organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(22E,24R)-3α,5-Cyclo-5α-ergosta-22-en-6-one

aDepartment of Pharmaceutical Science, Jinhua Polytechnic, Jinhua 321007, People's Republic of China, and bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: sheng_l_q@163.com

(Received 6 December 2010; accepted 16 December 2010; online 8 January 2011)

In the title mol­ecule, C28H44O, the two six-membered rings have a chair conformation and the two five-membered rings haveenvelope conformations. The crystal packing exhibits no short inter­molecular contacts. The absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Related literature

Many analogues of brassinolide as plant regulators have been isolated from a wide variety of plants, and many attempts have been undertaken to synthesize these brassinosteroids, see, for example: Aburatani et al. (1987[Aburatani, M., Takechi, T. & Mori, K. (1987). Agric. Biol. Chem. 51, 1909-1913.]); Brosa et al. (2001[Brosa, C., Santamarta, C. R., Pilardb, J. F. & Simonetb, J. (2001). Phys. Chem. Chem. Phys. 3, 2655-2661.]); Brosa & Santamarta (1999[Brosa, C. & Santamarta, C. R. (1999). Tetrhedron, 55, 1773-1778.]); McMorris et al. (1993[McMorris, T. C. & Patil, P. A. (1993). J. Org. Chem. 58, 2338-2339.]); Clouse (1996[Clouse, S. D. (1996). Curr. Biol. 6, 658-661.], 2002[Clouse, S. D. (2002). Curr. Biol. 12, 485-487.]). For related structures, see: Chen et al. (2009[Chen, H. L., Feng, H. J., Li, Y. C. & Jiang, B. (2009). Tetrahedron, 65, 2097-2101.]); Xia et al. (2005[Xia, C.-N., Hu, W.-X. & Zhou, W. (2005). Acta Cryst. E61, o2896-o2898.]).

[Scheme 1]

Experimental

Crystal data
  • C28H44O

  • Mr = 396.63

  • Orthorhombic, P 21 21 21

  • a = 7.6628 (19) Å

  • b = 10.516 (3) Å

  • c = 29.855 (8) Å

  • V = 2405.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 123 K

  • 0.42 × 0.36 × 0.34 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 18847 measured reflections

  • 3143 independent reflections

  • 2973 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 1.00

  • 3143 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many analogues of brassinolide as plant regulator have been isolated from a wide variety of plants, and there has been intense activity in synthesis of these brassinosteroids. We found the same phenomena that our immediates and products were synthesized with impurities by McMorris and Brosa's methods. Herewith we present the crystal structure of the title compound, (I).

In the title molecule, ring A shows an envelope conformation, and atoms C2, C3, C5 and C10 are coplanar with the r.m.s. deviation of 0.018 (1) Å. Atom C1 deviates 0.446 (3) Å from this mean plane, which make a dihedral angle of 68.20 (13) ° with the plane C3/C4/C5. Rings B and C have regular chair conformations, respectively; while ring D has an envelope conformation.

Related literature top

Many analogues of brassinolide as plant regulator have been isolated from a wide variety of plants, and many attempts have been undertaken to synthesize these brassinosteroids, see, for example: Aburatani et al. (1987); Brosa et al. (2001); Brosa & Santamarta (1999); McMorris et al. (1993); Clouse (1996, 2002). For related structures, see: Chen et al. (2009); Xia et al. (2005).

Experimental top

(22E,24R)-3α,5-Cyclo-5α-ergosta-22-en-6-one was synthesized according to the known method (McMorris et al., 1993) as a powder. Crystals of (I) suitable for structure analysis were obtained by slow evaporation from a mixture of EtOAC and ethanol (volume proportion, 9:1) as colourless prisms.

Refinement top

C-bound H atoms were placed at calculated positions (C—H 0.93–0.98 Å) and constrained to ride on their parent atoms, withUiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Hnon-methyl) = 1.2Ueq(Cnon-methyl). Because of negligible anomalous scattering effects, 2359 Friedel pairs were averaged in the refinement. The absolute configuration has been assigned to correspond to the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of (I).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) shown with 30% probability displacement ellipsoids.
(22E,24R)-3α,5-Cyclo-5α-ergosta-22-en-6-one top
Crystal data top
C28H44ODx = 1.095 Mg m3
Mr = 396.63Melting point = 441–442 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7977 reflections
a = 7.6628 (19) Åθ = 3.3–27.5°
b = 10.516 (3) ŵ = 0.06 mm1
c = 29.855 (8) ÅT = 123 K
V = 2405.9 (11) Å3Block, colourless
Z = 40.42 × 0.36 × 0.34 mm
F(000) = 880
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2973 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 28.5714 pixels mm-1h = 98
phi and ω scansk = 1213
18847 measured reflectionsl = 3838
3143 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.526P]
where P = (Fo2 + 2Fc2)/3
3143 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C28H44OV = 2405.9 (11) Å3
Mr = 396.63Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6628 (19) ŵ = 0.06 mm1
b = 10.516 (3) ÅT = 123 K
c = 29.855 (8) Å0.42 × 0.36 × 0.34 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2973 reflections with I > 2σ(I)
18847 measured reflectionsRint = 0.028
3143 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
3143 reflectionsΔρmin = 0.13 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30218 (17)0.98106 (15)0.72666 (5)0.0450 (4)
C10.8956 (2)1.11208 (17)0.71079 (6)0.0336 (4)
H1A0.94641.12500.74090.040*
H1B0.99181.10690.68870.040*
C20.7725 (3)1.22209 (17)0.69899 (7)0.0386 (4)
H2A0.81111.30200.71350.046*
H2B0.76781.23530.66620.046*
C30.5968 (2)1.18107 (18)0.71677 (7)0.0388 (4)
H30.48931.22170.70430.047*
C40.5881 (3)1.1216 (2)0.76191 (6)0.0456 (5)
H4A0.47501.12460.77790.055*
H4B0.69201.12920.78140.055*
C50.6013 (2)1.03587 (18)0.72191 (6)0.0318 (4)
C60.4414 (2)0.96834 (18)0.70745 (6)0.0320 (4)
C70.4549 (2)0.89255 (17)0.66471 (5)0.0282 (3)
H7A0.42750.94920.63920.034*
H7B0.36570.82450.66530.034*
C80.6335 (2)0.83190 (15)0.65663 (5)0.0241 (3)
H80.65070.76290.67920.029*
C90.7817 (2)0.92938 (15)0.66207 (5)0.0236 (3)
H90.75771.00020.64060.028*
C100.7850 (2)0.98849 (17)0.70976 (5)0.0276 (3)
C110.9591 (2)0.87132 (17)0.64884 (6)0.0275 (3)
H11A1.04780.93970.64840.033*
H11B0.99420.80920.67210.033*
C120.9587 (2)0.80429 (16)0.60302 (5)0.0265 (3)
H12A0.94100.86830.57910.032*
H12B1.07350.76350.59810.032*
C130.8151 (2)0.70341 (14)0.59999 (5)0.0235 (3)
C140.64205 (19)0.77281 (15)0.61000 (5)0.0237 (3)
H140.63490.84500.58830.028*
C150.5007 (2)0.67829 (17)0.59621 (6)0.0306 (4)
H15A0.39080.72270.58850.037*
H15B0.47720.61650.62050.037*
C160.5795 (2)0.61158 (16)0.55473 (6)0.0296 (4)
H16A0.51750.63850.52720.035*
H16B0.56900.51810.55770.035*
C170.7754 (2)0.65110 (15)0.55229 (5)0.0247 (3)
H170.78380.72430.53100.030*
C180.8492 (2)0.59299 (16)0.63263 (5)0.0304 (4)
H18A0.96350.55530.62620.046*
H18B0.75820.52830.62900.046*
H18C0.84760.62500.66350.046*
C190.8522 (2)0.89395 (19)0.74489 (5)0.0372 (4)
H19A0.83190.92840.77490.056*
H19B0.97740.88010.74050.056*
H19C0.79010.81300.74170.056*
C200.8887 (2)0.54309 (15)0.53322 (5)0.0267 (3)
H200.87580.46750.55330.032*
C211.0830 (2)0.57688 (17)0.53063 (6)0.0338 (4)
H21A1.14550.50990.51440.051*
H21B1.13060.58430.56100.051*
H21C1.09720.65800.51490.051*
C220.8252 (2)0.50642 (15)0.48723 (5)0.0286 (4)
H220.83510.56830.46420.034*
C230.7573 (2)0.39577 (16)0.47638 (5)0.0285 (4)
H230.74630.33520.49980.034*
C240.6951 (2)0.35497 (16)0.43073 (5)0.0287 (4)
H240.71610.42650.40930.034*
C250.7985 (3)0.23792 (17)0.41424 (6)0.0355 (4)
H250.78120.16800.43650.043*
C260.7347 (3)0.1902 (2)0.36895 (7)0.0510 (6)
H26A0.74210.25920.34690.077*
H26B0.61320.16200.37160.077*
H26C0.80760.11890.35920.077*
C270.9935 (3)0.2666 (2)0.41187 (6)0.0413 (5)
H27A1.01390.33590.39050.062*
H27B1.05630.19050.40200.062*
H27C1.03540.29200.44160.062*
C280.4989 (3)0.3298 (2)0.43273 (6)0.0406 (4)
H28A0.47660.25470.45130.061*
H28B0.45450.31480.40240.061*
H28C0.43970.40360.44580.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (7)0.0577 (9)0.0534 (8)0.0054 (7)0.0097 (6)0.0095 (7)
C10.0242 (8)0.0391 (9)0.0375 (9)0.0002 (8)0.0065 (7)0.0092 (8)
C20.0339 (10)0.0321 (9)0.0498 (11)0.0007 (8)0.0100 (8)0.0125 (8)
C30.0303 (10)0.0372 (9)0.0489 (10)0.0098 (8)0.0078 (8)0.0138 (8)
C40.0318 (10)0.0638 (13)0.0413 (10)0.0091 (10)0.0019 (8)0.0193 (10)
C50.0226 (8)0.0393 (9)0.0335 (8)0.0072 (8)0.0004 (7)0.0051 (7)
C60.0217 (8)0.0359 (9)0.0383 (9)0.0072 (7)0.0020 (7)0.0040 (8)
C70.0171 (7)0.0303 (8)0.0373 (8)0.0006 (7)0.0002 (6)0.0013 (7)
C80.0166 (7)0.0251 (7)0.0306 (8)0.0016 (6)0.0011 (6)0.0038 (6)
C90.0171 (7)0.0265 (7)0.0271 (7)0.0001 (6)0.0015 (6)0.0008 (6)
C100.0193 (8)0.0349 (9)0.0285 (8)0.0040 (7)0.0027 (6)0.0018 (7)
C110.0150 (7)0.0309 (8)0.0366 (8)0.0004 (6)0.0016 (6)0.0033 (7)
C120.0151 (7)0.0285 (8)0.0358 (8)0.0011 (6)0.0029 (6)0.0034 (7)
C130.0187 (7)0.0227 (7)0.0289 (7)0.0012 (6)0.0004 (6)0.0010 (6)
C140.0165 (7)0.0238 (7)0.0308 (8)0.0008 (6)0.0012 (6)0.0035 (6)
C150.0196 (8)0.0313 (9)0.0408 (9)0.0039 (7)0.0005 (7)0.0010 (7)
C160.0233 (8)0.0276 (8)0.0379 (8)0.0037 (7)0.0024 (7)0.0004 (7)
C170.0215 (8)0.0230 (7)0.0295 (7)0.0011 (6)0.0010 (6)0.0033 (6)
C180.0292 (8)0.0286 (8)0.0334 (8)0.0050 (7)0.0005 (7)0.0036 (7)
C190.0304 (9)0.0514 (11)0.0299 (8)0.0075 (9)0.0035 (7)0.0041 (8)
C200.0267 (8)0.0235 (7)0.0299 (8)0.0007 (7)0.0008 (6)0.0018 (6)
C210.0271 (9)0.0346 (9)0.0397 (9)0.0015 (8)0.0027 (7)0.0029 (8)
C220.0297 (9)0.0265 (8)0.0295 (8)0.0018 (7)0.0021 (7)0.0038 (6)
C230.0300 (9)0.0276 (8)0.0280 (7)0.0006 (7)0.0009 (6)0.0056 (7)
C240.0309 (9)0.0266 (8)0.0285 (8)0.0059 (7)0.0004 (7)0.0052 (6)
C250.0479 (11)0.0264 (8)0.0324 (8)0.0017 (8)0.0036 (8)0.0029 (7)
C260.0627 (15)0.0449 (11)0.0456 (11)0.0063 (11)0.0038 (10)0.0136 (9)
C270.0436 (11)0.0405 (10)0.0397 (10)0.0084 (9)0.0043 (9)0.0035 (9)
C280.0353 (10)0.0442 (11)0.0423 (10)0.0095 (9)0.0026 (8)0.0002 (9)
Geometric parameters (Å, º) top
O1—C61.219 (2)C15—H15A0.9900
C1—C21.533 (2)C15—H15B0.9900
C1—C101.552 (2)C16—C171.559 (2)
C1—H1A0.9900C16—H16A0.9900
C1—H1B0.9900C16—H16B0.9900
C2—C31.511 (3)C17—C201.539 (2)
C2—H2A0.9900C17—H171.0000
C2—H2B0.9900C18—H18A0.9800
C3—C41.487 (3)C18—H18B0.9800
C3—C51.535 (3)C18—H18C0.9800
C3—H31.0000C19—H19A0.9800
C4—C51.500 (2)C19—H19B0.9800
C4—H4A0.9900C19—H19C0.9800
C4—H4B0.9900C20—C221.507 (2)
C5—C61.481 (2)C20—C211.533 (2)
C5—C101.536 (2)C20—H201.0000
C6—C71.509 (2)C21—H21A0.9800
C7—C81.528 (2)C21—H21B0.9800
C7—H7A0.9900C21—H21C0.9800
C7—H7B0.9900C22—C231.316 (2)
C8—C141.526 (2)C22—H220.9500
C8—C91.539 (2)C23—C241.507 (2)
C8—H81.0000C23—H230.9500
C9—C111.542 (2)C24—C281.526 (3)
C9—C101.554 (2)C24—C251.546 (2)
C9—H91.0000C24—H241.0000
C10—C191.534 (2)C25—C261.522 (2)
C11—C121.539 (2)C25—C271.525 (3)
C11—H11A0.9900C25—H251.0000
C11—H11B0.9900C26—H26A0.9800
C12—C131.531 (2)C26—H26B0.9800
C12—H12A0.9900C26—H26C0.9800
C12—H12B0.9900C27—H27A0.9800
C13—C181.538 (2)C27—H27B0.9800
C13—C141.543 (2)C27—H27C0.9800
C13—C171.558 (2)C28—H28A0.9800
C14—C151.527 (2)C28—H28B0.9800
C14—H141.0000C28—H28C0.9800
C15—C161.546 (2)
C2—C1—C10106.93 (13)C13—C14—H14106.3
C2—C1—H1A110.3C14—C15—C16103.54 (13)
C10—C1—H1A110.3C14—C15—H15A111.1
C2—C1—H1B110.3C16—C15—H15A111.1
C10—C1—H1B110.3C14—C15—H15B111.1
H1A—C1—H1B108.6C16—C15—H15B111.1
C3—C2—C1104.63 (15)H15A—C15—H15B109.0
C3—C2—H2A110.8C15—C16—C17107.05 (13)
C1—C2—H2A110.8C15—C16—H16A110.3
C3—C2—H2B110.8C17—C16—H16A110.3
C1—C2—H2B110.8C15—C16—H16B110.3
H2A—C2—H2B108.9C17—C16—H16B110.3
C4—C3—C2118.56 (16)H16A—C16—H16B108.6
C4—C3—C559.46 (13)C20—C17—C13119.25 (13)
C2—C3—C5107.35 (15)C20—C17—C16111.34 (13)
C4—C3—H3118.8C13—C17—C16103.83 (12)
C2—C3—H3118.8C20—C17—H17107.3
C5—C3—H3118.8C13—C17—H17107.3
C3—C4—C561.86 (12)C16—C17—H17107.3
C3—C4—H4A117.6C13—C18—H18A109.5
C5—C4—H4A117.6C13—C18—H18B109.5
C3—C4—H4B117.6H18A—C18—H18B109.5
C5—C4—H4B117.6C13—C18—H18C109.5
H4A—C4—H4B114.7H18A—C18—H18C109.5
C6—C5—C4117.68 (15)H18B—C18—H18C109.5
C6—C5—C3115.35 (15)C10—C19—H19A109.5
C4—C5—C358.68 (13)C10—C19—H19B109.5
C6—C5—C10122.22 (14)H19A—C19—H19B109.5
C4—C5—C10116.48 (14)C10—C19—H19C109.5
C3—C5—C10108.69 (15)H19A—C19—H19C109.5
O1—C6—C5122.30 (17)H19B—C19—H19C109.5
O1—C6—C7121.09 (16)C22—C20—C21109.13 (14)
C5—C6—C7116.34 (14)C22—C20—C17110.07 (13)
C6—C7—C8114.52 (13)C21—C20—C17113.28 (13)
C6—C7—H7A108.6C22—C20—H20108.1
C8—C7—H7A108.6C21—C20—H20108.1
C6—C7—H7B108.6C17—C20—H20108.1
C8—C7—H7B108.6C20—C21—H21A109.5
H7A—C7—H7B107.6C20—C21—H21B109.5
C14—C8—C7110.61 (12)H21A—C21—H21B109.5
C14—C8—C9109.61 (12)C20—C21—H21C109.5
C7—C8—C9111.50 (13)H21A—C21—H21C109.5
C14—C8—H8108.3H21B—C21—H21C109.5
C7—C8—H8108.3C23—C22—C20125.33 (14)
C9—C8—H8108.3C23—C22—H22117.3
C8—C9—C11111.11 (12)C20—C22—H22117.3
C8—C9—C10112.03 (12)C22—C23—C24126.84 (14)
C11—C9—C10112.28 (12)C22—C23—H23116.6
C8—C9—H9107.0C24—C23—H23116.6
C11—C9—H9107.0C23—C24—C28109.02 (14)
C10—C9—H9107.0C23—C24—C25110.59 (14)
C19—C10—C5110.86 (14)C28—C24—C25112.30 (15)
C19—C10—C1110.24 (13)C23—C24—H24108.3
C5—C10—C1102.93 (13)C28—C24—H24108.3
C19—C10—C9111.87 (14)C25—C24—H24108.3
C5—C10—C9109.40 (12)C26—C25—C27109.82 (16)
C1—C10—C9111.20 (13)C26—C25—C24112.33 (16)
C12—C11—C9114.02 (13)C27—C25—C24111.04 (15)
C12—C11—H11A108.7C26—C25—H25107.8
C9—C11—H11A108.7C27—C25—H25107.8
C12—C11—H11B108.7C24—C25—H25107.8
C9—C11—H11B108.7C25—C26—H26A109.5
H11A—C11—H11B107.6C25—C26—H26B109.5
C13—C12—C11111.80 (13)H26A—C26—H26B109.5
C13—C12—H12A109.3C25—C26—H26C109.5
C11—C12—H12A109.3H26A—C26—H26C109.5
C13—C12—H12B109.3H26B—C26—H26C109.5
C11—C12—H12B109.3C25—C27—H27A109.5
H12A—C12—H12B107.9C25—C27—H27B109.5
C12—C13—C18111.35 (13)H27A—C27—H27B109.5
C12—C13—C14106.13 (12)C25—C27—H27C109.5
C18—C13—C14112.40 (12)H27A—C27—H27C109.5
C12—C13—C17116.03 (12)H27B—C27—H27C109.5
C18—C13—C17110.25 (12)C24—C28—H28A109.5
C14—C13—C17100.14 (12)C24—C28—H28B109.5
C8—C14—C15118.71 (13)H28A—C28—H28B109.5
C8—C14—C13113.96 (12)C24—C28—H28C109.5
C15—C14—C13104.43 (12)H28A—C28—H28C109.5
C8—C14—H14106.3H28B—C28—H28C109.5
C15—C14—H14106.3
C10—C1—C2—C331.09 (18)C11—C9—C10—C170.92 (16)
C1—C2—C3—C443.3 (2)C8—C9—C11—C1250.03 (18)
C1—C2—C3—C520.85 (19)C10—C9—C11—C12176.38 (13)
C2—C3—C4—C594.19 (18)C9—C11—C12—C1354.27 (18)
C3—C4—C5—C6104.28 (18)C11—C12—C13—C1865.93 (17)
C3—C4—C5—C1096.66 (18)C11—C12—C13—C1456.69 (16)
C4—C3—C5—C6108.27 (17)C11—C12—C13—C17166.88 (13)
C2—C3—C5—C6138.33 (15)C7—C8—C14—C1553.32 (18)
C2—C3—C5—C4113.41 (17)C9—C8—C14—C15176.67 (13)
C4—C3—C5—C10110.19 (16)C7—C8—C14—C13177.00 (13)
C2—C3—C5—C103.2 (2)C9—C8—C14—C1359.65 (16)
C4—C5—C6—O10.4 (3)C12—C13—C14—C861.60 (15)
C3—C5—C6—O166.0 (2)C18—C13—C14—C860.35 (17)
C10—C5—C6—O1158.13 (18)C17—C13—C14—C8177.35 (12)
C4—C5—C6—C7174.52 (15)C12—C13—C14—C15167.31 (13)
C3—C5—C6—C7108.16 (18)C18—C13—C14—C1570.75 (15)
C10—C5—C6—C727.7 (2)C17—C13—C14—C1546.26 (14)
O1—C6—C7—C8152.17 (17)C8—C14—C15—C16164.04 (13)
C5—C6—C7—C833.6 (2)C13—C14—C15—C1635.79 (15)
C6—C7—C8—C14172.34 (13)C14—C15—C16—C1711.02 (16)
C6—C7—C8—C950.10 (18)C12—C13—C17—C2083.68 (17)
C14—C8—C9—C1150.93 (16)C18—C13—C17—C2044.06 (18)
C7—C8—C9—C11173.74 (13)C14—C13—C17—C20162.65 (13)
C14—C8—C9—C10177.42 (12)C12—C13—C17—C16151.75 (13)
C7—C8—C9—C1059.77 (16)C18—C13—C17—C1680.52 (15)
C6—C5—C10—C1988.33 (19)C14—C13—C17—C1638.08 (14)
C4—C5—C10—C1969.7 (2)C15—C16—C17—C20146.76 (13)
C3—C5—C10—C19133.29 (16)C15—C16—C17—C1317.23 (16)
C6—C5—C10—C1153.80 (16)C13—C17—C20—C22179.04 (13)
C4—C5—C10—C148.18 (19)C16—C17—C20—C2258.18 (17)
C3—C5—C10—C115.43 (17)C13—C17—C20—C2158.47 (18)
C6—C5—C10—C935.5 (2)C16—C17—C20—C21179.34 (13)
C4—C5—C10—C9166.48 (15)C21—C20—C22—C23120.14 (18)
C3—C5—C10—C9102.87 (15)C17—C20—C22—C23114.96 (19)
C2—C1—C10—C19146.85 (15)C20—C22—C23—C24179.02 (15)
C2—C1—C10—C528.55 (17)C22—C23—C24—C28116.44 (19)
C2—C1—C10—C988.48 (16)C22—C23—C24—C25119.62 (19)
C8—C9—C10—C1973.02 (17)C23—C24—C25—C26177.68 (15)
C11—C9—C10—C1952.83 (18)C28—C24—C25—C2655.6 (2)
C8—C9—C10—C550.22 (17)C23—C24—C25—C2758.90 (18)
C11—C9—C10—C5176.07 (14)C28—C24—C25—C27179.07 (15)
C8—C9—C10—C1163.23 (12)

Experimental details

Crystal data
Chemical formulaC28H44O
Mr396.63
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)7.6628 (19), 10.516 (3), 29.855 (8)
V3)2405.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.42 × 0.36 × 0.34
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18847, 3143, 2973
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.00
No. of reflections3143
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.13

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008, SHELXTL (Sheldrick, 2008, publCIF (Westrip, 2010) and PLATON (Spek, 2009).

 

Acknowledgements

This project was supported by the Educational Commission of Zhejiang Province (grant No. GD09071160185). The authors acknowledge Professor Kai-bei Yu, State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, for his help with the diffraction experiment.

References

First citationAburatani, M., Takechi, T. & Mori, K. (1987). Agric. Biol. Chem. 51, 1909–1913.  CrossRef CAS Google Scholar
First citationBrosa, C. & Santamarta, C. R. (1999). Tetrhedron, 55, 1773–1778.  Web of Science CrossRef Google Scholar
First citationBrosa, C., Santamarta, C. R., Pilardb, J. F. & Simonetb, J. (2001). Phys. Chem. Chem. Phys. 3, 2655–2661.  Web of Science CrossRef CAS Google Scholar
First citationChen, H. L., Feng, H. J., Li, Y. C. & Jiang, B. (2009). Tetrahedron, 65, 2097–2101.  Web of Science CSD CrossRef CAS Google Scholar
First citationClouse, S. D. (1996). Curr. Biol. 6, 658–661.  CrossRef CAS PubMed Web of Science Google Scholar
First citationClouse, S. D. (2002). Curr. Biol. 12, 485–487.  Web of Science CrossRef Google Scholar
First citationMcMorris, T. C. & Patil, P. A. (1993). J. Org. Chem. 58, 2338–2339.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, C.-N., Hu, W.-X. & Zhou, W. (2005). Acta Cryst. E61, o2896–o2898.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds