organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(cyclo­hexylammonium) 2,2′-disulfanediyldibenzoate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 9 December 2010; accepted 24 December 2010; online 12 January 2011)

In the title molecular salt, 2C6H14N+·C14H8O4S22−, the complete dianion is generated by crystallographic twofold symmetry and a twisted conformation is found [the C—S—S—C torsion angle is 87.13 (2)° and the dihedral angle between the rings is 83.4 (2)°]. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the cations and anions.

Related literature

For the design and synthesis of novel coordination architectures, see: Sato et al. (1996[Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 271, 49-51.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardon, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H14N+·C14H8O4S22−

  • Mr = 504.69

  • Tetragonal, [I \overline 4]

  • a = 11.6411 (15) Å

  • c = 20.105 (3) Å

  • V = 2724.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.48 × 0.46 × 0.42 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 0.910

  • 5632 measured reflections

  • 2394 independent reflections

  • 1398 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.05

  • 2394 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1153 Friedel pairs

  • Flack parameter: −0.07 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.89 1.91 2.785 (5) 167
N1—H1A⋯O1i 0.89 1.96 2.841 (5) 172
N1—H1B⋯O2ii 0.89 1.84 2.723 (5) 175
Symmetry codes: (i) y, -x+1, -z+2; (ii) -x+1, -y+1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of novel coordination architectures has resulted in a great number of research efforts, due not only to their intriguing structural topologies, but also to their unexpected properties as functional materials (Sato et al., 1996; Yaghi et al., 1998). The main strategy popularly used in this area is the building–block approach. 2,2'–Dithiodibenzoic acid is a good choice in the design of novel coordination architectures, since its four coordination sites are likely to engage in coordination to metal ions. We report here the crystal structure, of new salt of 2,2-dithiodisalicylate with cyclohexylammonium cation. The title compound, (I) is composed of 2,2-dithiodisalicylate and cyclohexylammonium ions, in a ratio of 1:2; the asymmetric unit consists of one-half molecule of the 2,2-dithiodisalicylate and one cyclohexylammonium cation. A twofold axis of symmetry passes through the centre of the S—S bond. A twisted conformation is found for the anion [the C—S—S—C torsion angle is 87.13 (2)° and the dihedral angle between the rings is 83.4 (2)°]. There are two N—H···O intermolecular and one intramolecular hydrogen bonds, (Fig. 2 and Table 2).

Related literature top

For the design and synthesis of novel coordination architectures, see: Sato et al. (1996); Yaghi et al. (1998).

Experimental top

The reaction was carried out under nitrogen atmosphere. 2,2'–Dithiodibenzoic acid (0.5 mmol) was dissolved in 10 ml methanol, and a solution of cyclohexylamine (1.0 mmol) in 20 ml toluene was added dropwise under intense agitation. The mixture was placed in air at room temperature. Suitable for X-ray analysis were obtained by slow evaporation of acetone solution over a period of two weeks. Analysis, calculated for [(C14H8O4S2)2-.2(C6H14N)+ (Mr = 504.69): C 61.87, N 5.55, H 7.19%; found: C 61.82, N 5.50, H 7.15%.

Refinement top

The H atoms were positioned geometrically with aromatic C—H distances of 0.93 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The H atoms were positioned geometrically with cyclohexylamine C—H distances of 0.97 Å and refined as riding on their parent atoms, with Uiso(H) = 1.5 Ueq(C). The N—H distance is 0.89 Å with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. (#1 - x + 1,-y + 2,z)
[Figure 2] Fig. 2. The crystal packing, linked by N—H···O hydrogen bonds. (#2 y,-x + 1,-z + 2 #3 - x + 1,-y + 1,z)
Bis(cyclohexylammonium) 2,2'-disulfanediyldibenzoate top
Crystal data top
2C6H14N+·C14H8O4S22Dx = 1.230 Mg m3
Mr = 504.69Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 1336 reflections
Hall symbol: I -4θ = 3.2–18.6°
a = 11.6411 (15) ŵ = 0.23 mm1
c = 20.105 (3) ÅT = 298 K
V = 2724.6 (6) Å3Block, colourless
Z = 40.48 × 0.46 × 0.42 mm
F(000) = 1080
Data collection top
Bruker SMART
diffractometer
2394 independent reflections
Radiation source: fine-focus sealed tube1398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 137
Tmin = 0.898, Tmax = 0.910k = 1213
5632 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0468P)2 + 1.0167P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2394 reflectionsΔρmax = 0.17 e Å3
155 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1153 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (12)
Crystal data top
2C6H14N+·C14H8O4S22Z = 4
Mr = 504.69Mo Kα radiation
Tetragonal, I4µ = 0.23 mm1
a = 11.6411 (15) ÅT = 298 K
c = 20.105 (3) Å0.48 × 0.46 × 0.42 mm
V = 2724.6 (6) Å3
Data collection top
Bruker SMART
diffractometer
2394 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1398 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.910Rint = 0.036
5632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.17 e Å3
S = 1.05Δρmin = 0.17 e Å3
2394 reflectionsAbsolute structure: Flack (1983), 1153 Friedel pairs
155 parametersAbsolute structure parameter: 0.07 (12)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6618 (3)0.6089 (3)0.93400 (16)0.0705 (10)
H1A0.67730.59040.97600.106*
H1B0.65740.54540.90960.106*
H1C0.59510.64620.93220.106*
O10.4378 (3)0.6925 (2)0.92848 (17)0.0819 (9)
O20.3371 (4)0.5845 (3)0.8579 (2)0.1379 (17)
S10.48337 (10)0.91347 (10)0.91518 (6)0.0769 (4)
C10.3688 (5)0.6790 (4)0.8808 (3)0.0799 (14)
C20.3236 (3)0.7842 (3)0.8463 (2)0.0575 (11)
C30.3708 (4)0.8932 (3)0.85641 (19)0.0572 (10)
C40.3259 (4)0.9841 (4)0.8194 (2)0.0729 (13)
H40.35871.05660.82350.088*
C50.2343 (5)0.9691 (4)0.7772 (2)0.0786 (13)
H50.20451.03180.75430.094*
C60.1871 (4)0.8638 (5)0.7687 (2)0.0757 (13)
H60.12440.85420.74060.091*
C70.2327 (4)0.7705 (4)0.8022 (2)0.0691 (12)
H70.20220.69770.79500.083*
C80.7554 (4)0.6845 (3)0.9074 (2)0.0643 (11)
H80.72670.72210.86710.077*
C90.7850 (4)0.7765 (4)0.9571 (2)0.0739 (13)
H9A0.80720.74120.99890.089*
H9B0.71820.82420.96520.089*
C100.8830 (4)0.8502 (4)0.9313 (3)0.0922 (16)
H10A0.85790.89140.89190.111*
H10B0.90400.90630.96480.111*
C110.9852 (4)0.7788 (5)0.9145 (3)0.1032 (17)
H11A1.01380.74180.95440.124*
H11B1.04570.82750.89700.124*
C120.9542 (5)0.6881 (5)0.8633 (3)0.110 (2)
H12A1.02080.64050.85420.132*
H12B0.93140.72500.82210.132*
C130.8565 (4)0.6133 (5)0.8887 (3)0.0919 (16)
H13A0.83440.55910.85440.110*
H13B0.88230.57000.92710.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (2)0.059 (2)0.091 (3)0.0040 (17)0.0074 (19)0.0104 (19)
O10.070 (2)0.076 (2)0.100 (2)0.0034 (17)0.002 (2)0.0247 (19)
O20.186 (4)0.051 (2)0.177 (4)0.026 (3)0.053 (3)0.031 (3)
S10.0775 (8)0.0692 (8)0.0839 (7)0.0112 (7)0.0063 (7)0.0131 (7)
C10.075 (3)0.055 (3)0.110 (4)0.011 (3)0.018 (3)0.016 (3)
C20.056 (3)0.049 (2)0.067 (3)0.004 (2)0.019 (2)0.007 (2)
C30.057 (3)0.052 (3)0.062 (2)0.000 (2)0.016 (2)0.005 (2)
C40.086 (3)0.050 (3)0.083 (3)0.005 (2)0.008 (3)0.010 (2)
C50.091 (4)0.073 (4)0.072 (3)0.006 (3)0.005 (3)0.007 (3)
C60.084 (4)0.082 (4)0.061 (3)0.008 (3)0.005 (2)0.001 (3)
C70.071 (3)0.066 (3)0.070 (3)0.015 (2)0.013 (3)0.005 (2)
C80.062 (3)0.063 (3)0.068 (3)0.005 (2)0.000 (2)0.003 (2)
C90.059 (3)0.063 (3)0.099 (3)0.003 (2)0.006 (2)0.025 (3)
C100.088 (4)0.073 (3)0.115 (4)0.023 (3)0.010 (3)0.014 (3)
C110.064 (3)0.122 (5)0.123 (4)0.025 (3)0.012 (3)0.024 (4)
C120.078 (4)0.131 (5)0.121 (4)0.011 (4)0.027 (3)0.034 (4)
C130.074 (3)0.084 (3)0.118 (4)0.003 (3)0.019 (3)0.035 (3)
Geometric parameters (Å, º) top
N1—C81.499 (5)C7—H70.9300
N1—H1A0.8900C8—C131.488 (6)
N1—H1B0.8900C8—C91.504 (6)
N1—H1C0.8900C8—H80.9800
O1—C11.260 (5)C9—C101.520 (6)
O2—C11.248 (6)C9—H9A0.9700
S1—C31.780 (4)C9—H9B0.9700
S1—S1i2.051 (2)C10—C111.490 (7)
C1—C21.503 (6)C10—H10A0.9700
C2—C71.390 (6)C10—H10B0.9700
C2—C31.397 (5)C11—C121.518 (7)
C3—C41.396 (5)C11—H11A0.9700
C4—C51.374 (6)C11—H11B0.9700
C4—H40.9300C12—C131.521 (7)
C5—C61.355 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.383 (6)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C8—N1—H1A109.5N1—C8—H8108.0
C8—N1—H1B109.5C9—C8—H8108.0
H1A—N1—H1B109.5C8—C9—C10110.3 (4)
C8—N1—H1C109.5C8—C9—H9A109.6
H1A—N1—H1C109.5C10—C9—H9A109.6
H1B—N1—H1C109.5C8—C9—H9B109.6
C3—S1—S1i105.63 (14)C10—C9—H9B109.6
O2—C1—O1125.4 (5)H9A—C9—H9B108.1
O2—C1—C2116.3 (5)C11—C10—C9111.2 (4)
O1—C1—C2118.2 (4)C11—C10—H10A109.4
C7—C2—C3119.8 (4)C9—C10—H10A109.4
C7—C2—C1117.9 (4)C11—C10—H10B109.4
C3—C2—C1122.3 (4)C9—C10—H10B109.4
C4—C3—C2117.6 (4)H10A—C10—H10B108.0
C4—C3—S1121.9 (3)C10—C11—C12110.6 (4)
C2—C3—S1120.5 (3)C10—C11—H11A109.5
C5—C4—C3121.6 (4)C12—C11—H11A109.5
C5—C4—H4119.2C10—C11—H11B109.5
C3—C4—H4119.2C12—C11—H11B109.5
C6—C5—C4120.5 (5)H11A—C11—H11B108.1
C6—C5—H5119.7C11—C12—C13110.4 (4)
C4—C5—H5119.7C11—C12—H12A109.6
C5—C6—C7119.6 (5)C13—C12—H12A109.6
C5—C6—H6120.2C11—C12—H12B109.6
C7—C6—H6120.2C13—C12—H12B109.6
C6—C7—C2120.8 (4)H12A—C12—H12B108.1
C6—C7—H7119.6C8—C13—C12111.0 (4)
C2—C7—H7119.6C8—C13—H13A109.4
C13—C8—N1109.8 (4)C12—C13—H13A109.4
C13—C8—C9112.5 (4)C8—C13—H13B109.4
N1—C8—C9110.3 (3)C12—C13—H13B109.4
C13—C8—H8108.0H13A—C13—H13B108.0
O2—C1—C2—C713.8 (6)C4—C5—C6—C70.9 (7)
O1—C1—C2—C7168.7 (4)C5—C6—C7—C22.4 (7)
O2—C1—C2—C3165.3 (5)C3—C2—C7—C60.9 (6)
O1—C1—C2—C312.3 (6)C1—C2—C7—C6180.0 (4)
C7—C2—C3—C42.0 (6)C13—C8—C9—C1054.8 (6)
C1—C2—C3—C4177.0 (4)N1—C8—C9—C10177.8 (4)
C7—C2—C3—S1177.4 (3)C8—C9—C10—C1155.9 (6)
C1—C2—C3—S13.5 (5)C9—C10—C11—C1257.7 (6)
S1i—S1—C3—C42.2 (4)C10—C11—C12—C1357.1 (7)
S1i—S1—C3—C2177.2 (3)N1—C8—C13—C12178.4 (4)
C2—C3—C4—C53.6 (6)C9—C8—C13—C1255.1 (6)
S1—C3—C4—C5175.9 (4)C11—C12—C13—C855.5 (6)
C3—C4—C5—C62.1 (7)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.891.912.785 (5)167
N1—H1A···O1ii0.891.962.841 (5)172
N1—H1B···O2iii0.891.842.723 (5)175
Symmetry codes: (ii) y, x+1, z+2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula2C6H14N+·C14H8O4S22
Mr504.69
Crystal system, space groupTetragonal, I4
Temperature (K)298
a, c (Å)11.6411 (15), 20.105 (3)
V3)2724.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.48 × 0.46 × 0.42
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.898, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
5632, 2394, 1398
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.05
No. of reflections2394
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack (1983), 1153 Friedel pairs
Absolute structure parameter0.07 (12)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.891.912.785 (5)167
N1—H1A···O1i0.891.962.841 (5)172
N1—H1B···O2ii0.891.842.723 (5)175
Symmetry codes: (i) y, x+1, z+2; (ii) x+1, y+1, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (20771053), the National Basic Research Program (No. 2010CB234601) and the Natural Science Foundation of Shandong Province (Y2008B48) for financial support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. (1996). Science, 271, 49–51.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardon, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds