organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,4S)-2-(2,4-Di­fluoro­phen­yl)-5-[(4-methyl­phen­yl)sulfon­yl]-2,5-di­aza­bi­cyclo­[2.2.1]hepta­ne

aSchool of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, bSchool of Pharmaceutical Sciences, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China, and cSchool of Pharmaceutical Sciences, Henan University of TCM, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: wcllaoshi@yahoo.com.cn

(Received 21 December 2010; accepted 28 December 2010; online 8 January 2011)

In the title mol­ecule, C18H18F2N2O2S, the two benzene rings, which are oriented in opposite directions with respect to the rigid 2,5-diaza­bicyclo­[2.2.1]heptane core, form a dihedral angle of 17.2 (1)°. Weak inter­molecular C—H⋯O, C—H⋯F and C—H⋯N contacts consolidate the crystal packing.

Related literature

For details of the synthesis, see: Portoghese et al. (1966[Portoghese, P. S., Larson, D. L. & Takemori, A. E. (1966). Eur. J. Pharmacol. 4, 445-451.]); Braish & Fox (1990[Braish, T. F. & Fox, D. E. (1990). J. Org. Chem. 55, 1684-1687.]); Ulrich et al. (1990[Ulrich, J., Fritz, S., Suhaib, M. S., Bernhard, K. & Kaberi, B. (1990). Synthesis, 11, 925-930.]). For a recent study of the biological activity of 2,5-diaza­bicyclo­[2.2.1]heptane deriv­atives, see: Li et al. (2010[Li, T., Bunnelle, W. H., Ryther, K. B., Anderson, D. J., Malysz, J., Helfrich, R., Granlien, J. H., Håkerud, M., Peters, D., Schrimpf, M. R., Gopalakrishnan, M. & Ji, J. G. (2010). Bioorg. Med. Chem. Lett. 20, 3636-3639.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18F2N2O2S

  • Mr = 364.40

  • Monoclinic, P 21

  • a = 9.9615 (11) Å

  • b = 7.6586 (8) Å

  • c = 11.3461 (14) Å

  • β = 98.979 (1)°

  • V = 855.00 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.38 × 0.33 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.967

  • 4425 measured reflections

  • 2891 independent reflections

  • 2045 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.00

  • 2891 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1569 Friedel pairs

  • Flack parameter: 0.00 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O2i 0.97 2.63 3.445 (5) 141
C5—H5A⋯O2i 0.97 2.70 3.550 (5) 147
C10—H10⋯F1ii 0.93 2.63 3.445 (4) 147
C18—H18⋯O1iii 0.93 2.43 3.342 (5) 166
C15—H15⋯N2iv 0.93 2.66 3.412 (5) 139
Symmetry codes: (i) x, y-1, z; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,5-Diazabicyclo[2.2.1]heptane derivatives, the synthesis of which is known for a long time (Portoghese et al., 1966; Braish & Fox, 1990), are still under intensive studies. For example, Li et al. (2010) used them as novel α7 neuronal nicotinic receptor ligands. Herewith we report the synthesis and crystal structure of the title compound (I) (Fig. 1) prepared in enantiomerically pure form from trans-4-hydroxy-L-proline (Ulrich et al., 1990).

In (I), the angles C2—C5—C4, C4—N1—C1 and C3—N2—C2 are 92.9 (3), 107.2 (3) and 106.1 (3)°, respectively. The two benzene rings are oriented in opposite directions in reference to the rigid 2,5-diazabicyclo[2.2.1]heptane core, and they form a dihedral angle with the value of 17.2 (1)°. In the crystal structure, weak intramolecular C—H···O, C—H···F and C—H···N hydrogen bonds(Table 1) consolidate the crystal packing.

Related literature top

For details of the synthesis, see: Portoghese et al. (1966); Braish & Fox (1990); Ulrich et al. (1990). For a recent study of the biological activity of 2,5-diazabicyclo[2.2.1]heptane derivatives, see: Li et al. (2010).

Experimental top

All reagents and solvents were used as obtained without further purification. (1S,4S)-5-(2,4-difluorophenyl)- 2-tosyl-2,5-diazabicyclo[2.2.1]heptane was synthesized from (2S,4R)-N-tosyl-4-tosyloxy-2-tosyloxymethylpyrrolidine as described previously by Ulrich and Fritz, whose started material was trans-4-hydroxy-L-proline. A solution of 2,4-difluoroaniline(1.5 mL,9.01 mmol) and (2S,4R)-N-tosyl- 4-tosyloxy-2-tosyloxymethylpyrrolidine (0.5 g,0.86 mmol) was refluxed for about 2 h in a 10 ml three-neck bottle until the material was consumed. The resulting mixture was cooled to room tempeature, before ethyl acetate was added. Then the mixture was heated to be able to be stirred and filtered to get the the title compound. m.p.:187–192°C. Crystals suitable for X-ray analysis were grown by slow evaporation from ethyl acetate solution at room temperature for two weeks. The crystals were separated manually. 1H NMR(400 MHz, CDCl3)σ: 7.702–7.681(d,J=8 Hz,2H), 7.282–7.263(d,J=7.6 Hz,2H), 6.719–6.700(m,J=7.6 Hz,2H), 6.448–6.387(m,J=24 Hz,1H), 4.463(s,1H), 4.339(s,1H),3.563–3.539(d,J=9.6 Hz,2H), 3.263–3.239(m,J=9.6 Hz,6H), 2.415(s,3H), 1.845–1.820(d,J=10 Hz,1H), 1.374–1.349(d,J=10 Hz,2H); 13 C NMR(100.6 MHz,CDCl3)σ: 156.32, 153.94, 143.71, 135.37, 131.70, 129.79, 127.39, 115.76, 110.89, 104.85, 59.87, 59.29, 58.18, 52.31, 36.38, 21.51.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl)and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram.
(1S,4S)-2-(2,4-Difluorophenyl)-5-[(4-methylphenyl)sulfonyl]- 2,5-diazabicyclo[2.2.1]heptane top
Crystal data top
C18H18F2N2O2SF(000) = 380
Mr = 364.40Dx = 1.415 Mg m3
Monoclinic, P21Melting point = 460–465 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.9615 (11) ÅCell parameters from 1315 reflections
b = 7.6586 (8) Åθ = 3.0–20.7°
c = 11.3461 (14) ŵ = 0.22 mm1
β = 98.979 (1)°T = 298 K
V = 855.00 (17) Å3Block, colourless
Z = 20.38 × 0.33 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2891 independent reflections
Radiation source: fine-focus sealed tube2045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.920, Tmax = 0.967k = 98
4425 measured reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0457P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2891 reflectionsΔρmax = 0.17 e Å3
227 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1569 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (10)
Crystal data top
C18H18F2N2O2SV = 855.00 (17) Å3
Mr = 364.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.9615 (11) ŵ = 0.22 mm1
b = 7.6586 (8) ÅT = 298 K
c = 11.3461 (14) Å0.38 × 0.33 × 0.15 mm
β = 98.979 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2891 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2045 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.967Rint = 0.028
4425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.28 e Å3
2891 reflectionsAbsolute structure: Flack (1983), 1569 Friedel pairs
227 parametersAbsolute structure parameter: 0.00 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.4098 (2)0.6800 (3)0.03940 (17)0.0765 (8)
F20.8825 (2)0.6799 (4)0.0177 (2)0.1001 (9)
N10.2867 (3)0.7976 (4)0.3031 (2)0.0461 (8)
N20.4040 (3)0.5378 (4)0.1917 (2)0.0433 (7)
O10.2878 (3)0.9129 (4)0.5023 (2)0.0763 (10)
O20.2841 (2)1.1122 (3)0.3288 (3)0.0727 (9)
S10.24048 (8)0.95563 (13)0.38078 (9)0.0536 (3)
C10.2683 (4)0.8049 (5)0.1708 (3)0.0542 (10)
H1A0.34210.86650.14250.065*
H1B0.18240.85830.13750.065*
C20.2704 (3)0.6110 (5)0.1432 (3)0.0521 (10)
H20.23840.58150.05950.063*
C30.4094 (3)0.5309 (5)0.3233 (3)0.0469 (9)
H3A0.48510.59810.36430.056*
H3B0.41580.41170.35250.056*
C40.2756 (3)0.6122 (5)0.3370 (3)0.0501 (9)
H40.24540.59210.41400.060*
C50.1836 (4)0.5390 (6)0.2296 (3)0.0607 (10)
H5A0.17930.41250.22930.073*
H5B0.09280.58850.21880.073*
C60.0621 (3)0.9624 (5)0.3636 (3)0.0417 (8)
C70.0068 (4)0.8662 (5)0.4375 (3)0.0516 (9)
H70.04080.79620.49680.062*
C80.1472 (4)0.8740 (5)0.4234 (3)0.0552 (10)
H80.19310.80590.47200.066*
C90.2197 (3)0.9795 (5)0.3395 (3)0.0512 (9)
C100.1492 (4)1.0745 (5)0.2650 (3)0.0556 (10)
H100.19711.14520.20630.067*
C110.0098 (4)1.0664 (5)0.2761 (3)0.0528 (10)
H110.03581.13060.22500.063*
C120.3720 (3)0.9925 (7)0.3276 (4)0.0750 (13)
H12A0.41280.93660.25500.112*
H12B0.39831.11320.32580.112*
H12C0.40210.93600.39440.112*
C130.5230 (3)0.5761 (4)0.1463 (3)0.0415 (9)
C140.5274 (4)0.6452 (5)0.0333 (3)0.0494 (9)
C150.6459 (4)0.6818 (5)0.0094 (3)0.0578 (11)
H150.64430.73090.08450.069*
C160.7645 (4)0.6445 (6)0.0606 (4)0.0609 (11)
C170.7683 (4)0.5735 (6)0.1699 (4)0.0633 (12)
H170.85140.54730.21620.076*
C180.6496 (4)0.5398 (5)0.2126 (3)0.0518 (9)
H180.65370.49130.28820.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0681 (16)0.109 (2)0.0488 (13)0.0138 (14)0.0023 (11)0.0168 (13)
F20.0703 (17)0.134 (3)0.104 (2)0.0124 (16)0.0408 (14)0.0063 (17)
N10.0493 (18)0.0448 (19)0.0458 (18)0.0052 (16)0.0121 (14)0.0034 (15)
N20.0394 (16)0.0426 (17)0.0466 (17)0.0031 (13)0.0027 (13)0.0024 (14)
O10.0636 (18)0.099 (3)0.0592 (17)0.0166 (16)0.0120 (13)0.0166 (16)
O20.0501 (17)0.0422 (17)0.128 (2)0.0106 (14)0.0201 (16)0.0099 (17)
S10.0412 (5)0.0511 (6)0.0669 (7)0.0008 (5)0.0035 (4)0.0114 (5)
C10.049 (2)0.056 (3)0.056 (2)0.015 (2)0.0062 (18)0.012 (2)
C20.046 (2)0.057 (3)0.049 (2)0.0056 (19)0.0040 (17)0.0054 (19)
C30.052 (2)0.043 (2)0.046 (2)0.0041 (17)0.0080 (17)0.0080 (16)
C40.051 (2)0.046 (2)0.056 (2)0.0032 (18)0.0165 (18)0.0146 (18)
C50.041 (2)0.056 (2)0.083 (3)0.0127 (18)0.004 (2)0.002 (2)
C60.0401 (18)0.0419 (19)0.0434 (18)0.001 (2)0.0075 (15)0.006 (2)
C70.056 (2)0.046 (2)0.053 (2)0.0065 (19)0.0103 (18)0.0060 (19)
C80.053 (2)0.051 (2)0.065 (3)0.0021 (19)0.019 (2)0.002 (2)
C90.0420 (19)0.053 (3)0.058 (2)0.005 (2)0.0054 (17)0.011 (2)
C100.042 (2)0.063 (3)0.060 (2)0.000 (2)0.0004 (18)0.006 (2)
C110.054 (2)0.053 (3)0.051 (2)0.0060 (19)0.0105 (19)0.0052 (19)
C120.046 (2)0.083 (3)0.096 (3)0.009 (2)0.010 (2)0.014 (3)
C130.044 (2)0.038 (2)0.042 (2)0.0035 (16)0.0062 (16)0.0026 (16)
C140.055 (2)0.043 (2)0.047 (2)0.0085 (19)0.0013 (18)0.0001 (19)
C150.071 (3)0.054 (3)0.051 (2)0.001 (2)0.021 (2)0.0008 (19)
C160.051 (3)0.063 (3)0.073 (3)0.002 (2)0.023 (2)0.004 (2)
C170.041 (2)0.084 (3)0.064 (3)0.003 (2)0.0040 (19)0.000 (2)
C180.050 (2)0.059 (2)0.047 (2)0.0077 (19)0.0060 (17)0.0014 (18)
Geometric parameters (Å, º) top
F1—C141.350 (4)C6—C71.378 (4)
F2—C161.367 (4)C6—C111.382 (5)
N1—C41.480 (4)C7—C81.383 (5)
N1—C11.485 (4)C7—H70.9300
N1—S11.606 (3)C8—C91.366 (5)
N2—C131.395 (4)C8—H80.9300
N2—C21.470 (4)C9—C101.387 (5)
N2—C31.486 (4)C9—C121.506 (4)
O1—S11.424 (3)C10—C111.376 (5)
O2—S11.434 (3)C10—H100.9300
S1—C61.758 (3)C11—H110.9300
C1—C21.518 (5)C12—H12A0.9600
C1—H1A0.9700C12—H12B0.9600
C1—H1B0.9700C12—H12C0.9600
C2—C51.509 (5)C13—C181.391 (5)
C2—H20.9800C13—C141.394 (4)
C3—C41.501 (4)C14—C151.372 (5)
C3—H3A0.9700C15—C161.348 (5)
C3—H3B0.9700C15—H150.9300
C4—C51.514 (5)C16—C171.349 (5)
C4—H40.9800C17—C181.371 (5)
C5—H5A0.9700C17—H170.9300
C5—H5B0.9700C18—H180.9300
C4—N1—C1107.2 (3)C7—C6—C11119.6 (3)
C4—N1—S1122.8 (2)C7—C6—S1120.5 (3)
C1—N1—S1121.7 (2)C11—C6—S1119.9 (3)
C13—N2—C2123.6 (3)C6—C7—C8119.8 (3)
C13—N2—C3118.6 (3)C6—C7—H7120.1
C2—N2—C3106.1 (3)C8—C7—H7120.1
O1—S1—O2120.99 (18)C9—C8—C7121.4 (3)
O1—S1—N1106.15 (17)C9—C8—H8119.3
O2—S1—N1105.85 (14)C7—C8—H8119.3
O1—S1—C6106.89 (15)C8—C9—C10118.2 (3)
O2—S1—C6107.21 (17)C8—C9—C12121.2 (4)
N1—S1—C6109.44 (16)C10—C9—C12120.6 (4)
N1—C1—C299.7 (3)C11—C10—C9121.4 (3)
N1—C1—H1A111.8C11—C10—H10119.3
C2—C1—H1A111.8C9—C10—H10119.3
N1—C1—H1B111.8C10—C11—C6119.6 (3)
C2—C1—H1B111.8C10—C11—H11120.2
H1A—C1—H1B109.6C6—C11—H11120.2
N2—C2—C5101.2 (3)C9—C12—H12A109.5
N2—C2—C1109.7 (3)C9—C12—H12B109.5
C5—C2—C1101.3 (3)H12A—C12—H12B109.5
N2—C2—H2114.4C9—C12—H12C109.5
C5—C2—H2114.4H12A—C12—H12C109.5
C1—C2—H2114.4H12B—C12—H12C109.5
N2—C3—C4101.3 (2)C18—C13—C14114.7 (3)
N2—C3—H3A111.5C18—C13—N2120.6 (3)
C4—C3—H3A111.5C14—C13—N2124.7 (3)
N2—C3—H3B111.5F1—C14—C15117.1 (3)
C4—C3—H3B111.5F1—C14—C13119.2 (3)
H3A—C3—H3B109.3C15—C14—C13123.6 (3)
N1—C4—C3105.5 (3)C16—C15—C14118.2 (3)
N1—C4—C5101.9 (3)C16—C15—H15120.9
C3—C4—C5101.5 (3)C14—C15—H15120.9
N1—C4—H4115.4C15—C16—C17121.6 (4)
C3—C4—H4115.4C15—C16—F2118.1 (4)
C5—C4—H4115.4C17—C16—F2120.3 (4)
C2—C5—C492.9 (3)C16—C17—C18119.9 (4)
C2—C5—H5A113.1C16—C17—H17120.0
C4—C5—H5A113.1C18—C17—H17120.0
C2—C5—H5B113.1C17—C18—C13122.0 (3)
C4—C5—H5B113.1C17—C18—H18119.0
H5A—C5—H5B110.5C13—C18—H18119.0
C4—N1—S1—O142.5 (3)O2—S1—C6—C1121.9 (3)
C1—N1—S1—O1173.3 (3)N1—S1—C6—C1192.5 (3)
C4—N1—S1—O2172.2 (3)C11—C6—C7—C80.2 (5)
C1—N1—S1—O243.5 (3)S1—C6—C7—C8179.5 (3)
C4—N1—S1—C672.6 (3)C6—C7—C8—C92.0 (5)
C1—N1—S1—C671.7 (3)C7—C8—C9—C102.5 (6)
C4—N1—C1—C28.7 (3)C7—C8—C9—C12177.7 (4)
S1—N1—C1—C2157.7 (2)C8—C9—C10—C111.3 (5)
C13—N2—C2—C5175.9 (3)C12—C9—C10—C11178.9 (3)
C3—N2—C2—C533.6 (3)C9—C10—C11—C60.4 (5)
C13—N2—C2—C169.4 (4)C7—C6—C11—C100.9 (5)
C3—N2—C2—C172.9 (4)S1—C6—C11—C10178.4 (3)
N1—C1—C2—N263.7 (3)C2—N2—C13—C18163.7 (3)
N1—C1—C2—C542.7 (3)C3—N2—C13—C1825.7 (5)
C13—N2—C3—C4141.8 (3)C2—N2—C13—C1418.8 (5)
C2—N2—C3—C42.7 (3)C3—N2—C13—C14156.8 (3)
C1—N1—C4—C377.7 (3)C18—C13—C14—F1178.0 (3)
S1—N1—C4—C3133.7 (3)N2—C13—C14—F10.4 (5)
C1—N1—C4—C528.0 (3)C18—C13—C14—C152.4 (5)
S1—N1—C4—C5120.6 (3)N2—C13—C14—C15180.0 (3)
N2—C3—C4—N167.9 (3)F1—C14—C15—C16178.5 (3)
N2—C3—C4—C538.0 (3)C13—C14—C15—C161.8 (6)
N2—C2—C5—C454.4 (3)C14—C15—C16—C170.1 (6)
C1—C2—C5—C458.5 (3)C14—C15—C16—F2179.6 (4)
N1—C4—C5—C251.9 (3)C15—C16—C17—C180.9 (6)
C3—C4—C5—C256.9 (3)F2—C16—C17—C18179.4 (4)
O1—S1—C6—C726.3 (3)C16—C17—C18—C130.2 (6)
O2—S1—C6—C7157.4 (3)C14—C13—C18—C171.3 (5)
N1—S1—C6—C788.2 (3)N2—C13—C18—C17179.0 (3)
O1—S1—C6—C11153.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.633.445 (5)141
C5—H5A···O2i0.972.703.550 (5)147
C10—H10···F1ii0.932.633.445 (4)147
C18—H18···O1iii0.932.433.342 (5)166
C15—H15···N2iv0.932.663.412 (5)139
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC18H18F2N2O2S
Mr364.40
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.9615 (11), 7.6586 (8), 11.3461 (14)
β (°) 98.979 (1)
V3)855.00 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.38 × 0.33 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.920, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
4425, 2891, 2045
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.103, 1.00
No. of reflections2891
No. of parameters227
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.28
Absolute structureFlack (1983), 1569 Friedel pairs
Absolute structure parameter0.00 (10)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.633.445 (5)141
C5—H5A···O2i0.972.703.550 (5)147
C10—H10···F1ii0.932.633.445 (4)147
C18—H18···O1iii0.932.433.342 (5)166
C15—H15···N2iv0.932.663.412 (5)139
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z.
 

Acknowledgements

We thank Xiufang Shi and Hongmin Liu (Zhengzhou University) for the data analysis.

References

First citationBraish, T. F. & Fox, D. E. (1990). J. Org. Chem. 55, 1684–1687.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, T., Bunnelle, W. H., Ryther, K. B., Anderson, D. J., Malysz, J., Helfrich, R., Granlien, J. H., Håkerud, M., Peters, D., Schrimpf, M. R., Gopalakrishnan, M. & Ji, J. G. (2010). Bioorg. Med. Chem. Lett. 20, 3636–3639.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPortoghese, P. S., Larson, D. L. & Takemori, A. E. (1966). Eur. J. Pharmacol. 4, 445–451.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, J., Fritz, S., Suhaib, M. S., Bernhard, K. & Kaberi, B. (1990). Synthesis, 11, 925–930.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds