organic compounds
2-[2-(1H-Imidazol-1-yl)-2-adamantyl]phenol
aSamara State Technical University, Molodogvardeyskay Str. 244, 443100 Samara, Russian Federation, and bDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: rybakov20021@yandex.ru
In the title molecule, C19H22N2O, the imidazole and benzene rings form a dihedral angle of 84.53 (5)°. In the crystal, classical intermolecular O—H⋯N hydrogen bonds pair the molecules into centrosymmetric dimers, and C—H⋯π interactions further link these dimers into columns propagated in [100].
Related literature
For the role of o-quinone methides in the biological action of several antibiotics such as mitomycin and anthracyclines, see: Rokita (2009). For the see: Van De Water & Pettus (2002).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536810053900/cv5021sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810053900/cv5021Isup2.hkl
2-[2-(1H-Imidazol-1-yl)-2-adamantyl]phenol, I, was prepared from 2-(2-hydroxyphenyl)-2-adamantanol and imidazole in DMF at reflux in 74% yield. A mechanism accounting for the formation of structure I is depicted in Fig. 2. The 2-(2-hydroxyphenyl)-2-adamantanol loses a molecule of water to give the o-quinone methide II. A Michael-type addition of the imidazole to the o-quinone methide II gives the end product I.
A solution of 2-(2-hydroxyphenyl)-2-adamantanol (1 g, 4.1 mmol) and imidazole (1 g, 14.7 mmol) in DMF (10 ml) was refluxed for 2 h. After completion of the reaction, the mixture was cooled to room temperature, poured into 30 ml of cold water to yield a solid product, which was filtered, washed with water, and dried. Recrystallization of the crude product from ethanol gave 0.89 g of colourless crystals. Yield 74%, mp 524-525 K. IR, ν, cm-1: 3200-2400 (OH), 2920, 2858 (CHAd), 1597, 1493, 1450, 1404, 1296, 1250, 1234, 1219, 1204, 1111, 1095, 1072, 752, 663. MS, m/z: 294 [M]+ (9), 226 [C16H18O]+ (100), 211 (8), 183 (46), 169 (26), 158 (19), 145 (17), 131 (24), 115 (23), 107 (22), 91 (26), 79 (20), 77 (24), 69 (36). 1H NMR, δ: 1.72-1.81 m (11H, HAd), 2.00 br. s (1H, HAd), 3.35 br. s and 4.17 br. s (2H, HAd-1,3), 6.71-6.78 m (3H, Harom.-4,6, Himidazole-4), 6.99 dd (1H, Harom.-5, 3J = 8.07 Hz, 3J = 7.34 Hz), 7.24 s (1H, Himidazole-5), 7.48 d (1H, Harom.-3, 3J = 7.34 Hz), 7.80 s (1H, Himidazole-2), 9.46 br. s (1H, OH). Anal. calc. for C19H22N2O, %: C 77.52; H 7.53; N 9.52. Found, %: C 77.59; H 7.48; N 9.48.
Single crystals for X-ray analysis were obtained by slow evaporation of an ethanol solution. IR-spectrum was recorded (in KBr) on Shimadzu FTIR-8400S. Mass-spectrum was measured on Finnigan Trance DSQ spectrometer. 1H NMR-spectrum was obtained in DMSO-d6 on Jeol JNM-ECX400 (400 MHz), using TMS as internal standard. Elemental composition was determined on Euro Vector EA-3000 elemental analyzer.
All H atoms were placed in calculated positions (C–H 0.95-1.00Å and O–H 0.84 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C, O).
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell
CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C19H22N2O | Z = 2 |
Mr = 294.39 | F(000) = 316 |
Triclinic, P1 | Dx = 1.335 Mg m−3 |
Hall symbol: -P 1 | Melting point = 524–525 K |
a = 6.3981 (4) Å | Cu Kα radiation, λ = 1.5418 Å |
b = 10.3944 (7) Å | Cell parameters from 4464 reflections |
c = 12.5345 (8) Å | θ = 3.8–67.4° |
α = 67.028 (6)° | µ = 0.65 mm−1 |
β = 84.863 (6)° | T = 100 K |
γ = 72.647 (6)° | Prism, colourless |
V = 732.22 (9) Å3 | 0.56 × 0.19 × 0.12 mm |
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer | 2600 independent reflections |
Radiation source: fine-focus sealed tube | 2300 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.4875 pixels mm-1 | θmax = 67.5°, θmin = 3.8° |
ω scans | h = −7→7 |
Absorption correction: analytical [CrysAlis PRO RED (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)] | k = −12→11 |
Tmin = 0.819, Tmax = 0.944 | l = −14→14 |
6557 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0569P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3 |
2600 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C19H22N2O | γ = 72.647 (6)° |
Mr = 294.39 | V = 732.22 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.3981 (4) Å | Cu Kα radiation |
b = 10.3944 (7) Å | µ = 0.65 mm−1 |
c = 12.5345 (8) Å | T = 100 K |
α = 67.028 (6)° | 0.56 × 0.19 × 0.12 mm |
β = 84.863 (6)° |
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer | 2600 independent reflections |
Absorption correction: analytical [CrysAlis PRO RED (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)] | 2300 reflections with I > 2σ(I) |
Tmin = 0.819, Tmax = 0.944 | Rint = 0.024 |
6557 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.28 e Å−3 |
2600 reflections | Δρmin = −0.27 e Å−3 |
200 parameters |
Experimental. CrysAlis Pro Red. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995). |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6828 (2) | 0.13046 (14) | 0.71608 (11) | 0.0119 (3) | |
C2 | 0.8219 (2) | 0.19052 (14) | 0.77095 (11) | 0.0129 (3) | |
H2 | 0.9810 | 0.1423 | 0.7659 | 0.015* | |
C3 | 0.7648 (2) | 0.15615 (15) | 0.89927 (11) | 0.0144 (3) | |
H3A | 0.7957 | 0.0494 | 0.9413 | 0.017* | |
H3B | 0.8567 | 0.1909 | 0.9352 | 0.017* | |
C4 | 0.5221 (2) | 0.23102 (15) | 0.90889 (12) | 0.0159 (3) | |
H4 | 0.4851 | 0.2063 | 0.9924 | 0.019* | |
C5 | 0.3829 (2) | 0.17734 (15) | 0.85153 (12) | 0.0150 (3) | |
H5B | 0.2256 | 0.2242 | 0.8580 | 0.018* | |
H5A | 0.4112 | 0.0705 | 0.8919 | 0.018* | |
C6 | 0.4385 (2) | 0.21431 (14) | 0.72319 (11) | 0.0133 (3) | |
H6 | 0.3426 | 0.1818 | 0.6864 | 0.016* | |
C7 | 0.3972 (2) | 0.38008 (14) | 0.66138 (12) | 0.0158 (3) | |
H7A | 0.4352 | 0.4041 | 0.5789 | 0.019* | |
H7B | 0.2399 | 0.4299 | 0.6645 | 0.019* | |
C8 | 0.5352 (2) | 0.43437 (15) | 0.71904 (12) | 0.0168 (3) | |
H8 | 0.5069 | 0.5423 | 0.6784 | 0.020* | |
C9 | 0.4767 (2) | 0.39671 (15) | 0.84690 (12) | 0.0183 (3) | |
H9A | 0.5652 | 0.4319 | 0.8844 | 0.022* | |
H9B | 0.3200 | 0.4456 | 0.8527 | 0.022* | |
C10 | 0.7765 (2) | 0.35711 (14) | 0.70967 (12) | 0.0157 (3) | |
H10B | 0.8701 | 0.3907 | 0.7456 | 0.019* | |
H10A | 0.8134 | 0.3822 | 0.6270 | 0.019* | |
C11 | 0.7345 (2) | −0.03789 (14) | 0.77320 (11) | 0.0121 (3) | |
C12 | 0.9364 (2) | −0.12251 (15) | 0.83113 (11) | 0.0142 (3) | |
H12 | 1.0346 | −0.0742 | 0.8399 | 0.017* | |
C13 | 0.9993 (2) | −0.27371 (15) | 0.87630 (12) | 0.0170 (3) | |
H13 | 1.1375 | −0.3271 | 0.9153 | 0.020* | |
C14 | 0.8589 (2) | −0.34664 (15) | 0.86411 (12) | 0.0173 (3) | |
H14 | 0.9000 | −0.4502 | 0.8949 | 0.021* | |
C15 | 0.6586 (2) | −0.26690 (15) | 0.80662 (11) | 0.0158 (3) | |
H15 | 0.5624 | −0.3167 | 0.7981 | 0.019* | |
C16 | 0.5952 (2) | −0.11438 (15) | 0.76088 (11) | 0.0135 (3) | |
O16 | 0.39755 (15) | −0.04140 (10) | 0.70444 (8) | 0.0160 (2) | |
H16 | 0.3581 | −0.0954 | 0.6799 | 0.024* | |
N17 | 0.73914 (18) | 0.16304 (12) | 0.59155 (9) | 0.0128 (3) | |
C18 | 0.6190 (2) | 0.15886 (14) | 0.50968 (11) | 0.0149 (3) | |
H18 | 0.4767 | 0.1459 | 0.5218 | 0.018* | |
N19 | 0.72161 (19) | 0.17480 (12) | 0.41173 (10) | 0.0160 (3) | |
C20 | 0.9204 (2) | 0.18904 (15) | 0.43073 (12) | 0.0164 (3) | |
H20 | 1.0312 | 0.2028 | 0.3751 | 0.020* | |
C21 | 0.9346 (2) | 0.18058 (15) | 0.54089 (12) | 0.0155 (3) | |
H21 | 1.0556 | 0.1857 | 0.5762 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0118 (6) | 0.0129 (7) | 0.0096 (6) | −0.0018 (5) | 0.0004 (5) | −0.0043 (5) |
C2 | 0.0111 (6) | 0.0135 (7) | 0.0136 (7) | −0.0021 (5) | −0.0007 (5) | −0.0056 (5) |
C3 | 0.0162 (7) | 0.0144 (6) | 0.0124 (7) | −0.0028 (5) | −0.0013 (5) | −0.0059 (5) |
C4 | 0.0174 (7) | 0.0160 (7) | 0.0140 (6) | −0.0030 (5) | 0.0023 (5) | −0.0072 (5) |
C5 | 0.0128 (6) | 0.0142 (7) | 0.0161 (7) | −0.0016 (5) | 0.0024 (5) | −0.0060 (5) |
C6 | 0.0110 (6) | 0.0125 (7) | 0.0146 (7) | −0.0006 (5) | −0.0008 (5) | −0.0053 (5) |
C7 | 0.0138 (6) | 0.0135 (7) | 0.0164 (7) | −0.0002 (5) | −0.0011 (5) | −0.0042 (5) |
C8 | 0.0179 (7) | 0.0112 (6) | 0.0191 (7) | −0.0017 (5) | −0.0007 (5) | −0.0051 (5) |
C9 | 0.0186 (7) | 0.0163 (7) | 0.0207 (7) | −0.0015 (5) | 0.0010 (6) | −0.0104 (6) |
C10 | 0.0173 (7) | 0.0150 (7) | 0.0153 (7) | −0.0055 (5) | 0.0003 (5) | −0.0058 (5) |
C11 | 0.0125 (6) | 0.0136 (7) | 0.0090 (6) | −0.0013 (5) | 0.0022 (5) | −0.0053 (5) |
C12 | 0.0142 (6) | 0.0156 (7) | 0.0126 (6) | −0.0024 (5) | 0.0004 (5) | −0.0067 (5) |
C13 | 0.0163 (7) | 0.0164 (7) | 0.0134 (6) | 0.0023 (5) | −0.0021 (5) | −0.0050 (5) |
C14 | 0.0244 (7) | 0.0114 (6) | 0.0134 (6) | −0.0017 (5) | 0.0011 (5) | −0.0043 (5) |
C15 | 0.0193 (7) | 0.0161 (7) | 0.0137 (6) | −0.0063 (5) | 0.0026 (5) | −0.0071 (5) |
C16 | 0.0135 (6) | 0.0162 (7) | 0.0097 (6) | −0.0018 (5) | 0.0020 (5) | −0.0059 (5) |
O16 | 0.0148 (5) | 0.0157 (5) | 0.0185 (5) | −0.0033 (4) | −0.0032 (4) | −0.0076 (4) |
N17 | 0.0130 (6) | 0.0138 (6) | 0.0102 (5) | −0.0021 (4) | −0.0005 (4) | −0.0042 (4) |
C18 | 0.0148 (6) | 0.0144 (7) | 0.0139 (7) | −0.0027 (5) | −0.0019 (5) | −0.0043 (5) |
N19 | 0.0179 (6) | 0.0146 (6) | 0.0137 (6) | −0.0024 (5) | −0.0009 (5) | −0.0050 (4) |
C20 | 0.0154 (7) | 0.0172 (7) | 0.0149 (7) | −0.0028 (5) | 0.0020 (5) | −0.0060 (5) |
C21 | 0.0122 (6) | 0.0192 (7) | 0.0151 (7) | −0.0033 (5) | 0.0012 (5) | −0.0075 (5) |
C1—N17 | 1.4968 (16) | C9—H9A | 0.9900 |
C1—C11 | 1.5503 (18) | C9—H9B | 0.9900 |
C1—C2 | 1.5591 (18) | C10—H10B | 0.9900 |
C1—C6 | 1.5600 (17) | C10—H10A | 0.9900 |
C2—C3 | 1.5402 (18) | C11—C12 | 1.4006 (19) |
C2—C10 | 1.5410 (18) | C11—C16 | 1.4121 (19) |
C2—H2 | 1.0000 | C12—C13 | 1.386 (2) |
C3—C4 | 1.5329 (19) | C12—H12 | 0.9500 |
C3—H3A | 0.9900 | C13—C14 | 1.387 (2) |
C3—H3B | 0.9900 | C13—H13 | 0.9500 |
C4—C5 | 1.5317 (19) | C14—C15 | 1.384 (2) |
C4—C9 | 1.5335 (19) | C14—H14 | 0.9500 |
C4—H4 | 1.0000 | C15—C16 | 1.3983 (19) |
C5—C6 | 1.5358 (18) | C15—H15 | 0.9500 |
C5—H5B | 0.9900 | C16—O16 | 1.3578 (17) |
C5—H5A | 0.9900 | O16—H16 | 0.8400 |
C6—C7 | 1.5369 (18) | N17—C18 | 1.3572 (18) |
C6—H6 | 1.0000 | N17—C21 | 1.3800 (18) |
C7—C8 | 1.5334 (19) | C18—N19 | 1.3144 (18) |
C7—H7A | 0.9900 | C18—H18 | 0.9500 |
C7—H7B | 0.9900 | N19—C20 | 1.3750 (18) |
C8—C10 | 1.5307 (19) | C20—C21 | 1.359 (2) |
C8—C9 | 1.5336 (19) | C20—H20 | 0.9500 |
C8—H8 | 1.0000 | C21—H21 | 0.9500 |
N17—C1—C11 | 105.20 (10) | C7—C8—H8 | 109.9 |
N17—C1—C2 | 109.43 (10) | C9—C8—H8 | 109.9 |
C11—C1—C2 | 112.54 (10) | C4—C9—C8 | 109.60 (11) |
N17—C1—C6 | 109.23 (10) | C4—C9—H9A | 109.8 |
C11—C1—C6 | 114.20 (10) | C8—C9—H9A | 109.8 |
C2—C1—C6 | 106.20 (10) | C4—C9—H9B | 109.8 |
C3—C2—C10 | 107.87 (10) | C8—C9—H9B | 109.8 |
C3—C2—C1 | 109.39 (10) | H9A—C9—H9B | 108.2 |
C10—C2—C1 | 111.95 (10) | C8—C10—C2 | 110.44 (11) |
C3—C2—H2 | 109.2 | C8—C10—H10B | 109.6 |
C10—C2—H2 | 109.2 | C2—C10—H10B | 109.6 |
C1—C2—H2 | 109.2 | C8—C10—H10A | 109.6 |
C4—C3—C2 | 110.01 (11) | C2—C10—H10A | 109.6 |
C4—C3—H3A | 109.7 | H10B—C10—H10A | 108.1 |
C2—C3—H3A | 109.7 | C12—C11—C16 | 116.59 (12) |
C4—C3—H3B | 109.7 | C12—C11—C1 | 120.07 (11) |
C2—C3—H3B | 109.7 | C16—C11—C1 | 123.06 (11) |
H3A—C3—H3B | 108.2 | C13—C12—C11 | 122.87 (13) |
C5—C4—C3 | 108.87 (11) | C13—C12—H12 | 118.6 |
C5—C4—C9 | 109.55 (11) | C11—C12—H12 | 118.6 |
C3—C4—C9 | 109.45 (11) | C12—C13—C14 | 119.57 (13) |
C5—C4—H4 | 109.6 | C12—C13—H13 | 120.2 |
C3—C4—H4 | 109.6 | C14—C13—H13 | 120.2 |
C9—C4—H4 | 109.6 | C15—C14—C13 | 119.31 (13) |
C4—C5—C6 | 110.18 (11) | C15—C14—H14 | 120.3 |
C4—C5—H5B | 109.6 | C13—C14—H14 | 120.3 |
C6—C5—H5B | 109.6 | C14—C15—C16 | 121.17 (13) |
C4—C5—H5A | 109.6 | C14—C15—H15 | 119.4 |
C6—C5—H5A | 109.6 | C16—C15—H15 | 119.4 |
H5B—C5—H5A | 108.1 | O16—C16—C15 | 118.79 (12) |
C5—C6—C7 | 109.36 (11) | O16—C16—C11 | 120.71 (12) |
C5—C6—C1 | 108.42 (10) | C15—C16—C11 | 120.49 (12) |
C7—C6—C1 | 111.46 (11) | C16—O16—H16 | 109.5 |
C5—C6—H6 | 109.2 | C18—N17—C21 | 105.78 (11) |
C7—C6—H6 | 109.2 | C18—N17—C1 | 125.96 (11) |
C1—C6—H6 | 109.2 | C21—N17—C1 | 127.56 (11) |
C8—C7—C6 | 110.49 (11) | N19—C18—N17 | 112.41 (12) |
C8—C7—H7A | 109.6 | N19—C18—H18 | 123.8 |
C6—C7—H7A | 109.6 | N17—C18—H18 | 123.8 |
C8—C7—H7B | 109.6 | C18—N19—C20 | 105.33 (11) |
C6—C7—H7B | 109.6 | C21—C20—N19 | 109.81 (12) |
H7A—C7—H7B | 108.1 | C21—C20—H20 | 125.1 |
C10—C8—C7 | 107.65 (11) | N19—C20—H20 | 125.1 |
C10—C8—C9 | 109.96 (11) | C20—C21—N17 | 106.65 (12) |
C7—C8—C9 | 109.52 (11) | C20—C21—H21 | 126.7 |
C10—C8—H8 | 109.9 | N17—C21—H21 | 126.7 |
N17—C1—C2—C3 | −179.67 (10) | C1—C2—C10—C8 | 60.58 (14) |
C11—C1—C2—C3 | −63.10 (13) | N17—C1—C11—C12 | 95.89 (13) |
C6—C1—C2—C3 | 62.54 (13) | C2—C1—C11—C12 | −23.18 (16) |
N17—C1—C2—C10 | 60.82 (13) | C6—C1—C11—C12 | −144.35 (12) |
C11—C1—C2—C10 | 177.39 (10) | N17—C1—C11—C16 | −77.81 (14) |
C6—C1—C2—C10 | −56.97 (13) | C2—C1—C11—C16 | 163.12 (11) |
C10—C2—C3—C4 | 60.61 (13) | C6—C1—C11—C16 | 41.95 (17) |
C1—C2—C3—C4 | −61.39 (13) | C16—C11—C12—C13 | −0.85 (19) |
C2—C3—C4—C5 | 58.63 (14) | C1—C11—C12—C13 | −174.96 (12) |
C2—C3—C4—C9 | −61.09 (14) | C11—C12—C13—C14 | 0.3 (2) |
C3—C4—C5—C6 | −59.90 (14) | C12—C13—C14—C15 | 0.2 (2) |
C9—C4—C5—C6 | 59.76 (14) | C13—C14—C15—C16 | −0.1 (2) |
C4—C5—C6—C7 | −58.55 (13) | C14—C15—C16—O16 | 179.48 (12) |
C4—C5—C6—C1 | 63.17 (13) | C14—C15—C16—C11 | −0.5 (2) |
N17—C1—C6—C5 | 179.01 (10) | C12—C11—C16—O16 | −179.02 (11) |
C11—C1—C6—C5 | 61.54 (14) | C1—C11—C16—O16 | −5.11 (19) |
C2—C1—C6—C5 | −63.08 (13) | C12—C11—C16—C15 | 0.93 (19) |
N17—C1—C6—C7 | −60.57 (13) | C1—C11—C16—C15 | 174.84 (11) |
C11—C1—C6—C7 | −178.04 (10) | C11—C1—N17—C18 | 75.31 (15) |
C2—C1—C6—C7 | 57.34 (13) | C2—C1—N17—C18 | −163.57 (12) |
C5—C6—C7—C8 | 58.29 (14) | C6—C1—N17—C18 | −47.69 (16) |
C1—C6—C7—C8 | −61.58 (14) | C11—C1—N17—C21 | −93.75 (14) |
C6—C7—C8—C10 | 60.48 (14) | C2—C1—N17—C21 | 27.38 (17) |
C6—C7—C8—C9 | −59.05 (14) | C6—C1—N17—C21 | 143.25 (12) |
C5—C4—C9—C8 | −60.07 (14) | C21—N17—C18—N19 | −1.09 (15) |
C3—C4—C9—C8 | 59.24 (14) | C1—N17—C18—N19 | −172.09 (11) |
C10—C8—C9—C4 | −58.49 (14) | N17—C18—N19—C20 | 0.49 (15) |
C7—C8—C9—C4 | 59.61 (14) | C18—N19—C20—C21 | 0.33 (15) |
C7—C8—C10—C2 | −59.76 (14) | N19—C20—C21—N17 | −0.98 (15) |
C9—C8—C10—C2 | 59.49 (14) | C18—N17—C21—C20 | 1.22 (14) |
C3—C2—C10—C8 | −59.81 (14) | C1—N17—C21—C20 | 172.03 (12) |
Cg is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···N19i | 0.84 | 1.83 | 2.6514 (15) | 164 |
C20—H20···Cgii | 0.95 | 2.60 | 3.459 (18) | 151 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H22N2O |
Mr | 294.39 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.3981 (4), 10.3944 (7), 12.5345 (8) |
α, β, γ (°) | 67.028 (6), 84.863 (6), 72.647 (6) |
V (Å3) | 732.22 (9) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.56 × 0.19 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer |
Absorption correction | Analytical [CrysAlis PRO RED (Oxford Diffraction, 2010); based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.819, 0.944 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6557, 2600, 2300 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.05 |
No. of reflections | 2600 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.27 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Cg is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···N19i | 0.84 | 1.83 | 2.6514 (15) | 164 |
C20—H20···Cgii | 0.95 | 2.60 | 3.459 (18) | 151 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1. |
Acknowledgements
The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002). The authors thank Dr Alex Griffin (Agilent Technologies) for X-ray experiment.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rokita, S. E. (2009). Quinone Methides, pp. 217–268. Hoboken, USA: Wiley. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Van De Water, R. W. & Pettus, T. R. R. (2002). Tetrahedron, 58, 5367–5405. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
o-Quinone methides are known as efficient DNA alkylating and cross-linking agents, they play a key role in the biological action of several antibiotics such as mitomycin and anthracyclines (Rokita, 2009). o-Quinone methides act as heterodienes in inter- and intramolecular cycloadditions with olefins to give various substituted chromanes. Like vinyl ketones, o-quinone methides also act as acceptors in Michael additions to afford o-substituted phenols (Van De Water & Pettus, 2002). Herewith we presenrt the title compound, I, which belongs to the family of o-quinone methides.
In I (Fig. 1), benzene ring is essential planar and hydroxy O deviates at 0.0171 (18) Å) from its mean plane. The benzene and imidazole rings form dihedral angle 84.53 (5)°.
In the crystal structure, intermolecular O–H···N hydrogen bonds (Table 1) pair the molecules into centrosymmetric dimers, and C–H···π interactions (Table 1) link further these dimers into columns propagated in direction [1 0 0].