organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(1H-Imidazol-1-yl)-2-adamant­yl]phenol

aSamara State Technical University, Molodogvardeyskay Str. 244, 443100 Samara, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 17 December 2010; accepted 22 December 2010; online 15 January 2011)

In the title mol­ecule, C19H22N2O, the imidazole and benzene rings form a dihedral angle of 84.53 (5)°. In the crystal, classical inter­molecular O—H⋯N hydrogen bonds pair the mol­ecules into centrosymmetric dimers, and C—H⋯π inter­actions further link these dimers into columns propagated in [100].

Related literature

For the role of o-quinone methides in the biological action of several anti­biotics such as mitomycin and anthracyclines, see: Rokita (2009[Rokita, S. E. (2009). Quinone Methides, pp. 217-268. Hoboken, USA: Wiley.]). For the reaction mechanism, see: Van De Water & Pettus (2002[Van De Water, R. W. & Pettus, T. R. R. (2002). Tetrahedron, 58, 5367-5405.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O

  • Mr = 294.39

  • Triclinic, [P \overline 1]

  • a = 6.3981 (4) Å

  • b = 10.3944 (7) Å

  • c = 12.5345 (8) Å

  • α = 67.028 (6)°

  • β = 84.863 (6)°

  • γ = 72.647 (6)°

  • V = 732.22 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 100 K

  • 0.56 × 0.19 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical [CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.819, Tmax = 0.944

  • 6557 measured reflections

  • 2600 independent reflections

  • 2300 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.05

  • 2600 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯N19i 0.84 1.83 2.6514 (15) 164
C20—H20⋯Cgii 0.95 2.60 3.459 (18) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

o-Quinone methides are known as efficient DNA alkylating and cross-linking agents, they play a key role in the biological action of several antibiotics such as mitomycin and anthracyclines (Rokita, 2009). o-Quinone methides act as heterodienes in inter- and intramolecular cycloadditions with olefins to give various substituted chromanes. Like vinyl ketones, o-quinone methides also act as acceptors in Michael additions to afford o-substituted phenols (Van De Water & Pettus, 2002). Herewith we presenrt the title compound, I, which belongs to the family of o-quinone methides.

In I (Fig. 1), benzene ring is essential planar and hydroxy O deviates at 0.0171 (18) Å) from its mean plane. The benzene and imidazole rings form dihedral angle 84.53 (5)°.

In the crystal structure, intermolecular O–H···N hydrogen bonds (Table 1) pair the molecules into centrosymmetric dimers, and C–H···π interactions (Table 1) link further these dimers into columns propagated in direction [1 0 0].

Related literature top

For the role of o-quinone methides in the biological action of several antibiotics such as mitomycin and anthracyclines, see: Rokita (2009). For the reaction mechanism, see: Van De Water & Pettus (2002).

Experimental top

2-[2-(1H-Imidazol-1-yl)-2-adamantyl]phenol, I, was prepared from 2-(2-hydroxyphenyl)-2-adamantanol and imidazole in DMF at reflux in 74% yield. A mechanism accounting for the formation of structure I is depicted in Fig. 2. The 2-(2-hydroxyphenyl)-2-adamantanol loses a molecule of water to give the o-quinone methide II. A Michael-type addition of the imidazole to the o-quinone methide II gives the end product I.

A solution of 2-(2-hydroxyphenyl)-2-adamantanol (1 g, 4.1 mmol) and imidazole (1 g, 14.7 mmol) in DMF (10 ml) was refluxed for 2 h. After completion of the reaction, the mixture was cooled to room temperature, poured into 30 ml of cold water to yield a solid product, which was filtered, washed with water, and dried. Recrystallization of the crude product from ethanol gave 0.89 g of colourless crystals. Yield 74%, mp 524-525 K. IR, ν, cm-1: 3200-2400 (OH), 2920, 2858 (CHAd), 1597, 1493, 1450, 1404, 1296, 1250, 1234, 1219, 1204, 1111, 1095, 1072, 752, 663. MS, m/z: 294 [M]+ (9), 226 [C16H18O]+ (100), 211 (8), 183 (46), 169 (26), 158 (19), 145 (17), 131 (24), 115 (23), 107 (22), 91 (26), 79 (20), 77 (24), 69 (36). 1H NMR, δ: 1.72-1.81 m (11H, HAd), 2.00 br. s (1H, HAd), 3.35 br. s and 4.17 br. s (2H, HAd-1,3), 6.71-6.78 m (3H, Harom.-4,6, Himidazole-4), 6.99 dd (1H, Harom.-5, 3J = 8.07 Hz, 3J = 7.34 Hz), 7.24 s (1H, Himidazole-5), 7.48 d (1H, Harom.-3, 3J = 7.34 Hz), 7.80 s (1H, Himidazole-2), 9.46 br. s (1H, OH). Anal. calc. for C19H22N2O, %: C 77.52; H 7.53; N 9.52. Found, %: C 77.59; H 7.48; N 9.48.

Single crystals for X-ray analysis were obtained by slow evaporation of an ethanol solution. IR-spectrum was recorded (in KBr) on Shimadzu FTIR-8400S. Mass-spectrum was measured on Finnigan Trance DSQ spectrometer. 1H NMR-spectrum was obtained in DMSO-d6 on Jeol JNM-ECX400 (400 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA-3000 elemental analyzer.

Refinement top

All H atoms were placed in calculated positions (C–H 0.95-1.00Å and O–H 0.84 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C, O).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) plot of molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Synthesis of the title compound.
2-[2-(1H-Imidazol-1-yl)-2-adamantyl]phenol top
Crystal data top
C19H22N2OZ = 2
Mr = 294.39F(000) = 316
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Melting point = 524–525 K
a = 6.3981 (4) ÅCu Kα radiation, λ = 1.5418 Å
b = 10.3944 (7) ÅCell parameters from 4464 reflections
c = 12.5345 (8) Åθ = 3.8–67.4°
α = 67.028 (6)°µ = 0.65 mm1
β = 84.863 (6)°T = 100 K
γ = 72.647 (6)°Prism, colourless
V = 732.22 (9) Å30.56 × 0.19 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2600 independent reflections
Radiation source: fine-focus sealed tube2300 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4875 pixels mm-1θmax = 67.5°, θmin = 3.8°
ω scansh = 77
Absorption correction: analytical
[CrysAlis PRO RED (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)]
k = 1211
Tmin = 0.819, Tmax = 0.944l = 1414
6557 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2906P]
where P = (Fo2 + 2Fc2)/3
2600 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H22N2Oγ = 72.647 (6)°
Mr = 294.39V = 732.22 (9) Å3
Triclinic, P1Z = 2
a = 6.3981 (4) ÅCu Kα radiation
b = 10.3944 (7) ŵ = 0.65 mm1
c = 12.5345 (8) ÅT = 100 K
α = 67.028 (6)°0.56 × 0.19 × 0.12 mm
β = 84.863 (6)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
2600 independent reflections
Absorption correction: analytical
[CrysAlis PRO RED (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)]
2300 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.944Rint = 0.024
6557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2600 reflectionsΔρmin = 0.27 e Å3
200 parameters
Special details top

Experimental. CrysAlis Pro Red. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6828 (2)0.13046 (14)0.71608 (11)0.0119 (3)
C20.8219 (2)0.19052 (14)0.77095 (11)0.0129 (3)
H20.98100.14230.76590.015*
C30.7648 (2)0.15615 (15)0.89927 (11)0.0144 (3)
H3A0.79570.04940.94130.017*
H3B0.85670.19090.93520.017*
C40.5221 (2)0.23102 (15)0.90889 (12)0.0159 (3)
H40.48510.20630.99240.019*
C50.3829 (2)0.17734 (15)0.85153 (12)0.0150 (3)
H5B0.22560.22420.85800.018*
H5A0.41120.07050.89190.018*
C60.4385 (2)0.21431 (14)0.72319 (11)0.0133 (3)
H60.34260.18180.68640.016*
C70.3972 (2)0.38008 (14)0.66138 (12)0.0158 (3)
H7A0.43520.40410.57890.019*
H7B0.23990.42990.66450.019*
C80.5352 (2)0.43437 (15)0.71904 (12)0.0168 (3)
H80.50690.54230.67840.020*
C90.4767 (2)0.39671 (15)0.84690 (12)0.0183 (3)
H9A0.56520.43190.88440.022*
H9B0.32000.44560.85270.022*
C100.7765 (2)0.35711 (14)0.70967 (12)0.0157 (3)
H10B0.87010.39070.74560.019*
H10A0.81340.38220.62700.019*
C110.7345 (2)0.03789 (14)0.77320 (11)0.0121 (3)
C120.9364 (2)0.12251 (15)0.83113 (11)0.0142 (3)
H121.03460.07420.83990.017*
C130.9993 (2)0.27371 (15)0.87630 (12)0.0170 (3)
H131.13750.32710.91530.020*
C140.8589 (2)0.34664 (15)0.86411 (12)0.0173 (3)
H140.90000.45020.89490.021*
C150.6586 (2)0.26690 (15)0.80662 (11)0.0158 (3)
H150.56240.31670.79810.019*
C160.5952 (2)0.11438 (15)0.76088 (11)0.0135 (3)
O160.39755 (15)0.04140 (10)0.70444 (8)0.0160 (2)
H160.35810.09540.67990.024*
N170.73914 (18)0.16304 (12)0.59155 (9)0.0128 (3)
C180.6190 (2)0.15886 (14)0.50968 (11)0.0149 (3)
H180.47670.14590.52180.018*
N190.72161 (19)0.17480 (12)0.41173 (10)0.0160 (3)
C200.9204 (2)0.18904 (15)0.43073 (12)0.0164 (3)
H201.03120.20280.37510.020*
C210.9346 (2)0.18058 (15)0.54089 (12)0.0155 (3)
H211.05560.18570.57620.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0118 (6)0.0129 (7)0.0096 (6)0.0018 (5)0.0004 (5)0.0043 (5)
C20.0111 (6)0.0135 (7)0.0136 (7)0.0021 (5)0.0007 (5)0.0056 (5)
C30.0162 (7)0.0144 (6)0.0124 (7)0.0028 (5)0.0013 (5)0.0059 (5)
C40.0174 (7)0.0160 (7)0.0140 (6)0.0030 (5)0.0023 (5)0.0072 (5)
C50.0128 (6)0.0142 (7)0.0161 (7)0.0016 (5)0.0024 (5)0.0060 (5)
C60.0110 (6)0.0125 (7)0.0146 (7)0.0006 (5)0.0008 (5)0.0053 (5)
C70.0138 (6)0.0135 (7)0.0164 (7)0.0002 (5)0.0011 (5)0.0042 (5)
C80.0179 (7)0.0112 (6)0.0191 (7)0.0017 (5)0.0007 (5)0.0051 (5)
C90.0186 (7)0.0163 (7)0.0207 (7)0.0015 (5)0.0010 (6)0.0104 (6)
C100.0173 (7)0.0150 (7)0.0153 (7)0.0055 (5)0.0003 (5)0.0058 (5)
C110.0125 (6)0.0136 (7)0.0090 (6)0.0013 (5)0.0022 (5)0.0053 (5)
C120.0142 (6)0.0156 (7)0.0126 (6)0.0024 (5)0.0004 (5)0.0067 (5)
C130.0163 (7)0.0164 (7)0.0134 (6)0.0023 (5)0.0021 (5)0.0050 (5)
C140.0244 (7)0.0114 (6)0.0134 (6)0.0017 (5)0.0011 (5)0.0043 (5)
C150.0193 (7)0.0161 (7)0.0137 (6)0.0063 (5)0.0026 (5)0.0071 (5)
C160.0135 (6)0.0162 (7)0.0097 (6)0.0018 (5)0.0020 (5)0.0059 (5)
O160.0148 (5)0.0157 (5)0.0185 (5)0.0033 (4)0.0032 (4)0.0076 (4)
N170.0130 (6)0.0138 (6)0.0102 (5)0.0021 (4)0.0005 (4)0.0042 (4)
C180.0148 (6)0.0144 (7)0.0139 (7)0.0027 (5)0.0019 (5)0.0043 (5)
N190.0179 (6)0.0146 (6)0.0137 (6)0.0024 (5)0.0009 (5)0.0050 (4)
C200.0154 (7)0.0172 (7)0.0149 (7)0.0028 (5)0.0020 (5)0.0060 (5)
C210.0122 (6)0.0192 (7)0.0151 (7)0.0033 (5)0.0012 (5)0.0075 (5)
Geometric parameters (Å, º) top
C1—N171.4968 (16)C9—H9A0.9900
C1—C111.5503 (18)C9—H9B0.9900
C1—C21.5591 (18)C10—H10B0.9900
C1—C61.5600 (17)C10—H10A0.9900
C2—C31.5402 (18)C11—C121.4006 (19)
C2—C101.5410 (18)C11—C161.4121 (19)
C2—H21.0000C12—C131.386 (2)
C3—C41.5329 (19)C12—H120.9500
C3—H3A0.9900C13—C141.387 (2)
C3—H3B0.9900C13—H130.9500
C4—C51.5317 (19)C14—C151.384 (2)
C4—C91.5335 (19)C14—H140.9500
C4—H41.0000C15—C161.3983 (19)
C5—C61.5358 (18)C15—H150.9500
C5—H5B0.9900C16—O161.3578 (17)
C5—H5A0.9900O16—H160.8400
C6—C71.5369 (18)N17—C181.3572 (18)
C6—H61.0000N17—C211.3800 (18)
C7—C81.5334 (19)C18—N191.3144 (18)
C7—H7A0.9900C18—H180.9500
C7—H7B0.9900N19—C201.3750 (18)
C8—C101.5307 (19)C20—C211.359 (2)
C8—C91.5336 (19)C20—H200.9500
C8—H81.0000C21—H210.9500
N17—C1—C11105.20 (10)C7—C8—H8109.9
N17—C1—C2109.43 (10)C9—C8—H8109.9
C11—C1—C2112.54 (10)C4—C9—C8109.60 (11)
N17—C1—C6109.23 (10)C4—C9—H9A109.8
C11—C1—C6114.20 (10)C8—C9—H9A109.8
C2—C1—C6106.20 (10)C4—C9—H9B109.8
C3—C2—C10107.87 (10)C8—C9—H9B109.8
C3—C2—C1109.39 (10)H9A—C9—H9B108.2
C10—C2—C1111.95 (10)C8—C10—C2110.44 (11)
C3—C2—H2109.2C8—C10—H10B109.6
C10—C2—H2109.2C2—C10—H10B109.6
C1—C2—H2109.2C8—C10—H10A109.6
C4—C3—C2110.01 (11)C2—C10—H10A109.6
C4—C3—H3A109.7H10B—C10—H10A108.1
C2—C3—H3A109.7C12—C11—C16116.59 (12)
C4—C3—H3B109.7C12—C11—C1120.07 (11)
C2—C3—H3B109.7C16—C11—C1123.06 (11)
H3A—C3—H3B108.2C13—C12—C11122.87 (13)
C5—C4—C3108.87 (11)C13—C12—H12118.6
C5—C4—C9109.55 (11)C11—C12—H12118.6
C3—C4—C9109.45 (11)C12—C13—C14119.57 (13)
C5—C4—H4109.6C12—C13—H13120.2
C3—C4—H4109.6C14—C13—H13120.2
C9—C4—H4109.6C15—C14—C13119.31 (13)
C4—C5—C6110.18 (11)C15—C14—H14120.3
C4—C5—H5B109.6C13—C14—H14120.3
C6—C5—H5B109.6C14—C15—C16121.17 (13)
C4—C5—H5A109.6C14—C15—H15119.4
C6—C5—H5A109.6C16—C15—H15119.4
H5B—C5—H5A108.1O16—C16—C15118.79 (12)
C5—C6—C7109.36 (11)O16—C16—C11120.71 (12)
C5—C6—C1108.42 (10)C15—C16—C11120.49 (12)
C7—C6—C1111.46 (11)C16—O16—H16109.5
C5—C6—H6109.2C18—N17—C21105.78 (11)
C7—C6—H6109.2C18—N17—C1125.96 (11)
C1—C6—H6109.2C21—N17—C1127.56 (11)
C8—C7—C6110.49 (11)N19—C18—N17112.41 (12)
C8—C7—H7A109.6N19—C18—H18123.8
C6—C7—H7A109.6N17—C18—H18123.8
C8—C7—H7B109.6C18—N19—C20105.33 (11)
C6—C7—H7B109.6C21—C20—N19109.81 (12)
H7A—C7—H7B108.1C21—C20—H20125.1
C10—C8—C7107.65 (11)N19—C20—H20125.1
C10—C8—C9109.96 (11)C20—C21—N17106.65 (12)
C7—C8—C9109.52 (11)C20—C21—H21126.7
C10—C8—H8109.9N17—C21—H21126.7
N17—C1—C2—C3179.67 (10)C1—C2—C10—C860.58 (14)
C11—C1—C2—C363.10 (13)N17—C1—C11—C1295.89 (13)
C6—C1—C2—C362.54 (13)C2—C1—C11—C1223.18 (16)
N17—C1—C2—C1060.82 (13)C6—C1—C11—C12144.35 (12)
C11—C1—C2—C10177.39 (10)N17—C1—C11—C1677.81 (14)
C6—C1—C2—C1056.97 (13)C2—C1—C11—C16163.12 (11)
C10—C2—C3—C460.61 (13)C6—C1—C11—C1641.95 (17)
C1—C2—C3—C461.39 (13)C16—C11—C12—C130.85 (19)
C2—C3—C4—C558.63 (14)C1—C11—C12—C13174.96 (12)
C2—C3—C4—C961.09 (14)C11—C12—C13—C140.3 (2)
C3—C4—C5—C659.90 (14)C12—C13—C14—C150.2 (2)
C9—C4—C5—C659.76 (14)C13—C14—C15—C160.1 (2)
C4—C5—C6—C758.55 (13)C14—C15—C16—O16179.48 (12)
C4—C5—C6—C163.17 (13)C14—C15—C16—C110.5 (2)
N17—C1—C6—C5179.01 (10)C12—C11—C16—O16179.02 (11)
C11—C1—C6—C561.54 (14)C1—C11—C16—O165.11 (19)
C2—C1—C6—C563.08 (13)C12—C11—C16—C150.93 (19)
N17—C1—C6—C760.57 (13)C1—C11—C16—C15174.84 (11)
C11—C1—C6—C7178.04 (10)C11—C1—N17—C1875.31 (15)
C2—C1—C6—C757.34 (13)C2—C1—N17—C18163.57 (12)
C5—C6—C7—C858.29 (14)C6—C1—N17—C1847.69 (16)
C1—C6—C7—C861.58 (14)C11—C1—N17—C2193.75 (14)
C6—C7—C8—C1060.48 (14)C2—C1—N17—C2127.38 (17)
C6—C7—C8—C959.05 (14)C6—C1—N17—C21143.25 (12)
C5—C4—C9—C860.07 (14)C21—N17—C18—N191.09 (15)
C3—C4—C9—C859.24 (14)C1—N17—C18—N19172.09 (11)
C10—C8—C9—C458.49 (14)N17—C18—N19—C200.49 (15)
C7—C8—C9—C459.61 (14)C18—N19—C20—C210.33 (15)
C7—C8—C10—C259.76 (14)N19—C20—C21—N170.98 (15)
C9—C8—C10—C259.49 (14)C18—N17—C21—C201.22 (14)
C3—C2—C10—C859.81 (14)C1—N17—C21—C20172.03 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O16—H16···N19i0.841.832.6514 (15)164
C20—H20···Cgii0.952.603.459 (18)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H22N2O
Mr294.39
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.3981 (4), 10.3944 (7), 12.5345 (8)
α, β, γ (°)67.028 (6), 84.863 (6), 72.647 (6)
V3)732.22 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.56 × 0.19 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO RED (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.819, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
6557, 2600, 2300
Rint0.024
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.05
No. of reflections2600
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O16—H16···N19i0.841.832.6514 (15)164
C20—H20···Cgii0.952.603.459 (18)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

Acknowledgements

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The authors thank Dr Alex Griffin (Agilent Technologies) for X-ray experiment.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRokita, S. E. (2009). Quinone Methides, pp. 217–268. Hoboken, USA: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan De Water, R. W. & Pettus, T. R. R. (2002). Tetrahedron, 58, 5367–5405.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds