organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­benzyl­­idene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 21 December 2010; accepted 27 December 2010; online 8 January 2011)

In the title mol­ecule, C16H15FO4, the fused 1,3-dioxane and cyclo­hexane rings exhibit a bath and a chair conformation, respectively. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For related structures, see: Zeng & Jian (2009[Zeng, W.-L. & Jian, F. (2009). Acta Cryst. E65, o1875.]); Zeng et al. (2009[Zeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2035.]). For applications of spiro compounds, see: Jiang et al. (1998[Jiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185-3189.]); Lian et al. (2008[Lian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441-444.]); Wei et al. (2008[Wei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501-1514.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15FO4

  • Mr = 290.28

  • Triclinic, [P \overline 1]

  • a = 5.6690 (11) Å

  • b = 10.130 (2) Å

  • c = 12.160 (2) Å

  • α = 100.68 (3)°

  • β = 90.73 (3)°

  • γ = 91.20 (3)°

  • V = 686.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.25 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 6753 measured reflections

  • 3124 independent reflections

  • 2481 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.127

  • S = 1.11

  • 3124 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.93 2.47 3.3405 (17) 156
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro compounds are widely used in medicine, catalysis and optical material (Lian et al., 2008; Jiang et al., 1998; Wei et al., 2008). As a part of our search for new spiro compounds with potentially high bioactivity (Zeng et al., 2009a,b), the title compound, (I), has been synthesized. Herewith we present its crystal structure.

In (I) (Fig. 1), the 1,3-dioxane ring is in a bath conformation with atom C4 atom common to the cyclohexane forming the flap. The cyclohexane ring exists in a distorted chair comformation. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers.

Related literature top

For related structures, see: Zeng & Jian (2009); Zeng, Zhang & Jian (2009). For applications of spiro compounds, see: Jiang et al. (1998); Lian et al. (2008); Wei et al. (2008).

Experimental top

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 3 h. The mixture was cooled and filtered, and then an ethanol solution of 4-fluorobenzaldehyde (7.44g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an petroleum ether-ethylacetate (3:1 v/v) solution of (I) at room temperature over a period of one week.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids.
3-(4-Fluorobenzylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione top
Crystal data top
C16H15FO4Z = 2
Mr = 290.28F(000) = 304
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6690 (11) ÅCell parameters from 2481 reflections
b = 10.130 (2) Åθ = 3.4–27.5°
c = 12.160 (2) ŵ = 0.11 mm1
α = 100.68 (3)°T = 293 K
β = 90.73 (3)°Block, colourless
γ = 91.20 (3)°0.25 × 0.18 × 0.12 mm
V = 686.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2481 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
phi and ω scansh = 67
6753 measured reflectionsk = 1313
3124 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.075P)2 + 0.0414P]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H15FO4γ = 91.20 (3)°
Mr = 290.28V = 686.0 (2) Å3
Triclinic, P1Z = 2
a = 5.6690 (11) ÅMo Kα radiation
b = 10.130 (2) ŵ = 0.11 mm1
c = 12.160 (2) ÅT = 293 K
α = 100.68 (3)°0.25 × 0.18 × 0.12 mm
β = 90.73 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2481 reflections with I > 2σ(I)
6753 measured reflectionsRint = 0.029
3124 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.11Δρmax = 0.22 e Å3
3124 reflectionsΔρmin = 0.22 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.41354 (13)0.17850 (9)0.73171 (7)0.0412 (2)
O30.23315 (15)0.01227 (9)0.59454 (6)0.0443 (2)
O20.54128 (17)0.12738 (11)0.89002 (8)0.0566 (3)
O10.19126 (18)0.19449 (10)0.62363 (8)0.0542 (3)
C80.21663 (19)0.07730 (12)0.66337 (10)0.0397 (3)
F10.52419 (17)0.46737 (10)0.87835 (8)0.0718 (3)
C70.41388 (19)0.09907 (13)0.80943 (9)0.0390 (3)
C110.0075 (2)0.18139 (12)0.86756 (9)0.0386 (3)
C90.25581 (19)0.02211 (12)0.78410 (9)0.0369 (3)
C40.23557 (19)0.15348 (12)0.64363 (9)0.0373 (3)
C150.3686 (2)0.29703 (14)0.79341 (12)0.0483 (3)
H15A0.49310.30970.74170.058*
C100.1751 (2)0.07673 (12)0.86916 (10)0.0395 (3)
H10A0.24480.04350.93870.047*
C140.3539 (2)0.37296 (13)0.87486 (11)0.0477 (3)
C50.00563 (19)0.19627 (13)0.68678 (10)0.0398 (3)
H5A0.04310.15300.74940.048*
H5B0.12330.16710.62820.048*
C160.1937 (2)0.20081 (13)0.78976 (11)0.0446 (3)
H16A0.20040.14830.73470.053*
C30.3168 (2)0.22760 (16)0.55360 (11)0.0510 (3)
H3A0.21940.19920.48690.061*
H3B0.47830.20430.53480.061*
C130.1757 (3)0.35709 (15)0.95384 (11)0.0526 (3)
H13A0.17110.41061.00820.063*
C120.0029 (2)0.25937 (14)0.95053 (10)0.0473 (3)
H12A0.11760.24571.00430.057*
C60.0155 (2)0.34786 (14)0.72405 (12)0.0522 (3)
H6A0.17490.37230.74600.063*
H6B0.08790.37580.78870.063*
C20.3031 (3)0.37944 (17)0.59021 (14)0.0625 (4)
H2A0.41820.40980.64970.075*
H2B0.34210.42260.52770.075*
C10.0590 (3)0.42054 (17)0.63108 (15)0.0642 (4)
H1A0.05360.39970.56920.077*
H1B0.05900.51680.65840.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0287 (4)0.0539 (5)0.0422 (4)0.0084 (3)0.0059 (3)0.0136 (4)
O30.0462 (5)0.0525 (5)0.0318 (4)0.0047 (4)0.0000 (3)0.0016 (4)
O20.0543 (5)0.0664 (6)0.0495 (5)0.0195 (5)0.0240 (4)0.0156 (5)
O10.0602 (6)0.0480 (5)0.0484 (5)0.0020 (4)0.0003 (4)0.0067 (4)
C80.0311 (5)0.0475 (7)0.0380 (6)0.0005 (5)0.0000 (4)0.0010 (5)
F10.0644 (6)0.0712 (6)0.0810 (6)0.0309 (5)0.0030 (5)0.0207 (5)
C70.0310 (5)0.0482 (6)0.0372 (6)0.0030 (5)0.0034 (4)0.0074 (5)
C110.0361 (5)0.0410 (6)0.0376 (6)0.0002 (4)0.0015 (4)0.0046 (5)
C90.0314 (5)0.0411 (6)0.0366 (5)0.0003 (4)0.0036 (4)0.0034 (5)
C40.0291 (5)0.0487 (6)0.0333 (5)0.0018 (4)0.0031 (4)0.0065 (5)
C150.0362 (6)0.0545 (7)0.0530 (7)0.0033 (5)0.0068 (5)0.0078 (6)
C100.0369 (6)0.0432 (6)0.0372 (6)0.0014 (5)0.0047 (5)0.0052 (5)
C140.0420 (6)0.0451 (7)0.0539 (7)0.0085 (5)0.0047 (5)0.0049 (6)
C50.0282 (5)0.0493 (7)0.0414 (6)0.0010 (5)0.0013 (4)0.0077 (5)
C160.0383 (6)0.0495 (7)0.0481 (7)0.0010 (5)0.0037 (5)0.0152 (6)
C30.0416 (6)0.0738 (9)0.0413 (6)0.0025 (6)0.0023 (5)0.0203 (6)
C130.0590 (8)0.0550 (8)0.0468 (7)0.0084 (6)0.0006 (6)0.0184 (6)
C120.0471 (7)0.0560 (7)0.0389 (6)0.0066 (6)0.0049 (5)0.0098 (5)
C60.0469 (7)0.0505 (7)0.0573 (8)0.0049 (6)0.0003 (6)0.0047 (6)
C20.0610 (8)0.0695 (10)0.0644 (9)0.0146 (7)0.0041 (7)0.0339 (8)
C10.0693 (9)0.0531 (8)0.0738 (10)0.0022 (7)0.0094 (8)0.0216 (7)
Geometric parameters (Å, º) top
O4—C71.3500 (15)C14—C131.371 (2)
O4—C41.4458 (13)C5—C61.5208 (19)
O3—C81.3463 (16)C5—H5A0.9700
O3—C41.4440 (15)C5—H5B0.9700
O2—C71.1972 (14)C16—H16A0.9300
O1—C81.2008 (15)C3—C21.524 (2)
C8—C91.4830 (16)C3—H3A0.9700
F1—C141.3511 (15)C3—H3B0.9700
C7—C91.4872 (16)C13—C121.3845 (19)
C11—C121.3922 (17)C13—H13A0.9300
C11—C161.3948 (17)C12—H12A0.9300
C11—C101.4635 (17)C6—C11.519 (2)
C9—C101.3411 (17)C6—H6A0.9700
C4—C31.5092 (18)C6—H6B0.9700
C4—C51.5138 (16)C2—C11.517 (2)
C15—C141.365 (2)C2—H2A0.9700
C15—C161.3827 (18)C2—H2B0.9700
C15—H15A0.9300C1—H1A0.9700
C10—H10A0.9300C1—H1B0.9700
C7—O4—C4118.46 (9)H5A—C5—H5B108.0
C8—O3—C4118.15 (9)C15—C16—C11120.91 (12)
O1—C8—O3119.04 (11)C15—C16—H16A119.5
O1—C8—C9124.97 (12)C11—C16—H16A119.5
O3—C8—C9115.69 (10)C4—C3—C2112.08 (12)
O2—C7—O4119.51 (11)C4—C3—H3A109.2
O2—C7—C9125.10 (12)C2—C3—H3A109.2
O4—C7—C9115.36 (9)C4—C3—H3B109.2
C12—C11—C16118.66 (11)C2—C3—H3B109.2
C12—C11—C10118.86 (11)H3A—C3—H3B107.9
C16—C11—C10122.37 (11)C14—C13—C12118.29 (13)
C10—C9—C8125.84 (11)C14—C13—H13A120.9
C10—C9—C7118.84 (10)C12—C13—H13A120.9
C8—C9—C7115.16 (11)C13—C12—C11120.75 (12)
O3—C4—O4108.60 (10)C13—C12—H12A119.6
O3—C4—C3106.43 (10)C11—C12—H12A119.6
O4—C4—C3106.66 (10)C1—C6—C5111.29 (12)
O3—C4—C5110.87 (10)C1—C6—H6A109.4
O4—C4—C5111.68 (9)C5—C6—H6A109.4
C3—C4—C5112.35 (11)C1—C6—H6B109.4
C14—C15—C16118.30 (12)C5—C6—H6B109.4
C14—C15—H15A120.8H6A—C6—H6B108.0
C16—C15—H15A120.8C1—C2—C3111.48 (13)
C9—C10—C11128.90 (11)C1—C2—H2A109.3
C9—C10—H10A115.6C3—C2—H2A109.3
C11—C10—H10A115.6C1—C2—H2B109.3
F1—C14—C15118.41 (12)C3—C2—H2B109.3
F1—C14—C13118.51 (13)H2A—C2—H2B108.0
C15—C14—C13123.08 (12)C2—C1—C6110.99 (13)
C4—C5—C6111.58 (11)C2—C1—H1A109.4
C4—C5—H5A109.3C6—C1—H1A109.4
C6—C5—H5A109.3C2—C1—H1B109.4
C4—C5—H5B109.3C6—C1—H1B109.4
C6—C5—H5B109.3H1A—C1—H1B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.473.3405 (17)156
C10—H10A···O20.932.542.874 (2)101
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H15FO4
Mr290.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.6690 (11), 10.130 (2), 12.160 (2)
α, β, γ (°)100.68 (3), 90.73 (3), 91.20 (3)
V3)686.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6753, 3124, 2481
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.127, 1.11
No. of reflections3124
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.932.473.3405 (17)156
Symmetry code: (i) x+1, y, z+2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y. Z., Xue, S., Li, Z., Deng, J. G., Mi, A. Q. & Albert, S. C. C. (1998). Tetrahedron, 9, 3185–3189.  CrossRef CAS Google Scholar
First citationLian, Y., Guo, J. J., Liu, X. M. & Wei, R. B. (2008). Chem. Res. Chin. Univ. 24, 441–444.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, R. B., Liu, B., Liu, Y., Guo, J. J. & Zhang, D. W. (2008). Chin. J. Org. Chem. 28, 1501–1514.  CAS Google Scholar
First citationZeng, W.-L. & Jian, F. (2009). Acta Cryst. E65, o1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2035.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds