metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Pyridinium-3-yl)tetra­zol-1-ide hexa­aqua­magnesium dichloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 11 December 2010; accepted 25 December 2010; online 15 January 2011)

In the title compound, (C6H5N5)2[Mg(H2O)6]Cl2, the asymmetric unit contains one zwitterionic 5-(pyridinium-3-yl)tetra­zol-1-ide mol­ecule, one half of an [Mg(H2O)6]2+ cation ([\overline{1}] symmetry) and one chloride ion. The MgII ion is surrounded by six water mol­ecules, with their O atoms located at the apices, exhibiting a slightly distorted octa­hedral coordination. Mg—O bond lengths range from 2.0526 (14) to 2.0965 (16) Å [mean value = 2.068 Å]. The pyridine and tetra­zole rings are nearly coplanar and only twisted from each other by a dihedral angle of 5.68 (1)°. The zwitterionic organic mol­ecules, anions and cations are connected by O—H⋯Cl, O—H⋯N and N—H⋯Cl hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For tetra­zole derivatives, see: Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]). For the crystal structures and properties of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H5N5)2[Mg(H2O)6]Cl2

  • Mr = 497.61

  • Triclinic, [P \overline 1]

  • a = 7.4354 (15) Å

  • b = 8.4232 (17) Å

  • c = 9.5817 (19) Å

  • α = 94.06 (3)°

  • β = 90.71 (3)°

  • γ = 110.67 (3)°

  • V = 559.60 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.89, Tmax = 0.95

  • 5836 measured reflections

  • 2552 independent reflections

  • 2086 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.09

  • 2552 reflections

  • 142 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N4i 0.85 1.90 2.737 (2) 169
O1W—H1WB⋯Cl1ii 0.85 2.34 3.1848 (17) 174
O2W—H2WA⋯N5iii 0.85 1.94 2.775 (2) 167
O2W—H2WB⋯Cl1iv 0.85 2.46 3.2764 (19) 163
N1—H1A⋯Cl1iv 0.86 2.25 3.088 (2) 165
O3W—H3WA⋯N2 0.85 1.89 2.735 (2) 177
O3W—H3WB⋯Cl1 0.85 2.34 3.1822 (17) 172
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z; (iii) x, y, z+1; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazole compounds have attracted more attention as phase transition dielectric materials for its application in micro-electronics, memory storage. With the purpose of obtaining phase transition crystals of 3-(1H-tetrazol-5-yl)pyridine compounds, its interaction with various metal ions has been studied and a series of new materials have been elaborated with this organic molecule (Zhao et al., 2008; Fu et al., 2008; Fu et al., 2007; Fu & Xiong 2008). In this paper, we describe the crystal structure of the title compound, 3-(pyridinium-5-yl)tetrazol-1-ide hexaaquamagnesium(II) dichloride.

In the title compound, (C6H5N5)2.[Mg(H2O)6]2+.2Cl, the asymmetric unit consists of one zwitterionic 3-(pyridinium-5-yl)tetrazol-1-ide molecule, one half of an [Mg(H2O)6]2+ cation ( 1 symmetry) and one chloride ion. The magnesium(II) ion is surrounded by six water molecules with their O atoms located at the apices exhibiting a slightly distorted octahedral coordination. Mg—O bond distances range from 2.0526 (14) to 2.0965 (16)Å (mean value 2.0681 (15)Å). In the zwitterionic organic molecules, the pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 5.68 (1)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Zhao et al., 2008; Fu et al., 2009).

In crystal structure, the complex cations [Mg(H2O)6]2+ and Cl- anions are linked through O–H···Cl H-bonds into broad infinite cation-anion sheet parallel to the (0 0 1) plane. The two-dimensional sheets are linked by organic molecules through O—H···N and N—H···Cl H-bonds into a three-dimensional framework (Table 1 and Fig.2).

Related literature top

For tetrazole derivatives, see: Zhao et al. (2008); Fu et al. (2008, 2009). For the crystal structures and properties of related compounds, see: Fu et al. (2007, 2009); Fu & Xiong (2008).

Experimental top

MgCl2.6H2O (2 mmol) and 3-(1H-tetrazol-5-yl)pyridine (2 mmol, 0.528 g) were dissolved in 70% methanol aqueous solution, and them 2 ml HBr was added. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of the solution at room temperature after two weeks.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) and N–H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). All aqueous hydrogen atoms were calculated geometrically, O–H = 0.85 Å and were refined using a riding model and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the three-dimensional hydrogen-bonded network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
5-(Pyridinium-3-yl)tetrazol-1-ide hexaaquamagnesium dichloride top
Crystal data top
(C6H5N5)2[Mg(H2O)6]Cl2Z = 1
Mr = 497.61F(000) = 258
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4354 (15) ÅCell parameters from 2552 reflections
b = 8.4232 (17) Åθ = 3.2–27.5°
c = 9.5817 (19) ŵ = 0.37 mm1
α = 94.06 (3)°T = 298 K
β = 90.71 (3)°Block, colourless
γ = 110.67 (3)°0.40 × 0.05 × 0.05 mm
V = 559.60 (19) Å3
Data collection top
Rigaku SCXmini
diffractometer
2552 independent reflections
Radiation source: fine-focus sealed tube2086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.89, Tmax = 0.95l = 1212
5836 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.1577P]
where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.27 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
(C6H5N5)2[Mg(H2O)6]Cl2γ = 110.67 (3)°
Mr = 497.61V = 559.60 (19) Å3
Triclinic, P1Z = 1
a = 7.4354 (15) ÅMo Kα radiation
b = 8.4232 (17) ŵ = 0.37 mm1
c = 9.5817 (19) ÅT = 298 K
α = 94.06 (3)°0.40 × 0.05 × 0.05 mm
β = 90.71 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2552 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2086 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.95Rint = 0.029
5836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0416 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.09Δρmax = 0.27 e Å3
2552 reflectionsΔρmin = 0.25 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.50000.50000.0313 (2)
O1W0.0599 (2)0.69394 (16)0.36976 (13)0.0459 (4)
H1WA0.01130.67750.28690.069*
H1WB0.12280.79980.38590.069*
O2W0.2487 (2)0.64382 (19)0.62087 (14)0.0528 (4)
H2WA0.27660.62380.70250.079*
H2WB0.35310.71630.59610.079*
N20.2278 (2)0.46353 (18)0.10243 (15)0.0317 (3)
C60.3333 (2)0.5845 (2)0.02382 (17)0.0263 (3)
C20.4917 (2)0.7372 (2)0.07879 (18)0.0299 (4)
N30.1006 (2)0.34796 (18)0.01273 (16)0.0357 (3)
N40.1310 (2)0.39758 (19)0.11389 (16)0.0362 (4)
N50.2776 (2)0.54786 (18)0.11105 (15)0.0336 (3)
O3W0.1562 (2)0.3929 (2)0.37477 (15)0.0565 (4)
H3WA0.18240.41490.29060.085*
H3WB0.19340.31130.39140.085*
C30.6097 (3)0.8510 (2)0.0093 (2)0.0370 (4)
H30.58790.83150.10580.044*
C10.5289 (3)0.7704 (2)0.2209 (2)0.0416 (5)
H10.45200.69690.28210.050*
N10.6760 (3)0.9086 (2)0.2710 (2)0.0528 (5)
H1A0.69780.92680.36020.063*
C40.7593 (3)0.9931 (2)0.0469 (3)0.0490 (5)
H40.83791.06970.01170.059*
C50.7908 (3)1.0201 (3)0.1877 (3)0.0543 (6)
H50.89121.11510.22640.065*
Cl10.31120 (8)0.08959 (6)0.40654 (6)0.05028 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0380 (5)0.0285 (4)0.0220 (4)0.0051 (3)0.0002 (3)0.0023 (3)
O1W0.0647 (9)0.0284 (7)0.0290 (7)0.0025 (6)0.0112 (6)0.0042 (5)
O2W0.0463 (8)0.0564 (9)0.0343 (7)0.0092 (7)0.0087 (6)0.0112 (6)
N20.0320 (7)0.0299 (7)0.0284 (7)0.0051 (6)0.0011 (6)0.0025 (6)
C60.0244 (8)0.0257 (8)0.0266 (8)0.0066 (6)0.0011 (6)0.0009 (6)
C20.0260 (8)0.0260 (8)0.0358 (9)0.0079 (7)0.0005 (7)0.0019 (7)
N30.0304 (8)0.0296 (8)0.0405 (9)0.0030 (6)0.0007 (6)0.0004 (6)
N40.0322 (8)0.0347 (8)0.0363 (8)0.0065 (6)0.0073 (6)0.0022 (6)
N50.0328 (8)0.0335 (8)0.0285 (8)0.0043 (6)0.0026 (6)0.0032 (6)
O3W0.0863 (12)0.0675 (10)0.0347 (8)0.0479 (9)0.0192 (8)0.0157 (7)
C30.0323 (9)0.0317 (9)0.0450 (11)0.0082 (8)0.0038 (8)0.0052 (8)
C10.0380 (10)0.0383 (10)0.0391 (10)0.0037 (8)0.0024 (8)0.0062 (8)
N10.0490 (10)0.0494 (11)0.0477 (10)0.0071 (8)0.0102 (8)0.0201 (8)
C40.0358 (10)0.0284 (10)0.0754 (16)0.0023 (8)0.0065 (10)0.0041 (9)
C50.0372 (11)0.0329 (11)0.0798 (17)0.0004 (9)0.0046 (11)0.0158 (10)
Cl10.0557 (3)0.0341 (3)0.0536 (3)0.0067 (2)0.0008 (2)0.0045 (2)
Geometric parameters (Å, º) top
Mg1—O1W2.0526 (14)C2—C31.393 (3)
Mg1—O1Wi2.0526 (14)N3—N41.308 (2)
Mg1—O3Wi2.0552 (15)N4—N51.346 (2)
Mg1—O3W2.0552 (15)O3W—H3WA0.8500
Mg1—O2W2.0965 (16)O3W—H3WB0.8499
Mg1—O2Wi2.0965 (16)C3—C41.383 (3)
O1W—H1WA0.8500C3—H30.9300
O1W—H1WB0.8499C1—N11.338 (2)
O2W—H2WA0.8500C1—H10.9300
O2W—H2WB0.8499N1—C51.344 (3)
N2—C61.334 (2)N1—H1A0.8600
N2—N31.339 (2)C4—C51.356 (3)
C6—N51.333 (2)C4—H40.9300
C6—C21.462 (2)C5—H50.9300
C2—C11.375 (3)
O1W—Mg1—O1Wi180.00 (5)C1—C2—C3118.19 (17)
O1W—Mg1—O3Wi91.30 (6)C1—C2—C6120.00 (16)
O1Wi—Mg1—O3Wi88.70 (6)C3—C2—C6121.80 (16)
O1W—Mg1—O3W88.70 (6)N4—N3—N2109.00 (14)
O1Wi—Mg1—O3W91.30 (6)N3—N4—N5110.09 (14)
O3Wi—Mg1—O3W180.000 (1)C6—N5—N4104.18 (14)
O1W—Mg1—O2W88.73 (6)Mg1—O3W—H3WA124.6
O1Wi—Mg1—O2W91.27 (6)Mg1—O3W—H3WB127.9
O3Wi—Mg1—O2W89.27 (7)H3WA—O3W—H3WB107.1
O3W—Mg1—O2W90.73 (7)C4—C3—C2120.02 (19)
O1W—Mg1—O2Wi91.27 (6)C4—C3—H3120.0
O1Wi—Mg1—O2Wi88.73 (6)C2—C3—H3120.0
O3Wi—Mg1—O2Wi90.73 (7)N1—C1—C2120.00 (19)
O3W—Mg1—O2Wi89.27 (7)N1—C1—H1120.0
O2W—Mg1—O2Wi180.0C2—C1—H1120.0
Mg1—O1W—H1WA121.5C1—N1—C5122.59 (19)
Mg1—O1W—H1WB130.3C1—N1—H1A118.7
H1WA—O1W—H1WB107.9C5—N1—H1A118.7
Mg1—O2W—H2WA125.4C5—C4—C3119.6 (2)
Mg1—O2W—H2WB129.5C5—C4—H4120.2
H2WA—O2W—H2WB103.6C3—C4—H4120.2
C6—N2—N3105.15 (14)N1—C5—C4119.60 (18)
N5—C6—N2111.57 (14)N1—C5—H5120.2
N5—C6—C2124.30 (15)C4—C5—H5120.2
N2—C6—C2124.13 (15)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4ii0.851.902.737 (2)169
O1W—H1WB···Cl1iii0.852.343.1848 (17)174
O2W—H2WA···N5iv0.851.942.775 (2)167
O2W—H2WB···Cl1v0.852.463.2764 (19)163
N1—H1A···Cl1v0.862.253.088 (2)165
O3W—H3WA···N20.851.892.735 (2)177
O3W—H3WB···Cl10.852.343.1822 (17)172
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C6H5N5)2[Mg(H2O)6]Cl2
Mr497.61
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4354 (15), 8.4232 (17), 9.5817 (19)
α, β, γ (°)94.06 (3), 90.71 (3), 110.67 (3)
V3)559.60 (19)
Z1
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.89, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
5836, 2552, 2086
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.09
No. of reflections2552
No. of parameters142
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N4i0.851.902.737 (2)169
O1W—H1WB···Cl1ii0.852.343.1848 (17)174
O2W—H2WA···N5iii0.851.942.775 (2)167
O2W—H2WB···Cl1iv0.852.463.2764 (19)163
N1—H1A···Cl1iv0.862.253.088 (2)165
O3W—H3WA···N20.851.892.735 (2)177
O3W—H3WB···Cl10.852.343.1822 (17)172
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds