metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)bromido(1,4,7-tri­thia­cyclo­nonane-κ3S,S′,S′′)ruthenium(II) hexa­fluoridophosphate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 18 January 2011; accepted 19 January 2011; online 26 January 2011)

The title compound, [RuBr(C10H8N2)(C6H12S3)]PF6 or [RuBr(bpy)([9]aneS3)]PF6 ([9]aneS3 is 1,4,7-trithia­cyclo­nonane and bpy is 2,2′-bipyridine), exhibits a very similar octahedral coordination geometry for the Ru2+ atom to that of its [RuCl(bpy)([9]aneS3)]+ analogue, with only the chloride ligand being substituted by a bromide ligand. The presence of a PF6 anion (alongside with the coordinated bromide ligand) promotes the existence of an extensive network of weak C—H⋯X (X = F, Br) inter­actions.

Related literature

For general background to the cytotoxic activity of compounds with the {Ru[9]aneS3} moiety, see: Bratsos et al. (2008[Bratsos, I., Jedner, S., Bergamo, A., Sava, G., Gianferrara, T., Zangrando, E. & Alessio, E. (2008). J. Inorg. Biochem. 102, 1120-1133.]); Serli et al. (2005[Serli, B., Zangrando, E., Gianferrara, T., Scolaro, C., Dyson, P. J., Bergamo, A. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 3423-3434.]). For isotypic compounds based on the [RuCl(bpy)([9]aneS3)]+ cation, see: Serli et al. (2005[Serli, B., Zangrando, E., Gianferrara, T., Scolaro, C., Dyson, P. J., Bergamo, A. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 3423-3434.]); Goodfellow et al. (1997[Goodfellow, B. J., Félix, V., Pacheco, S. M. D., Jesus, J. P. & Drew, M. G. B. (1997). Polyhedron, 16, 393-401.]); Fernandes et al. (2010[Fernandes, J. A., Almeida Paz, F. A., Mota, M. J., Braga, S. S. & Santos, T. M. (2010). Acta Cryst. E66, m1575.]). For previous work from our research group on the use of related compounds, see: Marques, Braga et al. (2009[Marques, J., Braga, T. M., Paz, F. A. A., Santos, T. M., Lopes, M. D. S. & Braga, S. S. (2009). Biometals, 22, 541-556.]); Marques, Santos et al. (2009[Marques, J., Santos, T. M., Marques, M. P. & Braga, S. S. (2009). Dalton Trans. pp. 9812-9819.]).

[Scheme 1]

Experimental

Crystal data
  • [RuBr(C10H8N2)(C6H12S3)]PF6

  • Mr = 662.47

  • Monoclinic, P 21 /c

  • a = 12.0660 (7) Å

  • b = 13.4377 (8) Å

  • c = 13.3359 (8) Å

  • β = 98.446 (3)°

  • V = 2138.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 150 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII X8 KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.643, Tmax = 0.752

  • 38626 measured reflections

  • 5736 independent reflections

  • 4989 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.046

  • S = 1.06

  • 5736 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 2.90 3.6274 (19) 135
C8—H8⋯F1ii 0.95 2.42 3.039 (2) 122
C11—H11A⋯F1iii 0.99 2.41 3.292 (2) 149
C15—H15A⋯Br1iv 0.99 2.84 3.7627 (18) 156
C16—H16A⋯F6v 0.99 2.41 3.170 (2) 133
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The cytotoxic potential of ruthenium coordination complexes containing 1,4,7-trithiacyclononane ([9]aneS3) is under study since 2005 (Bratsos et al., 2008; Serli et al., 2005). We have investigated the cytotoxicity of the [RuCl(glycinate)([9]aneS3)] complex on human osteosarcoma and breast cancer cells (Marques, Santos et al., 2009), and the antimicrobial properties of the [RuCl(1,10-phenanthroline)([9]aneS3)]Cl complex and its β- and permethylated β-cyclodextrin inclusion compounds (Marques, Braga et al., 2009). We are currently focused on complexes with ([9]aneS3)Ru while bearing N,N-chelated 2,2'-bipyridine (bpy). Recently, we have successfully isolated the monohydrate form of the [RuCl(bpy)([9]aneS3)]NO3 compound (Fernandes et al., 2010). We wish to report here the structure of [RuBr(bpy)([9]aneS3)]PF6, isolated as a secondary product from a crystallization batch containing (among other entities) KBr.

The asymmetric unit of the title compound is composed of a whole [RuBr(bpy)([9]aneS3)]+ cation and a charge-balancing PF6- anion. The cation of the title compound shares striking similarities with its [RuCl(bpy)([9]aneS3)]+ analogue (Serli et al., 2005; Goodfellow et al., 1997; Fernandes et al., 2010), with comparable bond lengths and angles of the coordination environments of Ru2+. The difference resides in the substitution of the chlorido ligand by a bromido one, with the Ru1—Br1 distance being enlongated to 2.5720 (2) Å.

The crystal packing is governed by the need to fill the available space and an overall minimization of the interionic distances (Figure 2). Nevertheless, a handful of weak hydrogen bonding interactions is present, namely C—H groups (both aromatic and methylene) interacting with Br and F of neighbouring ions (not shown; see Table 1 for details). Indeed, the existence of several C—H···F interactions seems to be the structural reason for the absence of the disorder typically associated with the PF6- anion.

Related literature top

For general background to the cytotoxic activity of compounds with the {Ru[9]aneS3} moiety, see: Bratsos et al. (2008); Serli et al. (2005). For isotypic compounds based on the [Cl(bpy)([9]aneS3)Ru]+ cation, see: Serli et al. (2005); Goodfellow et al. (1997); Fernandes et al. (2010). For previous work from our research group on the use of related compounds, see: Marques, Braga et al. (2009); Marques, Santos et al. (2009).

Experimental top

Chemicals were purchased from commercial sources and were used as received without purification.

Solid KBr (0.0945 g, 79.4 µmol, Sigma-Aldrich) was added to an aqueous solution (2 ml) of γ-cyclodextrin (0.130 g, 101 µmol, Wacker). The resulting solution was poured into a sample holder containing [RuCl([9]aneS3)bpy]PF6 (0.0248 g, 40.1 µmol). The mixture was magnetically stirred for 1 h at 60 °C. The total volume was then increased by adding 2 ml of distilled water and the temperature was also raised to 70 °C. The mixture was allowed to stir for another hour, after which it was syringe-filtered (nylon, 0.2 µm). The clear solution was allowed to crystallize by slow cooling to ambient temperature inside a sealed container. Orange crystals of the title compound were formed and isolated after two days.

Refinement top

Hydrogen atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic C—H) and 0.99 Å (—CH2—). The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq of the respective parent carbon atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, with non-hydrogen atoms represented as displacement ellipsoids drawn at the 70% probability level and hydrogen atoms as small spheres with arbitrary radii. The labelling scheme is provided for all non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the b axis.
(2,2'-Bipyridine-κ2N,N')bromido(1,4,7-trithiacyclononane- κ3S,S',S'')ruthenium(II) hexafluoridophosphate top
Crystal data top
[RuBr(C10H8N2)(C6H12S3)]PF6F(000) = 1304
Mr = 662.47Dx = 2.057 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9897 reflections
a = 12.0660 (7) Åθ = 2.6–30.4°
b = 13.4377 (8) ŵ = 3.03 mm1
c = 13.3359 (8) ÅT = 150 K
β = 98.446 (3)°Block, orange
V = 2138.8 (2) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII X8 KappaCCD
diffractometer
5736 independent reflections
Radiation source: fine-focus sealed tube4989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 29.1°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1613
Tmin = 0.643, Tmax = 0.752k = 1418
38626 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0166P)2 + 1.1306P]
where P = (Fo2 + 2Fc2)/3
5736 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[RuBr(C10H8N2)(C6H12S3)]PF6V = 2138.8 (2) Å3
Mr = 662.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0660 (7) ŵ = 3.03 mm1
b = 13.4377 (8) ÅT = 150 K
c = 13.3359 (8) Å0.16 × 0.12 × 0.10 mm
β = 98.446 (3)°
Data collection top
Bruker APEXII X8 KappaCCD
diffractometer
5736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4989 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.752Rint = 0.035
38626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
5736 reflectionsΔρmin = 0.63 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.833904 (11)0.100271 (10)0.308671 (10)0.01013 (4)
Br10.971376 (14)0.213830 (13)0.421622 (13)0.01640 (5)
S10.71000 (3)0.00388 (3)0.20501 (3)0.01421 (9)
S20.88870 (4)0.17069 (3)0.16651 (3)0.01378 (9)
S30.96835 (3)0.02031 (3)0.29973 (3)0.01433 (9)
N10.77196 (11)0.04462 (11)0.43571 (10)0.0125 (3)
N20.71002 (12)0.20371 (11)0.32732 (10)0.0126 (3)
C10.81031 (15)0.03531 (14)0.49059 (13)0.0173 (4)
H10.87660.06680.47600.021*
C20.75773 (16)0.07386 (15)0.56726 (14)0.0197 (4)
H20.78660.13130.60350.024*
C30.66248 (16)0.02759 (14)0.59036 (14)0.0195 (4)
H30.62400.05340.64190.023*
C40.62398 (15)0.05704 (14)0.53721 (13)0.0182 (4)
H40.55990.09110.55340.022*
C50.67964 (14)0.09190 (13)0.46003 (13)0.0135 (3)
C60.64656 (14)0.18211 (13)0.40071 (13)0.0128 (3)
C70.55971 (14)0.24479 (14)0.41964 (13)0.0165 (4)
H70.51450.22750.46960.020*
C80.53990 (15)0.33168 (14)0.36549 (14)0.0191 (4)
H80.48110.37500.37770.023*
C90.60684 (15)0.35527 (14)0.29292 (14)0.0186 (4)
H90.59580.41560.25560.022*
C100.68995 (15)0.28951 (14)0.27577 (13)0.0169 (4)
H100.73500.30550.22530.020*
C110.69306 (15)0.07354 (14)0.08615 (13)0.0177 (4)
H11A0.65530.03070.03110.021*
H11B0.64410.13170.09220.021*
C120.80353 (15)0.10941 (14)0.05783 (13)0.0176 (4)
H12A0.78900.15690.00060.021*
H12B0.84540.05210.03550.021*
C131.02665 (15)0.11727 (14)0.16039 (15)0.0185 (4)
H13A1.04540.12710.09130.022*
H13B1.08310.15340.20830.022*
C141.03368 (15)0.00714 (14)0.18570 (14)0.0188 (4)
H14A1.11320.01370.19760.023*
H14B0.99520.03150.12750.023*
C150.88524 (15)0.12899 (13)0.25441 (14)0.0168 (4)
H15A0.93480.17870.22890.020*
H15B0.85440.15930.31200.020*
C160.78971 (15)0.10518 (13)0.17114 (14)0.0180 (4)
H16A0.73910.16330.15960.022*
H16B0.81990.09150.10740.022*
P10.34992 (4)0.16856 (4)0.13197 (4)0.01782 (10)
F10.39585 (10)0.13350 (10)0.03098 (9)0.0359 (3)
F20.41610 (11)0.27096 (10)0.12942 (10)0.0384 (3)
F30.45640 (10)0.11898 (10)0.19885 (10)0.0372 (3)
F40.28321 (10)0.06540 (9)0.13318 (10)0.0327 (3)
F50.24266 (10)0.21698 (10)0.06555 (10)0.0367 (3)
F60.30399 (11)0.20190 (9)0.23321 (9)0.0343 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01007 (7)0.00943 (7)0.01135 (7)0.00047 (5)0.00314 (5)0.00005 (5)
Br10.01564 (9)0.01541 (10)0.01780 (9)0.00099 (7)0.00133 (7)0.00329 (7)
S10.0131 (2)0.0135 (2)0.0161 (2)0.00181 (17)0.00253 (16)0.00033 (17)
S20.0153 (2)0.0123 (2)0.0147 (2)0.00110 (17)0.00545 (16)0.00033 (17)
S30.0128 (2)0.0124 (2)0.0185 (2)0.00123 (17)0.00418 (16)0.00010 (18)
N10.0130 (7)0.0127 (8)0.0120 (7)0.0009 (6)0.0023 (5)0.0006 (6)
N20.0132 (7)0.0121 (8)0.0123 (7)0.0007 (6)0.0017 (5)0.0012 (6)
C10.0190 (9)0.0166 (10)0.0163 (9)0.0032 (8)0.0022 (7)0.0006 (7)
C20.0264 (10)0.0165 (10)0.0160 (9)0.0005 (8)0.0027 (7)0.0036 (8)
C30.0252 (10)0.0192 (10)0.0155 (9)0.0027 (8)0.0073 (7)0.0021 (8)
C40.0184 (9)0.0188 (10)0.0183 (9)0.0003 (8)0.0061 (7)0.0009 (8)
C50.0141 (8)0.0131 (9)0.0130 (8)0.0011 (7)0.0013 (6)0.0028 (7)
C60.0118 (8)0.0142 (9)0.0122 (8)0.0008 (7)0.0008 (6)0.0019 (7)
C70.0138 (8)0.0198 (10)0.0167 (9)0.0007 (7)0.0047 (7)0.0016 (8)
C80.0175 (9)0.0193 (10)0.0202 (9)0.0074 (8)0.0021 (7)0.0022 (8)
C90.0234 (9)0.0144 (9)0.0174 (9)0.0047 (8)0.0013 (7)0.0020 (7)
C100.0186 (9)0.0169 (10)0.0160 (9)0.0014 (7)0.0051 (7)0.0012 (7)
C110.0187 (9)0.0181 (10)0.0154 (9)0.0013 (8)0.0011 (7)0.0017 (8)
C120.0206 (9)0.0185 (10)0.0137 (9)0.0014 (8)0.0026 (7)0.0004 (7)
C130.0152 (8)0.0183 (10)0.0239 (10)0.0026 (8)0.0093 (7)0.0004 (8)
C140.0174 (9)0.0177 (10)0.0237 (10)0.0007 (8)0.0108 (7)0.0011 (8)
C150.0207 (9)0.0094 (9)0.0214 (9)0.0014 (7)0.0067 (7)0.0001 (7)
C160.0217 (9)0.0110 (9)0.0215 (10)0.0013 (7)0.0036 (7)0.0031 (7)
P10.0179 (2)0.0200 (3)0.0164 (2)0.0014 (2)0.00541 (18)0.0004 (2)
F10.0393 (7)0.0464 (8)0.0265 (7)0.0168 (6)0.0197 (5)0.0138 (6)
F20.0476 (8)0.0305 (7)0.0366 (7)0.0212 (6)0.0052 (6)0.0047 (6)
F30.0240 (6)0.0488 (8)0.0377 (7)0.0119 (6)0.0007 (5)0.0029 (6)
F40.0318 (7)0.0226 (6)0.0474 (8)0.0071 (5)0.0185 (6)0.0020 (6)
F50.0310 (7)0.0393 (8)0.0368 (7)0.0034 (6)0.0051 (6)0.0124 (6)
F60.0441 (7)0.0375 (8)0.0246 (6)0.0123 (6)0.0157 (6)0.0023 (6)
Geometric parameters (Å, º) top
Ru1—N12.0881 (14)C7—H70.9500
Ru1—N22.0826 (14)C8—C91.385 (3)
Ru1—S12.2840 (5)C8—H80.9500
Ru1—S22.3011 (4)C9—C101.381 (3)
Ru1—S32.3083 (5)C9—H90.9500
Ru1—Br12.5720 (2)C10—H100.9500
S1—C111.8264 (18)C11—C121.516 (2)
S1—C161.8451 (18)C11—H11A0.9900
S2—C131.8255 (18)C11—H11B0.9900
S2—C121.8432 (18)C12—H12A0.9900
S3—C151.8236 (19)C12—H12B0.9900
S3—C141.8499 (17)C13—C141.517 (3)
N1—C11.343 (2)C13—H13A0.9900
N1—C51.362 (2)C13—H13B0.9900
N2—C101.346 (2)C14—H14A0.9900
N2—C61.360 (2)C14—H14B0.9900
C1—C21.381 (2)C15—C161.513 (3)
C1—H10.9500C15—H15A0.9900
C2—C31.381 (3)C15—H15B0.9900
C2—H20.9500C16—H16A0.9900
C3—C41.384 (3)C16—H16B0.9900
C3—H30.9500P1—F21.5938 (13)
C4—C51.390 (2)P1—F51.5956 (13)
C4—H40.9500P1—F61.5970 (12)
C5—C61.470 (2)P1—F31.5980 (13)
C6—C71.396 (2)P1—F11.6007 (12)
C7—C81.375 (3)P1—F41.6043 (12)
N2—Ru1—N178.08 (5)C8—C9—H9120.6
N2—Ru1—S191.91 (4)N2—C10—C9122.97 (16)
N1—Ru1—S190.43 (4)N2—C10—H10118.5
N2—Ru1—S297.01 (4)C9—C10—H10118.5
S1—Ru1—S288.644 (16)C12—C11—S1112.87 (13)
N1—Ru1—S397.38 (4)C12—C11—H11A109.0
S1—Ru1—S388.460 (17)S1—C11—H11A109.0
S2—Ru1—S387.533 (16)C12—C11—H11B109.0
N2—Ru1—Br186.93 (4)S1—C11—H11B109.0
N1—Ru1—Br190.81 (4)H11A—C11—H11B107.8
S2—Ru1—Br189.993 (13)C11—C12—S2110.80 (12)
S3—Ru1—Br192.811 (13)C11—C12—H12A109.5
N1—Ru1—S2174.97 (4)S2—C12—H12A109.5
N2—Ru1—S3175.45 (4)C11—C12—H12B109.5
S1—Ru1—Br1178.095 (13)S2—C12—H12B109.5
C11—S1—C16100.98 (9)H12A—C12—H12B108.1
C11—S1—Ru1102.38 (6)C14—C13—S2113.27 (12)
C16—S1—Ru1106.28 (6)C14—C13—H13A108.9
C13—S2—C12101.30 (9)S2—C13—H13A108.9
C13—S2—Ru1104.44 (6)C14—C13—H13B108.9
C12—S2—Ru1105.64 (6)S2—C13—H13B108.9
C15—S3—C1499.63 (8)H13A—C13—H13B107.7
C15—S3—Ru1102.88 (6)C13—C14—S3111.14 (12)
C14—S3—Ru1106.86 (6)C13—C14—H14A109.4
C1—N1—C5118.13 (14)S3—C14—H14A109.4
C1—N1—Ru1126.36 (11)C13—C14—H14B109.4
C5—N1—Ru1115.39 (11)S3—C14—H14B109.4
C10—N2—C6118.19 (15)H14A—C14—H14B108.0
C10—N2—Ru1126.09 (11)C16—C15—S3113.37 (13)
C6—N2—Ru1115.69 (11)C16—C15—H15A108.9
N1—C1—C2122.99 (17)S3—C15—H15A108.9
N1—C1—H1118.5C16—C15—H15B108.9
C2—C1—H1118.5S3—C15—H15B108.9
C3—C2—C1118.96 (18)H15A—C15—H15B107.7
C3—C2—H2120.5C15—C16—S1110.89 (12)
C1—C2—H2120.5C15—C16—H16A109.5
C2—C3—C4118.92 (16)S1—C16—H16A109.5
C2—C3—H3120.5C15—C16—H16B109.5
C4—C3—H3120.5S1—C16—H16B109.5
C3—C4—C5119.58 (17)H16A—C16—H16B108.0
C3—C4—H4120.2F2—P1—F590.24 (7)
C5—C4—H4120.2F2—P1—F690.75 (7)
N1—C5—C4121.33 (16)F5—P1—F690.06 (7)
N1—C5—C6115.04 (14)F2—P1—F390.43 (8)
C4—C5—C6123.61 (16)F5—P1—F3179.30 (8)
N2—C6—C7121.23 (16)F6—P1—F389.74 (7)
N2—C6—C5115.22 (14)F2—P1—F189.98 (7)
C7—C6—C5123.49 (15)F5—P1—F190.33 (7)
C8—C7—C6119.64 (16)F6—P1—F1179.17 (8)
C8—C7—H7120.2F3—P1—F189.86 (7)
C6—C7—H7120.2F2—P1—F4179.36 (7)
C7—C8—C9119.13 (17)F5—P1—F489.46 (7)
C7—C8—H8120.4F6—P1—F489.83 (7)
C9—C8—H8120.4F3—P1—F489.86 (7)
C10—C9—C8118.78 (17)F1—P1—F489.45 (7)
C10—C9—H9120.6
N2—Ru1—S1—C1175.99 (7)Ru1—N1—C1—C2173.00 (14)
N1—Ru1—S1—C11154.07 (7)N1—C1—C2—C31.2 (3)
S2—Ru1—S1—C1120.99 (6)C1—C2—C3—C41.2 (3)
S3—Ru1—S1—C11108.55 (6)C2—C3—C4—C51.9 (3)
N2—Ru1—S1—C16178.51 (7)C1—N1—C5—C42.1 (2)
N1—Ru1—S1—C16100.42 (7)Ru1—N1—C5—C4174.23 (13)
S2—Ru1—S1—C1684.52 (6)C1—N1—C5—C6176.53 (15)
S3—Ru1—S1—C163.05 (6)Ru1—N1—C5—C67.18 (19)
N2—Ru1—S2—C13161.69 (8)C3—C4—C5—N10.3 (3)
S1—Ru1—S2—C13106.56 (7)C3—C4—C5—C6178.74 (17)
S3—Ru1—S2—C1318.04 (7)C10—N2—C6—C72.6 (2)
Br1—Ru1—S2—C1374.78 (6)Ru1—N2—C6—C7179.04 (13)
N2—Ru1—S2—C1291.93 (7)C10—N2—C6—C5174.73 (15)
S1—Ru1—S2—C120.17 (6)Ru1—N2—C6—C53.59 (19)
S3—Ru1—S2—C1288.35 (6)N1—C5—C6—N22.4 (2)
Br1—Ru1—S2—C12178.84 (6)C4—C5—C6—N2179.06 (16)
N1—Ru1—S3—C1572.45 (7)N1—C5—C6—C7174.92 (16)
S1—Ru1—S3—C1517.78 (6)C4—C5—C6—C73.6 (3)
S2—Ru1—S3—C15106.49 (6)N2—C6—C7—C82.1 (3)
Br1—Ru1—S3—C15163.64 (6)C5—C6—C7—C8175.04 (17)
N1—Ru1—S3—C14176.84 (8)C6—C7—C8—C90.0 (3)
S1—Ru1—S3—C1486.61 (7)C7—C8—C9—C101.4 (3)
S2—Ru1—S3—C142.10 (7)C6—N2—C10—C91.2 (3)
Br1—Ru1—S3—C1491.97 (7)Ru1—N2—C10—C9179.30 (14)
N2—Ru1—N1—C1177.12 (15)C8—C9—C10—N20.8 (3)
S1—Ru1—N1—C191.02 (14)C16—S1—C11—C1264.36 (15)
S3—Ru1—N1—C12.51 (15)Ru1—S1—C11—C1245.21 (14)
Br1—Ru1—N1—C190.43 (14)S1—C11—C12—S248.58 (17)
N2—Ru1—N1—C56.94 (12)C13—S2—C12—C11135.80 (13)
S1—Ru1—N1—C584.92 (12)Ru1—S2—C12—C1127.14 (14)
S3—Ru1—N1—C5173.42 (11)C12—S2—C13—C1468.39 (15)
Br1—Ru1—N1—C593.64 (12)Ru1—S2—C13—C1441.20 (15)
N1—Ru1—N2—C10172.54 (15)S2—C13—C14—S345.34 (17)
S1—Ru1—N2—C1097.42 (14)C15—S3—C14—C13133.84 (14)
S2—Ru1—N2—C108.56 (15)Ru1—S3—C14—C1327.13 (15)
Br1—Ru1—N2—C1081.06 (14)C14—S3—C15—C1667.85 (14)
N1—Ru1—N2—C65.62 (12)Ru1—S3—C15—C1642.06 (13)
S1—Ru1—N2—C684.42 (12)S3—C15—C16—S147.66 (15)
S2—Ru1—N2—C6173.28 (11)C11—S1—C16—C15135.46 (13)
Br1—Ru1—N2—C697.10 (12)Ru1—S1—C16—C1528.95 (13)
C5—N1—C1—C22.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.903.6274 (19)135
C8—H8···F1ii0.952.423.039 (2)122
C11—H11A···F1iii0.992.413.292 (2)149
C15—H15A···Br1iv0.992.843.7627 (18)156
C16—H16A···F6v0.992.413.170 (2)133
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y1/2, z+1/2; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[RuBr(C10H8N2)(C6H12S3)]PF6
Mr662.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.0660 (7), 13.4377 (8), 13.3359 (8)
β (°) 98.446 (3)
V3)2138.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII X8 KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.643, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
38626, 5736, 4989
Rint0.035
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.046, 1.06
No. of reflections5736
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.63

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.903.6274 (19)135
C8—H8···F1ii0.952.423.039 (2)122
C11—H11A···F1iii0.992.413.292 (2)149
C15—H15A···Br1iv0.992.843.7627 (18)156
C16—H16A···F6v0.992.413.170 (2)133
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y1/2, z+1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (R&D project PTDC/QUI/69302/2006), for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBratsos, I., Jedner, S., Bergamo, A., Sava, G., Gianferrara, T., Zangrando, E. & Alessio, E. (2008). J. Inorg. Biochem. 102, 1120–1133.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernandes, J. A., Almeida Paz, F. A., Mota, M. J., Braga, S. S. & Santos, T. M. (2010). Acta Cryst. E66, m1575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoodfellow, B. J., Félix, V., Pacheco, S. M. D., Jesus, J. P. & Drew, M. G. B. (1997). Polyhedron, 16, 393–401.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarques, J., Braga, T. M., Paz, F. A. A., Santos, T. M., Lopes, M. D. S. & Braga, S. S. (2009). Biometals, 22, 541–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarques, J., Santos, T. M., Marques, M. P. & Braga, S. S. (2009). Dalton Trans. pp. 9812–9819.  Web of Science CrossRef Google Scholar
First citationSerli, B., Zangrando, E., Gianferrara, T., Scolaro, C., Dyson, P. J., Bergamo, A. & Alessio, E. (2005). Eur. J. Inorg. Chem. pp. 3423–3434.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds