organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N′-[(2-hy­dr­oxy­naphthalen-1-yl)methyl­­idene]benzohydrazide

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: cooperationwell@126.com

(Received 31 December 2010; accepted 6 January 2011; online 12 January 2011)

The title compound, C18H13ClN2O2, was prepared by the reaction of 2-hy­droxy-1-naphthaldehyde with 3-chloro­benzohydrazide in methanol. An intra­molecular O—H⋯N hydrogen bond influences the mol­ecular conformation; the benzene ring and naphthyl ring system form a dihedral angle of 17.1 (3)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagated in [101].

Related literature

For Schiff base compounds, see: Bessy et al. (2006[Bessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201-208.]); Podyachev et al. (2007[Podyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250-261.]); Raj & Kurup (2007[Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]); Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]); Bacchi et al. (2006[Bacchi, A., Carcelli, M., Pelizzi, G., Solinas, C. & Sorace, L. (2006). Inorg. Chim. Acta, 359, 2275-2280.]); Dinda et al. (2002[Dinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434-4439.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of the synthesis, see: Zhu (2010[Zhu, H.-Y. (2010). Acta Cryst. E66, o2562.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClN2O2

  • Mr = 324.75

  • Monoclinic, P 21 /n

  • a = 7.158 (2) Å

  • b = 30.886 (3) Å

  • c = 7.3733 (12) Å

  • β = 108.924 (2)°

  • V = 1541.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.955

  • 8306 measured reflections

  • 3288 independent reflections

  • 1635 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.161

  • S = 1.04

  • 3288 reflections

  • 212 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (3) 1.99 (2) 2.860 (4) 162 (4)
O1—H1⋯N1 0.82 1.85 2.574 (4) 146
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last years, a number of Schiff bases derived from the reaction of aldehydes with benzohydrazides were prepared and structurally characterized (Bessy et al., 2006; Podyachev et al., 2007; Raj & Kurup, 2007; Pouralimardan et al., 2007; Bacchi et al., 2006; Dinda et al., 2002). As a contribution to this work, we present here the title new Schiff base compound (Fig. 1).

There is an intramolecular O—H···N hydrogen bond in the molecule, which influences the molecular conformation - the dihedral angle between the benzene ring and the naphthyl ring is 17.1 (3)°. All the bond lengths are within normal values (Allen et al., 1987). In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in [101] (Fig. 2).

Related literature top

For Schiff base compounds, see: Bessy et al. (2006); Podyachev et al. (2007); Raj & Kurup (2007); Pouralimardan et al. (2007); Bacchi et al. (2006); Dinda et al. (2002). For reference bond lengths, see: Allen et al. (1987). For details of the synthesis, see: Zhu (2010).

Experimental top

The compound was prepared and crystallized according to the literature method (Zhu, 2010). 2-Hydroxy-1-naphthaldehyde (0.172 g, 1 mmol) and 3-chlorobenzohydrazide (0.171 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear colorless solution was left to slow evaporation in air for five days, yielding colorless block-shaped crystals, which were collected by filtration and washed with methanol.

Refinement top

The amino H atom was located from a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 Å, and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. Intramolecular O—H···N hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing showing H-bonds as dashed lines.
3-Chloro-N'-[(2-hydroxynaphthalen-1-yl)methylidene]benzohydrazide top
Crystal data top
C18H13ClN2O2F(000) = 672
Mr = 324.75Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.158 (2) ÅCell parameters from 1332 reflections
b = 30.886 (3) Åθ = 2.5–24.9°
c = 7.3733 (12) ŵ = 0.26 mm1
β = 108.924 (2)°T = 298 K
V = 1541.9 (5) Å3Block, colorless
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3288 independent reflections
Radiation source: fine-focus sealed tube1635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.950, Tmax = 0.955k = 3239
8306 measured reflectionsl = 96
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.9339P]
where P = (Fo2 + 2Fc2)/3
3288 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C18H13ClN2O2V = 1541.9 (5) Å3
Mr = 324.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.158 (2) ŵ = 0.26 mm1
b = 30.886 (3) ÅT = 298 K
c = 7.3733 (12) Å0.20 × 0.20 × 0.18 mm
β = 108.924 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3288 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1635 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.955Rint = 0.062
8306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0821 restraint
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3288 reflectionsΔρmin = 0.35 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66632 (19)0.05960 (4)0.6685 (2)0.0843 (5)
H20.696 (5)0.2651 (13)0.585 (3)0.080*
N10.5796 (4)0.28518 (9)0.3225 (4)0.0418 (8)
N20.6082 (5)0.25640 (10)0.4729 (4)0.0427 (8)
O10.5149 (5)0.30417 (9)0.0326 (4)0.0597 (8)
H10.52220.28840.05900.090*
O20.4224 (4)0.20537 (8)0.2758 (4)0.0533 (8)
C10.6241 (5)0.35642 (11)0.2236 (5)0.0360 (9)
C20.5645 (5)0.34493 (13)0.0298 (6)0.0445 (10)
C30.5567 (6)0.37613 (15)0.1110 (6)0.0562 (12)
H30.52140.36780.23890.067*
C40.5998 (6)0.41809 (15)0.0627 (7)0.0586 (12)
H40.59220.43830.15850.070*
C50.6560 (5)0.43187 (12)0.1296 (6)0.0461 (10)
C60.6976 (6)0.47585 (14)0.1805 (7)0.0609 (12)
H60.68730.49620.08480.073*
C70.7521 (7)0.48893 (14)0.3655 (8)0.0706 (14)
H70.78030.51790.39660.085*
C80.7655 (7)0.45872 (15)0.5081 (7)0.0716 (14)
H80.80080.46770.63510.086*
C90.7276 (6)0.41613 (13)0.4649 (6)0.0545 (11)
H90.74060.39650.56400.065*
C100.6693 (5)0.40069 (12)0.2746 (6)0.0398 (9)
C110.6392 (5)0.32393 (12)0.3679 (5)0.0397 (9)
H110.69330.33130.49670.048*
C120.5277 (5)0.21672 (12)0.4356 (5)0.0401 (9)
C130.5780 (5)0.18679 (11)0.6038 (5)0.0375 (9)
C140.5923 (5)0.14310 (12)0.5659 (6)0.0426 (9)
H140.56900.13370.44070.051*
C150.6411 (5)0.11390 (12)0.7143 (7)0.0507 (11)
C160.6694 (6)0.12736 (16)0.8992 (7)0.0620 (13)
H160.70130.10740.99890.074*
C170.6502 (6)0.17043 (16)0.9362 (6)0.0609 (12)
H170.66750.17951.06090.073*
C180.6053 (5)0.20038 (13)0.7888 (6)0.0476 (10)
H180.59360.22960.81430.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0781 (9)0.0429 (7)0.1416 (13)0.0095 (6)0.0490 (8)0.0229 (7)
N10.0476 (19)0.0348 (18)0.040 (2)0.0005 (14)0.0096 (15)0.0034 (15)
N20.047 (2)0.0355 (18)0.0368 (19)0.0048 (15)0.0017 (15)0.0038 (16)
O10.078 (2)0.0557 (19)0.0442 (18)0.0086 (16)0.0175 (16)0.0077 (14)
O20.0568 (17)0.0465 (16)0.0417 (17)0.0031 (13)0.0047 (13)0.0018 (13)
C10.0287 (19)0.044 (2)0.035 (2)0.0038 (16)0.0104 (16)0.0037 (18)
C20.043 (2)0.051 (3)0.042 (2)0.0003 (19)0.0166 (19)0.001 (2)
C30.062 (3)0.074 (3)0.032 (2)0.003 (2)0.015 (2)0.011 (2)
C40.062 (3)0.059 (3)0.062 (3)0.005 (2)0.029 (2)0.021 (2)
C50.040 (2)0.044 (3)0.057 (3)0.0054 (18)0.019 (2)0.009 (2)
C60.059 (3)0.044 (3)0.082 (4)0.005 (2)0.026 (3)0.020 (3)
C70.077 (3)0.041 (3)0.099 (4)0.007 (2)0.035 (3)0.001 (3)
C80.089 (4)0.058 (3)0.072 (4)0.015 (3)0.032 (3)0.011 (3)
C90.068 (3)0.041 (3)0.057 (3)0.008 (2)0.025 (2)0.002 (2)
C100.034 (2)0.041 (2)0.045 (2)0.0035 (16)0.0134 (18)0.004 (2)
C110.040 (2)0.040 (2)0.036 (2)0.0024 (17)0.0084 (17)0.0051 (18)
C120.035 (2)0.039 (2)0.042 (2)0.0006 (17)0.0066 (18)0.0004 (19)
C130.035 (2)0.036 (2)0.039 (2)0.0010 (16)0.0091 (17)0.0009 (18)
C140.038 (2)0.037 (2)0.052 (3)0.0011 (17)0.0130 (18)0.006 (2)
C150.036 (2)0.035 (2)0.083 (4)0.0019 (17)0.021 (2)0.011 (2)
C160.046 (3)0.073 (3)0.064 (3)0.002 (2)0.014 (2)0.031 (3)
C170.061 (3)0.075 (3)0.047 (3)0.006 (2)0.018 (2)0.010 (3)
C180.046 (2)0.049 (2)0.048 (3)0.0023 (19)0.016 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C151.732 (4)C6—H60.9300
N1—C111.278 (4)C7—C81.386 (6)
N1—N21.384 (4)C7—H70.9300
N2—C121.344 (4)C8—C91.360 (5)
N2—H20.90 (3)C8—H80.9300
O1—C21.348 (4)C9—C101.410 (5)
O1—H10.8200C9—H90.9300
O2—C121.226 (4)C11—H110.9300
C1—C21.398 (5)C12—C131.494 (5)
C1—C101.427 (5)C13—C181.379 (5)
C1—C111.441 (5)C13—C141.388 (5)
C2—C31.404 (5)C14—C151.373 (5)
C3—C41.353 (5)C14—H140.9300
C3—H30.9300C15—C161.376 (6)
C4—C51.408 (5)C16—C171.374 (6)
C4—H40.9300C16—H160.9300
C5—C61.415 (5)C17—C181.383 (5)
C5—C101.419 (5)C17—H170.9300
C6—C71.353 (6)C18—H180.9300
C11—N1—N2116.2 (3)C8—C9—H9118.9
C12—N2—N1118.6 (3)C10—C9—H9118.9
C12—N2—H2126 (3)C9—C10—C5116.5 (4)
N1—N2—H2115 (3)C9—C10—C1123.7 (3)
C2—O1—H1109.5C5—C10—C1119.8 (4)
C2—C1—C10118.7 (3)N1—C11—C1121.3 (3)
C2—C1—C11120.2 (3)N1—C11—H11119.3
C10—C1—C11121.1 (3)C1—C11—H11119.3
O1—C2—C1123.1 (3)O2—C12—N2123.1 (3)
O1—C2—C3116.5 (4)O2—C12—C13121.9 (3)
C1—C2—C3120.5 (4)N2—C12—C13115.0 (3)
C4—C3—C2120.8 (4)C18—C13—C14119.9 (3)
C4—C3—H3119.6C18—C13—C12123.4 (3)
C2—C3—H3119.6C14—C13—C12116.6 (3)
C3—C4—C5121.4 (4)C15—C14—C13119.6 (4)
C3—C4—H4119.3C15—C14—H14120.2
C5—C4—H4119.3C13—C14—H14120.2
C4—C5—C6121.6 (4)C14—C15—C16120.6 (4)
C4—C5—C10118.8 (4)C14—C15—Cl1119.8 (4)
C6—C5—C10119.6 (4)C16—C15—Cl1119.6 (3)
C7—C6—C5121.4 (4)C17—C16—C15119.8 (4)
C7—C6—H6119.3C17—C16—H16120.1
C5—C6—H6119.3C15—C16—H16120.1
C6—C7—C8119.4 (4)C16—C17—C18120.3 (4)
C6—C7—H7120.3C16—C17—H17119.9
C8—C7—H7120.3C18—C17—H17119.9
C9—C8—C7120.9 (5)C13—C18—C17119.7 (4)
C9—C8—H8119.5C13—C18—H18120.1
C7—C8—H8119.5C17—C18—H18120.1
C8—C9—C10122.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (3)1.99 (2)2.860 (4)162 (4)
O1—H1···N10.821.852.574 (4)146
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13ClN2O2
Mr324.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.158 (2), 30.886 (3), 7.3733 (12)
β (°) 108.924 (2)
V3)1541.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
8306, 3288, 1635
Rint0.062
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.161, 1.04
No. of reflections3288
No. of parameters212
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (3)1.992 (17)2.860 (4)162 (4)
O1—H1···N10.821.852.574 (4)146
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBacchi, A., Carcelli, M., Pelizzi, G., Solinas, C. & Sorace, L. (2006). Inorg. Chim. Acta, 359, 2275–2280.  CrossRef CAS Google Scholar
First citationBessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201–208.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434–4439.  Web of Science CSD CrossRef Google Scholar
First citationPodyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250–261.  CSD CrossRef CAS Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-Y. (2010). Acta Cryst. E66, o2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds