organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(4-Chloro­benzo­yl)pyrrolidin-2-yl]-4,4,5,5-tetra­methyl-4,5-di­hydro­imidazole-1-oxyl-3-oxide

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China, bDepartment of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China, and cDepartment of Pharmacy, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, People's Republic of China
*Correspondence e-mail: xiaoli_sun@yahoo.cn

(Received 17 December 2010; accepted 11 January 2011; online 15 January 2011)

In the title compound, C18H23ClN3O3, the imidazole ring system has an envelope conformation, whereas the nitronyl nitroxide unit displays a half-chair or twisted conformation. In the crystal, C—H⋯O hydrogen bonds build up a three-dimensional network.

Related literature

For the biological activity of nitronyl nitroxides, see: Soule et al. (2007[Soule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632-1650.] and for their coordination properties, see: Masuda et al. (2009[Masuda, Y., Kurats, M., Suzuki, S., Kozaki, M., Shiomi, D., Sato, K., Takui, T., Hosokoshi, Y., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670-4673.]). For related structures, see: Iqbal et al. (2009[Iqbal, A. L., Anirban, P. & Sambhu, N. D. (2009). J. Phys. Chem. A, 113, 1595-4673.]); Wang et al. (2009[Wang, H.-B., Jing, L.-L., Gao, P. & Sun, X.-L. (2009). Acta Cryst. E65, o2090.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23ClN3O3

  • Mr = 364.84

  • Monoclinic, P 21 /n

  • a = 11.6202 (19) Å

  • b = 8.2694 (13) Å

  • c = 20.315 (3) Å

  • β = 105.636 (2)°

  • V = 1879.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.34 × 0.29 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.960

  • 9089 measured reflections

  • 3342 independent reflections

  • 1791 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.03

  • 3342 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.93 2.54 3.458 (4) 170
C3—H3A⋯O1i 0.93 2.45 3.314 (4) 154
C8—H8A⋯O3ii 0.97 2.44 3.101 (4) 125
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitronyl nitroxides, stable organic radicals, display interesting properties in many fields as magnetism, anticancer, antiradiation and antioxidation etc (Soule et al., 2007). Nitronyl nitroxides have received considerable attention recently (Iqbal et al., 2009; Wang et al., 2009). The title compound can also be used for coordination with many metal cations, such as Mn2+, Cu2+ and Ni2+ leading to some molecule based magentic materials (Masuda, et al., 2009).

In the title compound, the indole ring system has an envelope conformation with puckering parameters Q(2)= 0.370 (4)Å and ϕ= 78.0 (5)° (Cremer & Pople, 1975) whereas the nitronyl nitroxide moiety displays a half-chair or twisted conformation with Q(2)= 0.228 (3)Å and ϕ= 308.6 (7)°. Occurence of C-H···O hydrogen bonds build up a three dimensional network (Table 1).

Related literature top

For the biological activity of nitronyl nitroxides, see: Soule et al. (2007 and for their coordination properties, see: Masuda et al. (2009). For related structures, see: Iqbal et al. (2009); Wang et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

2,3-Dimethyl-2,3-bis(hydroxylamino) butane (1.48 g, 10.0 mmol) and 1-(4-chlorobenzoyl)pyrrolidine-2-carbaldehyde (2.38 g, 10.0 mmol) were dissolved in methanol. The reaction was stirred for 10 h at reflux temperature, then cooled to room temperature and filtered. The cake was suspended in dichloromethane (150.0 ml) and cooled at ice bath for 10 min,Then the reaction mixture was added to an aqueous solution of NaIO4 and stirred for 15 min to give a amaranthine solution. The aqueous phase was extracted with CH2Cl2 and the organic layer was combined and dried over MgSO4. Then the solvent was removed to give a amaranthine residue which was purified by a flash column chromatography with the elution of n-hexane/ethyl acetate (1:1) to yield the title compound (I) as a dark amaranthine powder. Single crystals of compound (I) were obtained from the 1/1 mixed solution of n-heptane and dichloromethane.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
2-[1-(4-Chlorobenzoyl)pyrrolidin-2-yl]-4,4,5,5-tetramethyl-4,5- dihydroimidazole-1-oxyl-3-oxide top
Crystal data top
C18H23ClN3O3F(000) = 772
Mr = 364.84Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1006 reflections
a = 11.6202 (19) Åθ = 2.3–19.1°
b = 8.2694 (13) ŵ = 0.23 mm1
c = 20.315 (3) ÅT = 296 K
β = 105.636 (2)°Block, purple
V = 1879.8 (5) Å30.34 × 0.29 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3342 independent reflections
Radiation source: fine-focus sealed tube1791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1313
Tmin = 0.928, Tmax = 0.960k = 95
9089 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
3342 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H23ClN3O3V = 1879.8 (5) Å3
Mr = 364.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6202 (19) ŵ = 0.23 mm1
b = 8.2694 (13) ÅT = 296 K
c = 20.315 (3) Å0.34 × 0.29 × 0.18 mm
β = 105.636 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3342 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1791 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.960Rint = 0.051
9089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3342 reflectionsΔρmin = 0.18 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24418 (8)0.02934 (14)0.22799 (5)0.0934 (4)
O10.61663 (17)0.1756 (3)0.04529 (10)0.0602 (6)
O20.84803 (18)0.2887 (2)0.03089 (10)0.0613 (6)
O30.7771 (2)0.5304 (3)0.15800 (11)0.0793 (8)
N10.7572 (2)0.1723 (3)0.14502 (11)0.0496 (6)
N20.81945 (18)0.3955 (3)0.00771 (11)0.0462 (6)
N30.7868 (2)0.5102 (3)0.09729 (12)0.0522 (7)
C10.3608 (3)0.0241 (4)0.19376 (17)0.0586 (9)
C20.3684 (3)0.0441 (4)0.13384 (17)0.0601 (9)
H2A0.31130.11820.11110.072*
C30.4613 (3)0.0021 (3)0.10737 (15)0.0537 (8)
H3A0.46610.04710.06620.064*
C40.5484 (2)0.1070 (3)0.14140 (14)0.0472 (7)
C50.5373 (3)0.1743 (4)0.20168 (15)0.0561 (8)
H50.59420.24800.22500.067*
C60.4434 (3)0.1341 (4)0.22772 (16)0.0609 (9)
H60.43620.18120.26800.073*
C70.6433 (3)0.1542 (3)0.10742 (15)0.0479 (7)
C80.8104 (3)0.1429 (4)0.21806 (14)0.0617 (9)
H8A0.77480.04910.23350.074*
H8B0.80080.23600.24510.074*
C90.9400 (3)0.1137 (5)0.22247 (16)0.0697 (10)
H9A0.95370.00200.21210.084*
H9B0.99040.14010.26760.084*
C100.9636 (3)0.2265 (4)0.16896 (16)0.0635 (9)
H10A1.03150.19000.15370.076*
H10B0.97870.33570.18660.076*
C110.8480 (2)0.2188 (4)0.11055 (14)0.0486 (8)
H110.85530.13320.07860.058*
C120.8187 (2)0.3736 (4)0.07277 (13)0.0438 (7)
C130.7659 (3)0.5550 (4)0.01959 (15)0.0510 (8)
C140.7768 (3)0.6477 (4)0.04813 (15)0.0531 (8)
C150.8360 (3)0.6285 (4)0.06555 (17)0.0779 (11)
H15A0.91810.64120.04020.117*
H15B0.80290.73220.08160.117*
H15C0.83110.55850.10390.117*
C160.6380 (3)0.5167 (4)0.05963 (18)0.0816 (12)
H16A0.63880.44510.09670.122*
H16B0.59760.61500.07750.122*
H16C0.59710.46570.03000.122*
C170.8923 (3)0.7448 (4)0.07346 (18)0.0801 (11)
H17A0.89990.78090.11930.120*
H17B0.89010.83670.04430.120*
H17C0.95930.67770.07270.120*
C180.6703 (3)0.7508 (5)0.05121 (19)0.0856 (12)
H18A0.59870.68720.03750.128*
H18B0.66430.84150.02100.128*
H18C0.68070.78870.09710.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0622 (6)0.1224 (10)0.1045 (8)0.0041 (5)0.0375 (6)0.0165 (6)
O10.0588 (13)0.0744 (16)0.0446 (13)0.0067 (11)0.0091 (10)0.0026 (10)
O20.0730 (14)0.0614 (16)0.0543 (13)0.0069 (11)0.0252 (11)0.0072 (11)
O30.114 (2)0.0787 (18)0.0516 (14)0.0164 (14)0.0341 (13)0.0040 (12)
N10.0472 (15)0.0576 (17)0.0428 (14)0.0007 (12)0.0099 (12)0.0103 (11)
N20.0456 (13)0.0504 (16)0.0447 (15)0.0033 (12)0.0155 (11)0.0006 (12)
N30.0622 (16)0.0504 (17)0.0464 (16)0.0085 (12)0.0185 (13)0.0005 (13)
C10.0430 (18)0.068 (2)0.065 (2)0.0065 (16)0.0152 (16)0.0131 (18)
C20.0481 (19)0.052 (2)0.075 (2)0.0038 (15)0.0087 (17)0.0014 (17)
C30.0515 (19)0.053 (2)0.0521 (19)0.0012 (16)0.0069 (16)0.0061 (15)
C40.0467 (17)0.0432 (19)0.0498 (18)0.0038 (14)0.0100 (14)0.0042 (14)
C50.0522 (19)0.059 (2)0.055 (2)0.0026 (15)0.0107 (16)0.0082 (16)
C60.055 (2)0.075 (3)0.0533 (19)0.0059 (18)0.0165 (16)0.0048 (17)
C70.0521 (19)0.0430 (19)0.0470 (18)0.0001 (14)0.0107 (15)0.0006 (14)
C80.058 (2)0.077 (3)0.0484 (19)0.0023 (17)0.0103 (15)0.0142 (16)
C90.056 (2)0.088 (3)0.062 (2)0.0021 (18)0.0107 (16)0.0231 (19)
C100.0503 (18)0.070 (2)0.067 (2)0.0038 (16)0.0088 (16)0.0188 (17)
C110.0472 (17)0.049 (2)0.0495 (18)0.0049 (14)0.0131 (14)0.0086 (14)
C120.0428 (16)0.049 (2)0.0401 (17)0.0037 (14)0.0116 (13)0.0050 (15)
C130.0522 (18)0.048 (2)0.0488 (18)0.0073 (15)0.0074 (14)0.0112 (14)
C140.0546 (19)0.047 (2)0.058 (2)0.0111 (15)0.0157 (15)0.0076 (15)
C150.104 (3)0.070 (3)0.068 (2)0.001 (2)0.039 (2)0.0161 (18)
C160.067 (2)0.084 (3)0.076 (2)0.0130 (19)0.011 (2)0.0042 (19)
C170.087 (3)0.068 (3)0.086 (3)0.015 (2)0.024 (2)0.0091 (19)
C180.087 (3)0.082 (3)0.089 (3)0.040 (2)0.027 (2)0.008 (2)
Geometric parameters (Å, º) top
Cl1—C11.738 (3)C9—C101.513 (4)
O1—C71.229 (3)C9—H9A0.9700
O2—N21.283 (3)C9—H9B0.9700
O3—N31.279 (3)C10—C111.535 (4)
N1—C71.346 (3)C10—H10A0.9700
N1—C81.466 (3)C10—H10B0.9700
N1—C111.467 (3)C11—C121.484 (4)
N2—C121.336 (3)C11—H110.9800
N2—C131.500 (4)C13—C151.521 (4)
N3—C121.328 (3)C13—C161.523 (4)
N3—C141.497 (4)C13—C141.550 (4)
C1—C21.366 (4)C14—C181.517 (4)
C1—C61.367 (4)C14—C171.529 (4)
C2—C31.374 (4)C15—H15A0.9600
C2—H2A0.9300C15—H15B0.9600
C3—C41.392 (4)C15—H15C0.9600
C3—H3A0.9300C16—H16A0.9600
C4—C51.382 (4)C16—H16B0.9600
C4—C71.502 (4)C16—H16C0.9600
C5—C61.376 (4)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C8—C91.503 (4)C18—H18A0.9600
C8—H8A0.9700C18—H18B0.9600
C8—H8B0.9700C18—H18C0.9600
C7—N1—C8129.7 (2)H10A—C10—H10B109.0
C7—N1—C11118.8 (2)N1—C11—C12112.2 (2)
C8—N1—C11111.4 (2)N1—C11—C10103.5 (2)
O2—N2—C12125.7 (2)C12—C11—C10113.3 (2)
O2—N2—C13122.0 (2)N1—C11—H11109.2
C12—N2—C13111.9 (2)C12—C11—H11109.2
O3—N3—C12125.4 (2)C10—C11—H11109.2
O3—N3—C14122.2 (2)N3—C12—N2109.4 (2)
C12—N3—C14112.1 (2)N3—C12—C11126.1 (3)
C2—C1—C6121.2 (3)N2—C12—C11124.5 (3)
C2—C1—Cl1119.8 (3)N2—C13—C15110.0 (2)
C6—C1—Cl1119.0 (3)N2—C13—C16105.2 (2)
C1—C2—C3119.4 (3)C15—C13—C16111.2 (3)
C1—C2—H2A120.3N2—C13—C14100.4 (2)
C3—C2—H2A120.3C15—C13—C14114.7 (3)
C2—C3—C4120.8 (3)C16—C13—C14114.3 (3)
C2—C3—H3A119.6N3—C14—C18108.5 (3)
C4—C3—H3A119.6N3—C14—C17105.7 (2)
C5—C4—C3118.2 (3)C18—C14—C17110.0 (3)
C5—C4—C7123.9 (3)N3—C14—C13100.9 (2)
C3—C4—C7117.7 (3)C18—C14—C13116.2 (3)
C6—C5—C4121.1 (3)C17—C14—C13114.3 (3)
C6—C5—H5119.5C13—C15—H15A109.5
C4—C5—H5119.5C13—C15—H15B109.5
C1—C6—C5119.3 (3)H15A—C15—H15B109.5
C1—C6—H6120.4C13—C15—H15C109.5
C5—C6—H6120.4H15A—C15—H15C109.5
O1—C7—N1120.3 (3)H15B—C15—H15C109.5
O1—C7—C4119.8 (3)C13—C16—H16A109.5
N1—C7—C4120.0 (2)C13—C16—H16B109.5
N1—C8—C9103.3 (2)H16A—C16—H16B109.5
N1—C8—H8A111.1C13—C16—H16C109.5
C9—C8—H8A111.1H16A—C16—H16C109.5
N1—C8—H8B111.1H16B—C16—H16C109.5
C9—C8—H8B111.1C14—C17—H17A109.5
H8A—C8—H8B109.1C14—C17—H17B109.5
C8—C9—C10103.4 (2)H17A—C17—H17B109.5
C8—C9—H9A111.1C14—C17—H17C109.5
C10—C9—H9A111.1H17A—C17—H17C109.5
C8—C9—H9B111.1H17B—C17—H17C109.5
C10—C9—H9B111.1C14—C18—H18A109.5
H9A—C9—H9B109.1C14—C18—H18B109.5
C9—C10—C11103.9 (2)H18A—C18—H18B109.5
C9—C10—H10A111.0C14—C18—H18C109.5
C11—C10—H10A111.0H18A—C18—H18C109.5
C9—C10—H10B111.0H18B—C18—H18C109.5
C11—C10—H10B111.0
C6—C1—C2—C30.4 (5)C14—N3—C12—C11173.7 (2)
Cl1—C1—C2—C3179.5 (2)O2—N2—C12—N3178.9 (2)
C1—C2—C3—C40.9 (4)C13—N2—C12—N39.2 (3)
C2—C3—C4—C51.3 (4)O2—N2—C12—C111.8 (4)
C2—C3—C4—C7176.6 (3)C13—N2—C12—C11170.2 (2)
C3—C4—C5—C60.4 (4)N1—C11—C12—N349.2 (4)
C7—C4—C5—C6175.4 (3)C10—C11—C12—N367.6 (4)
C2—C1—C6—C51.3 (5)N1—C11—C12—N2130.0 (3)
Cl1—C1—C6—C5178.6 (2)C10—C11—C12—N2113.2 (3)
C4—C5—C6—C10.9 (5)O2—N2—C13—C1546.3 (3)
C8—N1—C7—O1175.4 (3)C12—N2—C13—C15141.3 (2)
C11—N1—C7—O10.4 (4)O2—N2—C13—C1673.5 (3)
C8—N1—C7—C44.3 (4)C12—N2—C13—C1698.8 (3)
C11—N1—C7—C4179.9 (2)O2—N2—C13—C14167.6 (2)
C5—C4—C7—O1135.9 (3)C12—N2—C13—C1420.1 (3)
C3—C4—C7—O139.1 (4)O3—N3—C14—C1845.1 (4)
C5—C4—C7—N144.4 (4)C12—N3—C14—C18141.5 (3)
C3—C4—C7—N1140.7 (3)O3—N3—C14—C1772.9 (3)
C7—N1—C8—C9156.1 (3)C12—N3—C14—C17100.5 (3)
C11—N1—C8—C920.0 (3)O3—N3—C14—C13167.8 (3)
N1—C8—C9—C1035.2 (3)C12—N3—C14—C1318.9 (3)
C8—C9—C10—C1137.6 (3)N2—C13—C14—N321.4 (3)
C7—N1—C11—C1257.7 (3)C15—C13—C14—N3139.2 (3)
C8—N1—C11—C12125.8 (3)C16—C13—C14—N390.6 (3)
C7—N1—C11—C10179.8 (2)N2—C13—C14—C18138.5 (3)
C8—N1—C11—C103.3 (3)C15—C13—C14—C18103.7 (3)
C9—C10—C11—N125.2 (3)C16—C13—C14—C1826.5 (4)
C9—C10—C11—C12147.0 (3)N2—C13—C14—C1791.5 (3)
O3—N3—C12—N2179.9 (3)C15—C13—C14—C1726.3 (4)
C14—N3—C12—N27.0 (3)C16—C13—C14—C17156.4 (3)
O3—N3—C12—C110.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.543.458 (4)170
C3—H3A···O1i0.932.453.314 (4)154
C8—H8A···O3ii0.972.443.101 (4)125
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H23ClN3O3
Mr364.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.6202 (19), 8.2694 (13), 20.315 (3)
β (°) 105.636 (2)
V3)1879.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.34 × 0.29 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.928, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
9089, 3342, 1791
Rint0.051
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.152, 1.03
No. of reflections3342
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008b) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.543.458 (4)170
C3—H3A···O1i0.932.453.314 (4)154
C8—H8A···O3ii0.972.443.101 (4)125
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant Nos. 81001398, 30901883, 20802091) for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIqbal, A. L., Anirban, P. & Sambhu, N. D. (2009). J. Phys. Chem. A, 113, 1595–4673.  Web of Science CrossRef PubMed Google Scholar
First citationMasuda, Y., Kurats, M., Suzuki, S., Kozaki, M., Shiomi, D., Sato, K., Takui, T., Hosokoshi, Y., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670-4673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632–1650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-B., Jing, L.-L., Gao, P. & Sun, X.-L. (2009). Acta Cryst. E65, o2090.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds