vii) x+1, y+1, z+2; (viii) x, y, z+2; (ix) x+1, y+2, z+1; (x) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.533.125 (4)122
C2—H2···O2v0.932.593.464 (4)156
C16—H16···O4vi0.932.523.164 (5)126
C16—H16···N10.932.552.898 (3)103
C4—H4···Cg4i0.932.893.716 (4)149
C9—H9···Cg2vii0.982.553.463 (4)154
Symmetry codes: (i) x, y1, z; (v) x, y+1, z+2; (vi) x1, y, z; (vii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC22H18N2O5
Mr390.38
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.7934 (4), 11.2813 (3), 11.8818 (2)
α, β, γ (°)77.771 (4), 80.948 (5), 71.052 (4)
V3)961.18 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.981, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
3928, 3928, 1872
Rint0.104
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.01
No. of reflections3927
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.533.125 (4)122
C2—H2···O2i0.932.593.464 (4)156
C16—H16···O4ii0.932.523.164 (5)126
C4—H4···Cg4iii0.932.893.716 (4)149
C9—H9···Cg2iv0.982.553.463 (4)154
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z+2.
The dihedral angles (°) between the mean planes of the rings in (I) top
Ring 2Ring 3Ring 4
Ring 111.61 (19)74.5 (2)72.3 (2)
Ring 284.98 (15)60.96 (16)
Ring 336.22 (17)
Ring 1 is the N1/C8–C10 β-lactam ring, Ring 2 is the C1–C6 benzene ring, Ring 3 is the C11–C16 benzene ring and Ring 4 is the C17–C22 benzene ring.
 

Acknowledgements

ZB and MA thank the Unit of the Scientific Research Projects of Erciyes University, Turkey for the research grant FBD-10–2949 and for support of the data collection at Atatürk University, Turkey. AJ and RH also thank the Shiraz University Research Council for financial support (grant No. 89-GR—SC-23).

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866–o868.  CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErcan, F., Ülkü, D. & Güner, V. (1996a). Acta Cryst. C52, 1779–1780.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErcan, F., Ülkü, D. & Güner, V. (1996b). Z. Kristallogr. 211, 735–736.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJubie, S., Gowramma, B., Muthal, N. K., Kalirajan, R., Gomathi, S. & Elango, K. (2009). Int. J. ChemTech Res. 1, 153–157.  CAS Google Scholar
First citationKabak, M., Elerman, Y., Güner, V., Yildirir, S. & Durlu, T. N. (1999). Acta Cryst. C55, 1511–1512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVatmurge, N. S., Hazra, B. G., Pore, V. S., Shirazi, F., Chavan, P. S. & Deshpande, M. W. (2008). Bioorg. Med. Chem. Lett. 18, 2043–2047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVon Nussbaum, F., Brands, M., Hinzen, B., Weigand, S. & Häbich, D. (2006). Angew. Chem. Int. Ed. 45, 5072–5129.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o537-o538
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds