organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o334-o335

(1RS,6SR)-Ethyl 4-(4-chloro­phen­yl)-6-(4-fluoro­phen­yl)-2-oxo­cyclo­hex-3-ene-1-carboxyl­ate toluene hemisolvate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 29 December 2010; accepted 4 January 2011; online 12 January 2011)

In the crystal structure of the title compound, C21H18ClFO3·0.5C7H8, the toluene solvent mol­ecules occupy special positions on centres of symmetry, and consequently are disordered across this site. The cyclo­hexene ring has a slightly distorted sofa conformation; the two benzene rings are inclined by 72.90 (7)° and their planes make dihedral angles of 30.09 (10) (chloro­phen­yl) and 88.13 (6)° (fluoro­phen­yl) with the approximately planar part of the cyclo­hexenone ring [maximum deviation from plane through five atoms is 0.030 (2) Å, the sixth atom is 0.672 (3)Å out of this plane]. Weak inter­molecular C—H⋯O and C—H⋯X (X = F, Cl) inter­actions join mol­ecules into a three-dimensional structure. Also, a relatively short and directional C—Cl⋯F—C contact is observed [Cl⋯F = 3.119 (2) Å, C—Cl⋯F = 157.5 (2)° and C—F⋯Cl 108.3 (2)°]. The solvent mol­ecules fill the voids in the crystal structure and are kept there by relatively short and directional C—H⋯π inter­actions.

Related literature

For biological applications of some cyclo­hexa­nones, see: Eddington et al. (2000[Eddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, A. R. (2000). Curr. Med. Chem. 7, 417-436.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16-22. New York: Plenum.]). For similar structures, see: in Anuradha et al. (2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.], 2009[Fun, H.-K., Jebas, S. R., Girish, K. S. & Kalluraya, B. (2009). Acta Cryst. E65, o1235.], 2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]); Badshah et al. (2009[Badshah, A., Hasan, A. & Barbarín, C. R. (2009). Acta Cryst. E65, o467.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18ClFO3·0.5C7H8

  • Mr = 418.87

  • Triclinic, [P \overline 1]

  • a = 7.572 (2) Å

  • b = 11.259 (3) Å

  • c = 13.362 (3) Å

  • α = 69.42 (2)°

  • β = 86.58 (2)°

  • γ = 70.98 (2)°

  • V = 1006.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.3 × 0.25 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.990, Tmax = 1.000

  • 8414 measured reflections

  • 4154 independent reflections

  • 2567 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.085

  • S = 1.02

  • 4154 reflections

  • 341 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1A–C3A,C1A′–C3A′ ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C45—H45⋯F64i 0.94 (2) 2.54 (2) 3.327 (3) 141.6 (15)
C5—H52⋯F64ii 0.938 (19) 2.54 (2) 3.432 (3) 159.3 (15)
C6—H6⋯Cl44iii 1.003 (19) 2.84 (2) 3.846 (3) 176.3 (14)
C65—H65⋯O12iv 0.94 (2) 2.59 (2) 3.519 (3) 173.6 (16)
C3—H3⋯Cg 0.918 (19) 2.78 (2) 3.627 (3) 155.0 (17)
C3—H3⋯Cgv 0.918 (19) 2.78 (2) 3.627 (3) 155.0 (17)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z+2; (iv) -x+2, -y, -z+1; (v) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cyclohexenone derivatives, prepared either from natural sources or entirely via synthetic routes, are known to possess a wide variety of biological activities, e.g. they were reported to have anticonvulsant, antimalarial, anti-inflammatory and cardiovascular effects (Eddington et al., 2000). In the course of our studies on chalcone derivatives, we have synthesized some cyclohexene derivatives. Structures of some similar compounds have been reported earlier (for instance, ethyl 6-(4-chlorophenyl)-4-(4-methoxyphenyl)- 2-oxocyclohex-3-ene-1- carboxylate, Fun et al., 2009, ethyl 4-(4-methoxyphenyl)-2-oxo-6- phenylcyclohex-3-ene-1-carboxylate, Fun et al., 2008, ethyl 4-(4-bromophenyl)-6-(4-ethoxyphenyl)- 2-oxocyclohex-3-enecarboxylate, Badshah et al., 2009). Here we report the crystal structure of (1RS,6SR) ethyl 4-(4-chlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate toluene solvate (I, Scheme 1).

The overall conformation of I (Fig. 1) can be characterized by the dihedral angles between the phenyl rings, of 72.90 (7)°, and between these rings and the plane of cyclohexene ring which are equal to 30.09 (10)° for chlorophenyl ring and 88.13 (6)° for fluorophenyl ring. These values are similar to those found in the structures of related compounds, for instance in methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex- 3-ene-1-carboxylate (Fun et al., 2010) the dihedral angles between fluorophenyl rings in two symmetry-independent molecules are 79.7 (2)° and 73.7 (2)°, and the angles between the cyclohexene plane and the fluorophenyl rings are 14.9° and 73.7° in one molecule and 29.9° and 84.0° in the second. In the structure of ethyl 6 - r-(2-chlorophenyl)-2-oxo-4- phenylcyclohex-3-ene-1 - t-carboxylate (Anuradha et al., 2009) appropriate angles are 81.73 (12)°. 12.75 (14)° and 74.16 (8)°.

The cyclohexene ring adopts slightly distorted sofa conformation, the asymmetry parameter ΔCs3 (Duax & Norton, 1975) is 6.2°. This is also confirmed by least-squares calculations: five atoms C1 - C5 are almost coplanar, maximum deviation is 0.030 (2) Å, while the sixth atom, C6, is by 0.672 (3)Å out of this mean plane.

In the crystal structure the molecules are joined by weak C—H···O, C—H···F and C—H···Cl interactions (Fig. 2). The solvent - toluene molecules are disordered over the centre of symmetry. They occupy the voids in the crystal structure and are kept there by means of relatively short and linear C—H···π interactions (H···Cg 2.78 Å, C—H···Cg 155°). An inteeresting feature of the structure is the presence of linear C—Cl···F—C contacts (F···Cl 3.12 Å, C—Cl···F 157.5 (2)°, C—F···Cl 108.3 (2)°). In the CSD (Allen, 2002) there are 196 cases of such contacts shorter than 3.2 Å, and the same directional preferences are observed.

Related literature top

For biological applications of some cyclohexanones, see: Eddington et al. (2000). For asymmetry parameters, see: Duax & Norton (1975). For similar structures, see: in Anuradha et al. (2009); Fun et al. (2008, 2009, 2010); Badshah et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of ((2E)-1-(4-chlorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (0.01 mol) and ethyl acetoacetate (0.01 mol) were refluxed for 2 hr in 10–15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The crystals were obtained by a slow evaporation from toluene solution. C21H18ClFO3.C7H8: C: 72.26 (72.33); H:5.59 (5.64); m.p. 346 K.

Refinement top

Hydrogen atoms from solvent molecule were located geometrically (C(methyl)-H 0.98 Å, C(arom)-H 0.95 Å) and refined as a riding model; the Uiso values of H atoms were set at 1.2 (1.5 for CH3 group) times Ueq of their carrier atom. All other hydrogen atoms were located in difference Fourier maps and isotropically refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the components of I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii; only one of the disordered toluene molecules is shown. [Symmetry code: (i) 1 - x,1 - y,2 - z]
[Figure 2] Fig. 2. The crystal packing as seen along x-direction. Weak interactions (cf. text) are shown as dashed lines. For the sake of clarity, H atoms not involved in hydrogen interactions have been omitted .
(1RS,6SR)-Ethyl 4-(4-chlorophenyl)-6-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate toluene hemisolvate top
Crystal data top
C21H18ClFO3·0.5C7H8Z = 2
Mr = 418.87F(000) = 438
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.572 (2) ÅCell parameters from 4263 reflections
b = 11.259 (3) Åθ = 2.9–28.2°
c = 13.362 (3) ŵ = 0.22 mm1
α = 69.42 (2)°T = 100 K
β = 86.58 (2)°Plate, colourless
γ = 70.98 (2)°0.3 × 0.25 × 0.1 mm
V = 1006.3 (4) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4154 independent reflections
Radiation source: Enhance (Mo) X-ray Source2567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1544 pixels mm-1θmax = 28.2°, θmin = 2.9°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1414
Tmin = 0.990, Tmax = 1.000l = 1712
8414 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
4154 reflections(Δ/σ)max < 0.001
341 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H18ClFO3·0.5C7H8γ = 70.98 (2)°
Mr = 418.87V = 1006.3 (4) Å3
Triclinic, P1Z = 2
a = 7.572 (2) ÅMo Kα radiation
b = 11.259 (3) ŵ = 0.22 mm1
c = 13.362 (3) ÅT = 100 K
α = 69.42 (2)°0.3 × 0.25 × 0.1 mm
β = 86.58 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4154 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2567 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 1.000Rint = 0.030
8414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
4154 reflectionsΔρmin = 0.28 e Å3
341 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6617 (3)0.3346 (2)0.63392 (17)0.0170 (5)
H10.553 (3)0.4099 (19)0.5898 (14)0.014 (5)*
C110.8347 (3)0.3354 (2)0.57104 (17)0.0174 (5)
O120.98805 (19)0.25572 (14)0.60237 (11)0.0245 (4)
O130.79236 (18)0.43431 (14)0.47543 (11)0.0194 (3)
C140.9412 (3)0.4356 (3)0.40032 (19)0.0251 (5)
H1410.921 (3)0.529 (2)0.3592 (17)0.032 (6)*
H1421.060 (3)0.398 (2)0.4422 (15)0.020 (5)*
C150.9245 (4)0.3639 (4)0.3282 (2)0.0443 (8)
H1511.031 (3)0.364 (2)0.2731 (19)0.047 (7)*
H1520.939 (3)0.267 (3)0.369 (2)0.052 (9)*
H1530.812 (4)0.395 (3)0.290 (2)0.063 (9)*
C20.6800 (3)0.3601 (2)0.73669 (16)0.0173 (5)
O20.77611 (19)0.42695 (14)0.74167 (11)0.0235 (4)
C30.5696 (3)0.3083 (2)0.82386 (17)0.0175 (5)
H30.577 (3)0.3302 (19)0.8831 (15)0.017 (5)*
C40.4587 (3)0.23905 (19)0.81810 (15)0.0155 (5)
C410.3380 (3)0.19687 (19)0.90529 (16)0.0166 (5)
C420.1667 (3)0.1872 (2)0.88281 (18)0.0218 (5)
H420.132 (3)0.2043 (19)0.8152 (15)0.012 (5)*
C430.0493 (3)0.1525 (2)0.96266 (17)0.0255 (6)
H430.066 (3)0.150 (2)0.9474 (17)0.042 (7)*
C440.1033 (3)0.1251 (2)1.06689 (17)0.0223 (5)
Cl440.04482 (8)0.08177 (6)1.16805 (4)0.03293 (18)
C450.2740 (3)0.1303 (2)1.09298 (18)0.0203 (5)
H450.311 (3)0.110 (2)1.1647 (16)0.021 (6)*
C460.3900 (3)0.1664 (2)1.01258 (17)0.0187 (5)
H460.511 (3)0.1664 (19)1.0331 (14)0.020 (5)*
C50.4500 (3)0.2036 (2)0.71992 (17)0.0168 (5)
H510.339 (3)0.2683 (19)0.6691 (15)0.017 (5)*
H520.439 (3)0.118 (2)0.7395 (15)0.016 (5)*
C60.6248 (3)0.2016 (2)0.65685 (17)0.0180 (5)
H60.734 (3)0.1305 (19)0.7046 (15)0.017 (5)*
C610.6118 (3)0.1733 (2)0.55508 (16)0.0159 (5)
C620.4812 (3)0.2627 (2)0.47154 (17)0.0192 (5)
H620.397 (3)0.344 (2)0.4785 (14)0.016 (5)*
C630.4697 (3)0.2382 (2)0.37815 (18)0.0214 (5)
H630.381 (3)0.301 (2)0.3201 (16)0.027 (6)*
C640.5913 (3)0.1206 (2)0.37091 (16)0.0191 (5)
F640.57885 (17)0.09459 (12)0.27937 (9)0.0284 (3)
C650.7231 (3)0.0291 (2)0.45003 (17)0.0205 (5)
H650.803 (3)0.050 (2)0.4421 (15)0.018 (6)*
C660.7323 (3)0.0571 (2)0.54264 (17)0.0184 (5)
H660.821 (3)0.0050 (19)0.5957 (15)0.011 (5)*
C1A0.6922 (4)0.4700 (3)1.0220 (2)0.0570 (8)
H1A0.82180.44931.03770.068*0.50
C11A0.8853 (4)0.4547 (3)1.0355 (2)0.0601 (17)0.50
H11A0.94790.44890.97030.072*0.50
H11B0.94490.37251.09620.072*0.50
H11C0.89540.53221.04940.072*0.50
C2A0.6030 (5)0.5692 (3)0.9267 (3)0.0566 (8)
H2A0.67230.61660.87620.068*
C3A0.4143 (5)0.5989 (3)0.9052 (2)0.0561 (8)
H3A0.35520.66730.84000.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0164 (11)0.0172 (12)0.0182 (12)0.0066 (10)0.0027 (9)0.0063 (10)
C110.0206 (12)0.0163 (12)0.0215 (13)0.0096 (11)0.0015 (10)0.0108 (11)
O120.0191 (8)0.0237 (9)0.0271 (9)0.0028 (7)0.0009 (7)0.0084 (7)
O130.0156 (8)0.0206 (8)0.0203 (8)0.0064 (7)0.0050 (6)0.0051 (7)
C140.0183 (12)0.0311 (15)0.0233 (14)0.0107 (12)0.0081 (10)0.0052 (12)
C150.0387 (18)0.075 (3)0.0380 (18)0.0286 (18)0.0177 (14)0.0350 (18)
C20.0142 (11)0.0149 (11)0.0219 (12)0.0038 (10)0.0005 (9)0.0059 (10)
O20.0249 (8)0.0262 (9)0.0277 (9)0.0157 (8)0.0064 (7)0.0135 (7)
C30.0190 (11)0.0180 (12)0.0177 (12)0.0063 (10)0.0017 (9)0.0085 (10)
C40.0143 (11)0.0127 (11)0.0176 (12)0.0032 (9)0.0007 (9)0.0040 (9)
C410.0160 (11)0.0128 (11)0.0185 (12)0.0023 (10)0.0020 (9)0.0050 (10)
C420.0217 (12)0.0268 (13)0.0148 (13)0.0088 (11)0.0009 (10)0.0035 (11)
C430.0144 (12)0.0354 (15)0.0234 (14)0.0099 (11)0.0011 (10)0.0048 (12)
C440.0220 (12)0.0228 (13)0.0207 (13)0.0081 (10)0.0068 (10)0.0061 (11)
Cl440.0256 (3)0.0469 (4)0.0230 (3)0.0148 (3)0.0094 (2)0.0070 (3)
C450.0239 (12)0.0205 (13)0.0146 (13)0.0051 (10)0.0001 (10)0.0059 (10)
C460.0184 (12)0.0173 (12)0.0218 (13)0.0068 (10)0.0006 (10)0.0073 (10)
C50.0179 (12)0.0165 (12)0.0173 (12)0.0081 (10)0.0019 (9)0.0053 (10)
C60.0167 (11)0.0194 (12)0.0209 (12)0.0073 (10)0.0017 (9)0.0095 (10)
C610.0149 (11)0.0176 (12)0.0187 (12)0.0103 (10)0.0050 (9)0.0065 (10)
C620.0161 (11)0.0180 (12)0.0269 (13)0.0075 (10)0.0051 (9)0.0107 (11)
C630.0178 (12)0.0243 (13)0.0216 (13)0.0080 (11)0.0005 (10)0.0063 (11)
C640.0227 (12)0.0293 (13)0.0160 (12)0.0183 (11)0.0084 (9)0.0128 (10)
F640.0349 (8)0.0383 (8)0.0244 (7)0.0190 (7)0.0084 (6)0.0202 (6)
C650.0184 (12)0.0182 (12)0.0285 (14)0.0083 (11)0.0100 (10)0.0118 (11)
C660.0162 (11)0.0167 (12)0.0190 (12)0.0049 (10)0.0000 (9)0.0028 (10)
C1A0.061 (2)0.064 (2)0.065 (2)0.0231 (19)0.0106 (18)0.043 (2)
C11A0.052 (4)0.060 (4)0.071 (4)0.007 (3)0.001 (3)0.035 (4)
C2A0.065 (2)0.060 (2)0.061 (2)0.0264 (19)0.0088 (18)0.0355 (19)
C3A0.073 (2)0.052 (2)0.055 (2)0.0239 (19)0.0092 (17)0.0289 (17)
Geometric parameters (Å, º) top
C1—C111.514 (3)C46—H460.973 (19)
C1—C21.520 (3)C5—C61.524 (3)
C1—C61.534 (3)C5—H511.01 (2)
C1—H10.996 (19)C5—H520.938 (19)
C11—O121.202 (2)C6—C611.517 (3)
C11—O131.338 (2)C6—H61.003 (19)
O13—C141.464 (2)C61—C661.389 (3)
C14—C151.491 (3)C61—C621.390 (3)
C14—H1410.97 (2)C62—C631.383 (3)
C14—H1420.98 (2)C62—H620.96 (2)
C15—H1511.06 (2)C63—C641.377 (3)
C15—H1521.01 (3)C63—H630.96 (2)
C15—H1530.91 (3)C64—C651.366 (3)
C2—O21.225 (2)C64—F641.369 (2)
C2—C31.456 (3)C65—C661.391 (3)
C3—C41.340 (3)C65—H650.94 (2)
C3—H30.918 (19)C66—H660.921 (19)
C4—C411.478 (3)C1A—C2A1.392 (4)
C4—C51.510 (3)C1A—C3Ai1.408 (4)
C41—C421.395 (3)C1A—C11A1.4305
C41—C461.401 (3)C1A—H1A0.9500
C42—C431.379 (3)C11A—H11A0.9800
C42—H420.892 (18)C11A—H11B0.9800
C43—C441.373 (3)C11A—H11C0.9800
C43—H430.92 (2)C2A—C3A1.381 (4)
C44—C451.383 (3)C2A—H2A0.9500
C44—Cl441.742 (2)C3A—C1Ai1.408 (4)
C45—C461.380 (3)C3A—H3A0.9500
C45—H450.94 (2)
C11—C1—C2111.06 (17)C41—C46—H46121.1 (11)
C11—C1—C6110.02 (17)C4—C5—C6112.59 (17)
C2—C1—C6111.44 (17)C4—C5—H51112.3 (11)
C11—C1—H1108.1 (10)C6—C5—H51107.3 (10)
C2—C1—H1107.0 (10)C4—C5—H52110.4 (12)
C6—C1—H1109.1 (10)C6—C5—H52107.0 (11)
O12—C11—O13124.93 (18)H51—C5—H52107.0 (15)
O12—C11—C1124.19 (19)C61—C6—C5112.59 (17)
O13—C11—C1110.86 (17)C61—C6—C1111.90 (17)
C11—O13—C14116.65 (16)C5—C6—C1108.92 (17)
O13—C14—C15109.77 (18)C61—C6—H6109.7 (11)
O13—C14—H141105.4 (12)C5—C6—H6107.8 (10)
C15—C14—H141110.0 (13)C1—C6—H6105.6 (10)
O13—C14—H142107.7 (11)C66—C61—C62118.12 (19)
C15—C14—H142114.2 (12)C66—C61—C6120.58 (19)
H141—C14—H142109.3 (17)C62—C61—C6121.30 (19)
C14—C15—H151110.8 (12)C63—C62—C61121.6 (2)
C14—C15—H152111.7 (15)C63—C62—H62119.0 (11)
H151—C15—H152106.4 (19)C61—C62—H62119.4 (11)
C14—C15—H153116.4 (17)C64—C63—C62117.7 (2)
H151—C15—H153108 (2)C64—C63—H63121.0 (12)
H152—C15—H153103 (2)C62—C63—H63121.4 (12)
O2—C2—C3123.01 (19)C65—C64—F64118.58 (19)
O2—C2—C1120.32 (18)C65—C64—C63123.4 (2)
C3—C2—C1116.57 (18)F64—C64—C63118.0 (2)
C4—C3—C2123.6 (2)C64—C65—C66117.6 (2)
C4—C3—H3121.6 (12)C64—C65—H65120.7 (12)
C2—C3—H3114.7 (12)C66—C65—H65121.6 (12)
C3—C4—C41122.00 (18)C61—C66—C65121.6 (2)
C3—C4—C5120.58 (18)C61—C66—H66121.2 (12)
C41—C4—C5117.40 (17)C65—C66—H66117.2 (12)
C42—C41—C46117.75 (18)C2A—C1A—C3Ai118.4 (3)
C42—C41—C4120.68 (18)C2A—C1A—C11A114.00 (18)
C46—C41—C4121.57 (18)C3Ai—C1A—C11A127.52 (19)
C43—C42—C41121.5 (2)C2A—C1A—H1A120.8
C43—C42—H42119.0 (12)C3Ai—C1A—H1A120.8
C41—C42—H42119.5 (12)C1A—C11A—H11A109.5
C44—C43—C42119.3 (2)C1A—C11A—H11B109.5
C44—C43—H43119.2 (14)H11A—C11A—H11B109.5
C42—C43—H43121.4 (14)C1A—C11A—H11C109.5
C43—C44—C45121.08 (19)H11A—C11A—H11C109.5
C43—C44—Cl44119.46 (16)H11B—C11A—H11C109.5
C45—C44—Cl44119.46 (17)C3A—C2A—C1A120.3 (3)
C46—C45—C44119.4 (2)C3A—C2A—H2A119.9
C46—C45—H45119.9 (12)C1A—C2A—H2A119.9
C44—C45—H45120.7 (12)C2A—C3A—C1Ai121.3 (3)
C45—C46—C41121.0 (2)C2A—C3A—H3A119.4
C45—C46—H46117.9 (11)C1Ai—C3A—H3A119.4
C2—C1—C11—O1263.8 (3)C42—C41—C46—C451.1 (3)
C6—C1—C11—O1260.1 (3)C4—C41—C46—C45178.40 (19)
C2—C1—C11—O13117.79 (19)C3—C4—C5—C623.3 (3)
C6—C1—C11—O13118.35 (18)C41—C4—C5—C6157.89 (18)
O12—C11—O13—C146.5 (3)C4—C5—C6—C61176.97 (18)
C1—C11—O13—C14171.86 (17)C4—C5—C6—C152.3 (2)
C11—O13—C14—C1594.2 (3)C11—C1—C6—C6154.7 (2)
C11—C1—C2—O228.6 (3)C2—C1—C6—C61178.39 (17)
C6—C1—C2—O2151.70 (18)C11—C1—C6—C5179.88 (17)
C11—C1—C2—C3154.95 (18)C2—C1—C6—C556.5 (2)
C6—C1—C2—C331.9 (3)C5—C6—C61—C66115.4 (2)
O2—C2—C3—C4177.6 (2)C1—C6—C61—C66121.5 (2)
C1—C2—C3—C41.3 (3)C5—C6—C61—C6265.2 (2)
C2—C3—C4—C41175.33 (19)C1—C6—C61—C6257.9 (2)
C2—C3—C4—C53.4 (3)C66—C61—C62—C630.0 (3)
C3—C4—C41—C42148.1 (2)C6—C61—C62—C63179.37 (18)
C5—C4—C41—C4230.6 (3)C61—C62—C63—C640.8 (3)
C3—C4—C41—C4631.4 (3)C62—C63—C64—C651.1 (3)
C5—C4—C41—C46149.9 (2)C62—C63—C64—F64179.03 (16)
C46—C41—C42—C431.8 (3)F64—C64—C65—C66179.54 (16)
C4—C41—C42—C43177.7 (2)C63—C64—C65—C660.5 (3)
C41—C42—C43—C440.9 (3)C62—C61—C66—C650.5 (3)
C42—C43—C44—C450.7 (3)C6—C61—C66—C65179.92 (18)
C42—C43—C44—Cl44179.81 (17)C64—C65—C66—C610.3 (3)
C43—C44—C45—C461.3 (3)C3Ai—C1A—C2A—C3A0.4 (4)
Cl44—C44—C45—C46179.14 (16)C11A—C1A—C2A—C3A177.18 (19)
C44—C45—C46—C410.4 (3)C1A—C2A—C3A—C1Ai0.4 (4)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1A–C3A,C1A'–C3A' ring.
D—H···AD—HH···AD···AD—H···A
C45—H45···F64ii0.94 (2)2.54 (2)3.327 (3)141.6 (15)
C5—H52···F64iii0.938 (19)2.54 (2)3.432 (3)159.3 (15)
C6—H6···Cl44iv1.003 (19)2.84 (2)3.846 (3)176.3 (14)
C65—H65···O12v0.94 (2)2.59 (2)3.519 (3)173.6 (16)
C3—H3···Cg0.918 (19)2.78 (2)3.627 (3)155.0 (17)
C3—H3···Cgi0.918 (19)2.78 (2)3.627 (3)155.0 (17)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z+2; (v) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H18ClFO3·0.5C7H8
Mr418.87
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.572 (2), 11.259 (3), 13.362 (3)
α, β, γ (°)69.42 (2), 86.58 (2), 70.98 (2)
V3)1006.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.3 × 0.25 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.990, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8414, 4154, 2567
Rint0.030
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.085, 1.02
No. of reflections4154
No. of parameters341
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1A–C3A,C1A'–C3A' ring.
D—H···AD—HH···AD···AD—H···A
C45—H45···F64i0.94 (2)2.54 (2)3.327 (3)141.6 (15)
C5—H52···F64ii0.938 (19)2.54 (2)3.432 (3)159.3 (15)
C6—H6···Cl44iii1.003 (19)2.84 (2)3.846 (3)176.3 (14)
C65—H65···O12iv0.94 (2)2.59 (2)3.519 (3)173.6 (16)
C3—H3···Cg0.918 (19)2.78 (2)3.627 (3)155.0 (17)
C3—H3···Cgv0.918 (19)2.78 (2)3.627 (3)155.0 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+2; (iv) x+2, y, z+1; (v) x+1, y+1, z+2.
 

Acknowledgements

BN thanks the UGC and DST for financial assistance under the SAP and FIST programmes. HSY thanks the UOM for sabbatical leave.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBadshah, A., Hasan, A. & Barbarín, C. R. (2009). Acta Cryst. E65, o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16–22. New York: Plenum.  Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B. & Scott, A. R. (2000). Curr. Med. Chem. 7, 417–436.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Girish, K. S. & Kalluraya, B. (2009). Acta Cryst. E65, o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o334-o335
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds