organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Nonyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cINANOTECH (Institute of Nanomaterials and Nanotechnology), MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kandri_rodi@yahoo.fr

(Received 21 December 2010; accepted 24 December 2010; online 8 January 2011)

The crystal structure of the title compound, C16H24N2O, is built up from two fused six- and five-membered rings linked to C9H19 chains. The fused-ring system is essentially planar, the largest deviation from the mean plane being 0.009 (2) Å. The chain is nearly perpendicular to this plane [dihedral angle = 80.27 (17)°]. In the crystal, inter­molecular N—H⋯O hydrogen bonds form dimers with an R22(8) graph-set motif. These dimers are further connected through C—H⋯O hydrogen bonds, building sheets parallel to (100).

Related literature

For the pharmacological and biochemical properties of benzimidazol-2-one derivatives, see: El Azzaoui et al. (2006[El Azzaoui, B., Bouhfid, R., Doumbia, M. L., Essassi, E. M., Gornitzka, H. & Bellan, J. (2006). Tetrahedron Lett. 47, 8807-8810.]); Soderlind et al. (1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anti-Cancer Drug Des. 14, 19-36.]); Rémond et al. (1997[Rémond, G., Portevin, B., Bonnet, J., Canet, E., Regoli, D. & De Nanteuil, G. (1997). Eur. J. Med. Chem. 32, 843-868.]); Gribkoff et al. (1994[Gribkoff, V. K., Champigny, G., Barbry, P., Dworetzky, S. I., Meanwell, N. A. & Lazdunski, M. (1994). J. Biol. Chem. 269, 10983-10986.]); Olesen et al. (1994[Olesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53-59.]); McKay et al. (1994[McKay, M. C., Dworetzky, S. I., Meanwell, N. A., Olesen, S.-P., Reinhart, P. H., Levitan, I. B., Adelman, J. P. & Gribkoff, V. K. (1994). J. Neurophysiol. 71, 1873-1882.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N2O

  • Mr = 260.37

  • Monoclinic, P 21 /c

  • a = 18.023 (1) Å

  • b = 5.4585 (2) Å

  • c = 16.5708 (9) Å

  • β = 115.543 (7)°

  • V = 1470.86 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 123 K

  • 0.54 × 0.14 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.908, Tmax = 0.955

  • 4966 measured reflections

  • 2656 independent reflections

  • 2073 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.06

  • 2656 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.92 (2) 1.92 (2) 2.817 (2) 166.1 (19)
C4—H4A⋯O1ii 0.95 2.50 3.284 (2) 140
C8—H8B⋯O1iii 0.99 2.55 3.453 (2) 151
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazol-2-one derivatives are useful heterocyclic building blocks (El Azzaoui et al.,2006) and are prominent structural elements of compounds demonstrating a wide variety of pharmacological and biochemical properties (Soderlind et al.,1999). Examples of pharmacological activity exhibited by benzimidazol-2-ones include antagonism of neurotransmitter receptors, inhibition of aldose reductase, antiulcer and antisecretory properties, and modulation of ion channels. (Rémond et al., (1997); Gribkoff et al., (1994); Olesen et al., (1994); McKay et al., (1994).

The 1-nonyl-1H-benzimidazol-2(3H)-one molecule structure is built up from two fused six-and five-membered rings linked to C9H19 chains as schown in Fg.1. The fused-ring system is essentially planar, with a maximum deviation of 0.005 (2) Å and -0.009 (2) Å for C7 and N1 respectyvely. The dihedral angle between them does not exceed 1.03 (6)°. The torsion angles C1 N1 C8 C9 and C11 C12 C13 C14 are 113.4 (2)° and 178.9 (2)° respectively.

N-H···O hydrogen bonds result in the formation of dimers with R22(8) graph set motif (Etter et al., 1990; Bernstein et al., 1995). These dimer are further connected through C-H···O hydrogen bonds building sheets parallell to the (1 0 0) plane. (Table 1).

Related literature top

For the pharmacological and biochemical properties of benzimidazol-2-one derivatives, see: El Azzaoui et al. (2006); Soderlind et al. (1999); Rémond et al. (1997); Gribkoff et al. (1994); Olesen et al. (1994); McKay et al. (1994). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995) .

Experimental top

To benzimidazol-2-one (0,21 g, 1,5 mmol), potassium carbonate (0,41 g, 3 mmol), and tetra-n-butylammonium bromide (0.1 g, 0,3 mmol) in DMF (15 ml) was added 1-bromononane (0,57 ml, 3 mmol). Stirring was continued at room temperature for 6 h. The salts were removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all H atoms with Uiso(H) = 1.2 Ueq(aromatic, methine)and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1-Nonyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C16H24N2OF(000) = 568
Mr = 260.37Dx = 1.176 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2656 reflections
a = 18.023 (1) Åθ = 5.3–67.7°
b = 5.4585 (2) ŵ = 0.57 mm1
c = 16.5708 (9) ÅT = 123 K
β = 115.543 (7)°Needle, colorless
V = 1470.86 (15) Å30.54 × 0.14 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2656 independent reflections
Radiation source: Enhance (Cu) X-ray Source2073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.5081 pixels mm-1θmax = 67.7°, θmin = 5.3°
ω scansh = 2114
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 65
Tmin = 0.908, Tmax = 0.955l = 1519
4966 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.0676P]
where P = (Fo2 + 2Fc2)/3
2656 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H24N2OV = 1470.86 (15) Å3
Mr = 260.37Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.023 (1) ŵ = 0.57 mm1
b = 5.4585 (2) ÅT = 123 K
c = 16.5708 (9) Å0.54 × 0.14 × 0.08 mm
β = 115.543 (7)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2656 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2073 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.955Rint = 0.038
4966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
2656 reflectionsΔρmin = 0.23 e Å3
177 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd (2010). Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04944 (8)0.7205 (2)0.58716 (8)0.0258 (3)
N10.11884 (9)0.9981 (3)0.53791 (9)0.0227 (3)
N20.05350 (9)0.6926 (3)0.44838 (9)0.0238 (3)
H2N0.0218 (14)0.554 (4)0.4288 (14)0.040 (6)*
C10.07126 (10)0.7949 (3)0.53033 (11)0.0217 (4)
C20.08761 (11)0.8328 (3)0.40292 (11)0.0231 (4)
C30.08572 (11)0.8103 (3)0.31892 (12)0.0269 (4)
H3A0.05760.67870.28030.032*
C40.12671 (11)0.9882 (3)0.29310 (12)0.0285 (4)
H4A0.12710.97650.23610.034*
C50.16711 (12)1.1829 (3)0.34929 (12)0.0288 (4)
H5A0.19411.30200.32960.035*
C60.16872 (11)1.2065 (3)0.43378 (12)0.0256 (4)
H6A0.19601.33960.47200.031*
C70.12889 (10)1.0278 (3)0.45958 (11)0.0228 (4)
C80.14782 (11)1.1628 (3)0.61482 (11)0.0237 (4)
H8A0.12121.11680.65390.028*
H8B0.13061.33200.59350.028*
C90.24066 (11)1.1583 (3)0.66960 (11)0.0244 (4)
H9A0.25551.27410.72020.029*
H9B0.26701.21710.63170.029*
C100.27540 (11)0.9070 (3)0.70653 (12)0.0282 (4)
H10A0.26600.79460.65610.034*
H10B0.24570.84040.73990.034*
C110.36729 (11)0.9157 (4)0.76838 (12)0.0287 (4)
H11A0.39630.99270.73600.034*
H11B0.37611.02070.82040.034*
C120.40510 (11)0.6654 (4)0.80204 (12)0.0304 (4)
H12A0.39960.56350.75030.036*
H12B0.37410.58390.83140.036*
C130.49577 (12)0.6790 (4)0.86815 (12)0.0300 (4)
H13A0.52670.75830.83830.036*
H13B0.50120.78410.91910.036*
C140.53471 (11)0.4315 (3)0.90421 (12)0.0301 (4)
H14A0.53050.32690.85360.036*
H14B0.50350.35060.93350.036*
C150.62484 (11)0.4504 (4)0.97121 (12)0.0314 (4)
H15A0.65560.53600.94250.038*
H15B0.62880.55111.02260.038*
C160.66513 (13)0.2034 (4)1.00569 (14)0.0392 (5)
H16A0.72240.22831.04910.059*
H16B0.66370.10500.95560.059*
H16C0.63530.11761.03460.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0284 (7)0.0254 (7)0.0233 (6)0.0011 (5)0.0109 (5)0.0012 (5)
N10.0246 (8)0.0227 (8)0.0190 (7)0.0001 (6)0.0077 (6)0.0002 (6)
N20.0242 (8)0.0228 (8)0.0225 (8)0.0017 (6)0.0083 (6)0.0009 (6)
C10.0202 (8)0.0209 (8)0.0214 (8)0.0037 (7)0.0066 (7)0.0018 (7)
C20.0203 (8)0.0227 (9)0.0241 (9)0.0019 (7)0.0075 (7)0.0012 (7)
C30.0265 (9)0.0269 (10)0.0231 (9)0.0010 (7)0.0065 (7)0.0024 (7)
C40.0306 (10)0.0331 (10)0.0216 (8)0.0037 (8)0.0112 (8)0.0025 (8)
C50.0301 (10)0.0290 (10)0.0283 (10)0.0003 (8)0.0135 (8)0.0044 (7)
C60.0254 (9)0.0227 (9)0.0258 (9)0.0010 (7)0.0082 (7)0.0005 (7)
C70.0211 (9)0.0246 (9)0.0202 (8)0.0048 (7)0.0065 (7)0.0026 (7)
C80.0266 (9)0.0224 (9)0.0203 (8)0.0009 (7)0.0083 (7)0.0006 (7)
C90.0257 (9)0.0246 (9)0.0218 (9)0.0014 (7)0.0093 (7)0.0015 (7)
C100.0258 (10)0.0274 (10)0.0272 (9)0.0001 (8)0.0076 (8)0.0010 (7)
C110.0253 (10)0.0310 (10)0.0254 (9)0.0003 (8)0.0066 (8)0.0017 (7)
C120.0274 (10)0.0312 (10)0.0281 (9)0.0006 (8)0.0077 (8)0.0008 (8)
C130.0267 (10)0.0304 (10)0.0279 (10)0.0013 (8)0.0071 (8)0.0026 (8)
C140.0272 (10)0.0307 (10)0.0293 (9)0.0007 (8)0.0092 (8)0.0022 (8)
C150.0278 (10)0.0320 (10)0.0299 (10)0.0015 (8)0.0080 (8)0.0030 (8)
C160.0313 (11)0.0384 (12)0.0405 (12)0.0061 (9)0.0084 (9)0.0048 (9)
Geometric parameters (Å, º) top
O1—C11.235 (2)C9—H9B0.9900
N1—C11.375 (2)C10—C111.527 (2)
N1—C71.395 (2)C10—H10A0.9900
N1—C81.460 (2)C10—H10B0.9900
N2—C11.372 (2)C11—C121.522 (3)
N2—C21.389 (2)C11—H11A0.9900
N2—H2N0.92 (2)C11—H11B0.9900
C2—C31.383 (2)C12—C131.527 (3)
C2—C71.402 (2)C12—H12A0.9900
C3—C41.395 (3)C12—H12B0.9900
C3—H3A0.9500C13—C141.521 (3)
C4—C51.393 (3)C13—H13A0.9900
C4—H4A0.9500C13—H13B0.9900
C5—C61.394 (2)C14—C151.525 (2)
C5—H5A0.9500C14—H14A0.9900
C6—C71.384 (2)C14—H14B0.9900
C6—H6A0.9500C15—C161.521 (3)
C8—C91.521 (2)C15—H15A0.9900
C8—H8A0.9900C15—H15B0.9900
C8—H8B0.9900C16—H16A0.9800
C9—C101.523 (2)C16—H16B0.9800
C9—H9A0.9900C16—H16C0.9800
C1—N1—C7109.57 (14)C11—C10—H10A109.1
C1—N1—C8123.43 (14)C9—C10—H10B109.1
C7—N1—C8126.84 (15)C11—C10—H10B109.1
C1—N2—C2110.10 (15)H10A—C10—H10B107.9
C1—N2—H2N121.8 (13)C12—C11—C10113.73 (16)
C2—N2—H2N128.0 (13)C12—C11—H11A108.8
O1—C1—N2127.30 (17)C10—C11—H11A108.8
O1—C1—N1125.93 (16)C12—C11—H11B108.8
N2—C1—N1106.77 (14)C10—C11—H11B108.8
C3—C2—N2132.22 (17)H11A—C11—H11B107.7
C3—C2—C7121.15 (16)C11—C12—C13113.00 (16)
N2—C2—C7106.63 (15)C11—C12—H12A109.0
C2—C3—C4117.41 (17)C13—C12—H12A109.0
C2—C3—H3A121.3C11—C12—H12B109.0
C4—C3—H3A121.3C13—C12—H12B109.0
C5—C4—C3121.29 (16)H12A—C12—H12B107.8
C5—C4—H4A119.4C14—C13—C12114.10 (16)
C3—C4—H4A119.4C14—C13—H13A108.7
C4—C5—C6121.35 (17)C12—C13—H13A108.7
C4—C5—H5A119.3C14—C13—H13B108.7
C6—C5—H5A119.3C12—C13—H13B108.7
C7—C6—C5117.15 (17)H13A—C13—H13B107.6
C7—C6—H6A121.4C13—C14—C15113.07 (16)
C5—C6—H6A121.4C13—C14—H14A109.0
C6—C7—N1131.46 (16)C15—C14—H14A109.0
C6—C7—C2121.64 (16)C13—C14—H14B109.0
N1—C7—C2106.89 (15)C15—C14—H14B109.0
N1—C8—C9113.48 (14)H14A—C14—H14B107.8
N1—C8—H8A108.9C16—C15—C14113.53 (17)
C9—C8—H8A108.9C16—C15—H15A108.9
N1—C8—H8B108.9C14—C15—H15A108.9
C9—C8—H8B108.9C16—C15—H15B108.9
H8A—C8—H8B107.7C14—C15—H15B108.9
C8—C9—C10114.21 (15)H15A—C15—H15B107.7
C8—C9—H9A108.7C15—C16—H16A109.5
C10—C9—H9A108.7C15—C16—H16B109.5
C8—C9—H9B108.7H16A—C16—H16B109.5
C10—C9—H9B108.7C15—C16—H16C109.5
H9A—C9—H9B107.6H16A—C16—H16C109.5
C9—C10—C11112.36 (16)H16B—C16—H16C109.5
C9—C10—H10A109.1
C2—N2—C1—O1178.67 (16)C8—N1—C7—C62.0 (3)
C2—N2—C1—N11.54 (18)C1—N1—C7—C21.36 (18)
C7—N1—C1—O1178.42 (16)C8—N1—C7—C2176.97 (15)
C8—N1—C1—O12.6 (3)C3—C2—C7—C60.6 (3)
C7—N1—C1—N21.78 (18)N2—C2—C7—C6178.71 (16)
C8—N1—C1—N2177.57 (14)C3—C2—C7—N1179.70 (15)
C1—N2—C2—C3178.49 (18)N2—C2—C7—N10.39 (18)
C1—N2—C2—C70.71 (19)C1—N1—C8—C9113.44 (17)
N2—C2—C3—C4179.37 (18)C7—N1—C8—C971.5 (2)
C7—C2—C3—C40.3 (2)N1—C8—C9—C1058.51 (19)
C2—C3—C4—C50.8 (3)C8—C9—C10—C11174.43 (14)
C3—C4—C5—C60.5 (3)C9—C10—C11—C12176.51 (15)
C4—C5—C6—C70.3 (3)C10—C11—C12—C13176.55 (14)
C5—C6—C7—N1179.73 (17)C11—C12—C13—C14178.92 (15)
C5—C6—C7—C20.9 (3)C12—C13—C14—C15179.06 (15)
C1—N1—C7—C6177.62 (18)C13—C14—C15—C16178.32 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.92 (2)1.92 (2)2.817 (2)166.1 (19)
C4—H4A···O1ii0.952.503.284 (2)140
C8—H8B···O1iii0.992.553.453 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H24N2O
Mr260.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)18.023 (1), 5.4585 (2), 16.5708 (9)
β (°) 115.543 (7)
V3)1470.86 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.57
Crystal size (mm)0.54 × 0.14 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.908, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
4966, 2656, 2073
Rint0.038
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.06
No. of reflections2656
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.92 (2)1.92 (2)2.817 (2)166.1 (19)
C4—H4A···O1ii0.952.503.284 (2)140
C8—H8B···O1iii0.992.553.453 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEl Azzaoui, B., Bouhfid, R., Doumbia, M. L., Essassi, E. M., Gornitzka, H. & Bellan, J. (2006). Tetrahedron Lett. 47, 8807–8810.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGribkoff, V. K., Champigny, G., Barbry, P., Dworetzky, S. I., Meanwell, N. A. & Lazdunski, M. (1994). J. Biol. Chem. 269, 10983–10986.  CAS PubMed Web of Science Google Scholar
First citationMcKay, M. C., Dworetzky, S. I., Meanwell, N. A., Olesen, S.-P., Reinhart, P. H., Levitan, I. B., Adelman, J. P. & Gribkoff, V. K. (1994). J. Neurophysiol. 71, 1873–1882.  CAS PubMed Web of Science Google Scholar
First citationOlesen, S. P., Munch, E., Moldt, P. & Drejer, J. (1994). Eur. J. Pharmacol. 251, 53–59.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRémond, G., Portevin, B., Bonnet, J., Canet, E., Regoli, D. & De Nanteuil, G. (1997). Eur. J. Med. Chem. 32, 843–868.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anti-Cancer Drug Des. 14, 19–36.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds