metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3-(meth­­oxy­carbon­yl)anilinium] hexa­chloridostannate(IV)

aInstitute of Material Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: yys2004@ouc.edu.cn

(Received 9 December 2010; accepted 26 December 2010; online 15 January 2011)

In the title compound, (NH3C6H4CO2CH3)2[SnCl6], the anions are situated on inversion centers so the asymmetric unit contains one cation and one half-anion. In the crystal, inter­molecular N—H⋯Cl and N—H⋯O hydrogen bonds link the cations and anions into layers parallel to the ac plane. The crystal packing exhibits voids of 37 Å3.

Related literature

For general background to inorganic–organic hybrid compounds, see: Cheetham et al. (1999[Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268-3292.]); Descalzo et al. (2006[Descalzo, A. B., Martinez-manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924-5948.]); Sanchez et al. (2003[Sanchez, C., Lebeau, B., Chapu, F. & Boilo, J. P. (2003). Adv. Mater. 15, 1969-1994.], 2005[Sanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559-3592.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H10NO2)2[SnCl6]

  • Mr = 635.73

  • Triclinic, [P \overline 1]

  • a = 7.2320 (7) Å

  • b = 8.2701 (9) Å

  • c = 11.2801 (12) Å

  • α = 86.980 (2)°

  • β = 81.970 (2)°

  • γ = 65.870 (1)°

  • V = 609.66 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 293 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.746, Tmax = 0.819

  • 3096 measured reflections

  • 2084 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.156

  • S = 1.01

  • 2084 reflections

  • 135 parameters

  • H-atom parameters constrained

  • Δρmax = 3.34 e Å−3

  • Δρmin = −1.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 1.99 2.832 (7) 157
N1—H1B⋯Cl1i 0.89 3.00 3.542 (6) 121
N1—H1C⋯Cl2ii 0.89 2.57 3.419 (6) 160
N1—H1B⋯Cl3iii 0.89 2.42 3.267 (6) 159
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1; (iii) x-1, y, z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Inorganic-organic hybrid materials have been of great interest over recent years [Cheetham et al., 1999]. The supramolecular chemistry, the optical properties and the applications of the inorganic-organic nanocomposites have been reviewed in the literatures [Descalzo et al., 2006; Sanchez et al., 2003, 2005]. Recently, we have prepared the title compound. Here we present its crystal structure.

The title compound contains SnCl6 inorganic anions and organic cations. The SnCl6 inorganic anion displays regular octahedron, with average Sn—Cl distance of 2.4073 Å.The angles of Cl—Sn—Cl are 89.45 to 90.95° for the chlorine atoms in cis positions. In the organic cation, the dihedral angle between the ester group and the phenyl ring is 5.7(0.3)°.

In the crystal structure, intermolecular N—H···Cl and N—H···O hydrogen bonds (Table 1) link cations and anions into layers parallel to ac plane.

Related literature top

For general background to inorganic–organic hybrid compounds, see: Cheetham et al. (1999); Descalzo et al. (2006); Sanchez et al. (2003, 2005).

Experimental top

3-aminobenzoic acid (10 mmol) was dissolved to methanol (10 ml) and 5 ml hydrochloric acid was added. A few minutes later, an methanol solution (10 ml) of tin tetrachloride (5 mmol) was added with stirring. The reaction mixture was stirred for 4 h, a yellow solid then separated out. The precipitate formed was filtered off, washed several times with anhydrous methanol and dried under vacuum. Yellow block crystals of the title compound were obtained from methanol solution after four days by slow evaporation at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methyl), 0.93 Å (aromatic), N—H =0.89 Å (ammonium) and Uiso(H) =1.5Ueq(C), Uiso(H) =1.2Ueq(C),Uiso(H) =1.52Ueq(N). The highest residual peak of 3.34 e Å-3 is situated 1.75 Å at atom H1B.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (A) -x + 2, -y, -z)
Bis[3-(methoxycarbonyl)anilinium] hexachloridostannate(IV) top
Crystal data top
(C8H10NO2)2[SnCl6]Z = 1
Mr = 635.73F(000) = 314
Triclinic, P1Dx = 1.732 Mg m3
a = 7.2320 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2701 (9) ÅCell parameters from 2281 reflections
c = 11.2801 (12) Åθ = 2.7–27.6°
α = 86.980 (2)°µ = 1.73 mm1
β = 81.970 (2)°T = 293 K
γ = 65.870 (1)°Block, colourless
V = 609.66 (11) Å30.18 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2084 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.746, Tmax = 0.819k = 95
3096 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.121P)2]
where P = (Fo2 + 2Fc2)/3
2084 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 3.34 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
(C8H10NO2)2[SnCl6]γ = 65.870 (1)°
Mr = 635.73V = 609.66 (11) Å3
Triclinic, P1Z = 1
a = 7.2320 (7) ÅMo Kα radiation
b = 8.2701 (9) ŵ = 1.73 mm1
c = 11.2801 (12) ÅT = 293 K
α = 86.980 (2)°0.18 × 0.16 × 0.12 mm
β = 81.970 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2084 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1846 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.819Rint = 0.032
3096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.01Δρmax = 3.34 e Å3
2084 reflectionsΔρmin = 1.32 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.00000.00000.00000.0328 (3)
Cl10.6515 (2)0.2167 (2)0.03141 (14)0.0513 (5)
Cl20.9962 (3)0.0365 (2)0.21342 (12)0.0508 (4)
Cl31.1248 (3)0.2268 (2)0.00885 (15)0.0552 (5)
N10.5099 (9)0.0834 (7)0.7957 (4)0.0449 (13)
H1A0.52440.01150.75540.067*
H1B0.42460.09480.86280.067*
H1C0.63090.07090.81380.067*
O10.2054 (7)0.4933 (6)0.3593 (4)0.0454 (10)
O20.3547 (9)0.2009 (6)0.3694 (4)0.0652 (15)
C10.2955 (9)0.3441 (8)0.4139 (5)0.0390 (13)
C20.3176 (9)0.3708 (8)0.5388 (5)0.0374 (13)
C30.3979 (9)0.2212 (8)0.6087 (5)0.0392 (13)
H30.43090.10900.57830.047*
C40.4274 (9)0.2416 (8)0.7219 (5)0.0357 (12)
C50.3753 (10)0.4048 (8)0.7713 (5)0.0426 (14)
H50.39420.41510.85000.051*
C60.2944 (11)0.5536 (9)0.7020 (6)0.0473 (15)
H60.25960.66520.73390.057*
C70.2650 (9)0.5377 (8)0.5864 (6)0.0424 (14)
H70.21000.63820.54000.051*
C80.1833 (12)0.4799 (10)0.2347 (6)0.0552 (18)
H8A0.31560.43600.18790.083*
H8B0.10030.59480.20620.083*
H8C0.11930.40000.22770.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0336 (4)0.0345 (4)0.0272 (3)0.0093 (3)0.0072 (2)0.0035 (2)
Cl10.0371 (8)0.0534 (10)0.0467 (9)0.0012 (7)0.0095 (6)0.0131 (7)
Cl20.0680 (11)0.0481 (9)0.0257 (8)0.0119 (8)0.0085 (6)0.0018 (6)
Cl30.0693 (11)0.0552 (10)0.0520 (9)0.0379 (9)0.0033 (8)0.0157 (8)
N10.062 (3)0.044 (3)0.027 (2)0.019 (3)0.012 (2)0.000 (2)
O10.056 (3)0.040 (2)0.032 (2)0.009 (2)0.0126 (18)0.0018 (18)
O20.108 (4)0.037 (3)0.037 (2)0.011 (3)0.023 (3)0.003 (2)
C10.046 (3)0.033 (3)0.033 (3)0.010 (3)0.008 (2)0.000 (3)
C20.037 (3)0.040 (3)0.032 (3)0.012 (3)0.003 (2)0.005 (2)
C30.044 (3)0.036 (3)0.032 (3)0.010 (3)0.003 (2)0.008 (2)
C40.038 (3)0.039 (3)0.027 (3)0.014 (3)0.002 (2)0.001 (2)
C50.047 (3)0.046 (4)0.033 (3)0.017 (3)0.004 (2)0.008 (3)
C60.060 (4)0.039 (3)0.040 (3)0.019 (3)0.001 (3)0.010 (3)
C70.045 (3)0.034 (3)0.043 (3)0.012 (3)0.001 (3)0.003 (3)
C80.063 (4)0.055 (4)0.035 (3)0.010 (3)0.013 (3)0.005 (3)
Geometric parameters (Å, º) top
Sn1—Cl32.4028 (16)C2—C31.388 (9)
Sn1—Cl3i2.4028 (16)C2—C71.389 (9)
Sn1—Cl2i2.4081 (14)C3—C41.354 (8)
Sn1—Cl22.4081 (14)C3—H30.9300
Sn1—Cl1i2.4111 (15)C4—C51.371 (9)
Sn1—Cl12.4111 (15)C5—C61.381 (9)
N1—C41.465 (7)C5—H50.9300
N1—H1A0.8900C6—C71.372 (9)
N1—H1B0.8900C6—H60.9300
N1—H1C0.8900C7—H70.9300
O1—C11.305 (7)C8—H8A0.9600
O1—C81.451 (7)C8—H8B0.9600
O2—C11.195 (7)C8—H8C0.9600
C1—C21.477 (8)
Cl3—Sn1—Cl3i180.00 (3)C3—C2—C7119.9 (5)
Cl3—Sn1—Cl2i90.55 (6)C3—C2—C1117.6 (5)
Cl3i—Sn1—Cl2i89.45 (6)C7—C2—C1122.4 (6)
Cl3—Sn1—Cl289.45 (6)C4—C3—C2118.8 (5)
Cl3i—Sn1—Cl290.55 (6)C4—C3—H3120.6
Cl2i—Sn1—Cl2180.00 (9)C2—C3—H3120.6
Cl3—Sn1—Cl1i89.05 (7)C3—C4—C5122.5 (6)
Cl3i—Sn1—Cl1i90.95 (7)C3—C4—N1118.5 (5)
Cl2i—Sn1—Cl1i89.55 (6)C5—C4—N1119.0 (5)
Cl2—Sn1—Cl1i90.45 (6)C4—C5—C6118.7 (5)
Cl3—Sn1—Cl190.95 (7)C4—C5—H5120.7
Cl3i—Sn1—Cl189.05 (7)C6—C5—H5120.7
Cl2i—Sn1—Cl190.45 (6)C7—C6—C5120.4 (6)
Cl2—Sn1—Cl189.55 (6)C7—C6—H6119.8
Cl1i—Sn1—Cl1180.00 (6)C5—C6—H6119.8
C4—N1—H1A109.5C6—C7—C2119.7 (6)
C4—N1—H1B109.5C6—C7—H7120.1
H1A—N1—H1B109.5C2—C7—H7120.1
C4—N1—H1C109.5O1—C8—H8A109.5
H1A—N1—H1C109.5O1—C8—H8B109.5
H1B—N1—H1C109.5H8A—C8—H8B109.5
C1—O1—C8116.2 (5)O1—C8—H8C109.5
O2—C1—O1124.6 (5)H8A—C8—H8C109.5
O2—C1—C2123.0 (5)H8B—C8—H8C109.5
O1—C1—C2112.5 (5)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.891.992.832 (7)157
N1—H1B···Cl1ii0.893.003.542 (6)121
N1—H1C···Cl2iii0.892.573.419 (6)160
N1—H1B···Cl3iv0.892.423.267 (6)159
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x1, y, z+1.

Experimental details

Crystal data
Chemical formula(C8H10NO2)2[SnCl6]
Mr635.73
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2320 (7), 8.2701 (9), 11.2801 (12)
α, β, γ (°)86.980 (2), 81.970 (2), 65.870 (1)
V3)609.66 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.746, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
3096, 2084, 1846
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.156, 1.01
No. of reflections2084
No. of parameters135
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.34, 1.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.992.832 (7)157.2
N1—H1B···Cl1i0.893.003.542 (6)120.9
N1—H1C···Cl2ii0.892.573.419 (6)160.1
N1—H1B···Cl3iii0.892.423.267 (6)158.8
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x1, y, z+1.
 

Acknowledgements

The authors acknowledge the National Science Foundation of China for financial support of this project (grant Nos. 50672090 and 50702053).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3268–3292.  CrossRef PubMed CAS Google Scholar
First citationDescalzo, A. B., Martinez-manez, R., Sancenón, F., Hoffmann, K. & Rurack, K. (2006). Angew. Chem. Int. Ed. 45, 5924–5948.  Web of Science CrossRef CAS Google Scholar
First citationSanchez, C., Julián, B., Belleville, P. & Popall, M. (2005). J. Mater. Chem. 15, 3559–3592.  Web of Science CrossRef CAS Google Scholar
First citationSanchez, C., Lebeau, B., Chapu, F. & Boilo, J. P. (2003). Adv. Mater. 15, 1969–1994.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds