metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[bis­­(2-ethyl-5-methyl-1H-imidazol-4-yl-κN3)methane]­oxalatocopper(II) dihydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 30 December 2010; accepted 7 January 2011; online 15 January 2011)

In the title compound, [Cu(C2O4)(C13H20N4)(H2O)]·2H2O, the CuII atom exhibits a distorted square-pyramidal geometry with the two N atoms of the imidazole ligand and the two O atoms of the oxalate ligand forming the basal plane, while the O atom of the coordinated water mol­ecule is in an apical position. The CuII atom is shifted 0.232 (2) Å out of the basal plane toward the water mol­ecule. The asymmetric unit is completed by two solvent water mol­ecules. These water mol­ecules participate in the formation of an intricate three-dimensionnal network of hydrogen bonds involving the coordinated water mol­ecule and the NH groups.

Related literature

For the chemical properties of imidazole derivatives, see: Bouwman et al. (2000[Bouwman, E., Douziech, B., Gutierrez-Soto, L., Beretta, M., Driessen, W. L., Reedijk, J. & Mendoza-Daz, G. (2000). Inorg. Chim. Acta, 304, 250-259.]). For synthesis, see: Delgado et al. (2008[Delgado, F. S., Lahoz, F., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2008). J. Cryst. Growth Des. 8, 3219-3232.]). For related structures, see: Beznischenko et al. (2007[Beznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325-1329]); Pajunen (1981[Pajunen, A. (1981). Cryst. Struct. Commun. 10, 957-958.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2O4)(C13H20N4)(H2O)]·2H2O

  • Mr = 437.94

  • Monoclinic, P 21 /c

  • a = 12.1711 (13) Å

  • b = 23.167 (2) Å

  • c = 7.4400 (8) Å

  • β = 107.304 (1)°

  • V = 2002.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 K

  • 0.35 × 0.18 × 0.12 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.693, Tmax = 0.876

  • 10119 measured reflections

  • 3528 independent reflections

  • 1958 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.092

  • S = 0.81

  • 3528 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4i 0.85 2.58 3.177 (4) 128
O5—H52⋯O4ii 0.85 1.90 2.748 (4) 174
N2—H2⋯O2iii 0.86 2.09 2.943 (4) 171
N4—H4⋯O7 0.86 2.03 2.847 (4) 158
O6—H6F⋯O5iv 0.85 2.50 3.259 (4) 149
O6—H6G⋯O4v 0.85 2.30 3.057 (5) 148
O7—H7C⋯O3vi 0.85 2.03 2.882 (4) 178
O7—H7D⋯O6 0.85 1.97 2.818 (4) 177
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazole derivatives are versatile ligands towards transition metal ions both in man-made and natural systems. They are not only used for catalytic and biocatalysts but also for dioxygen transport and electron storage (Bouwman et al., 2000). As part of our interest in imidazole derivatives, we report here the crystal structure of a new copper complex.

The structure around CuII is best decribed as distorted square pyramid environnement with the two N atoms of the imidazole ligand and the two O atoms of the oxalate forming the basal plane whereas the oxygen atom of the coordinated water molecule is in apical position. As expected, the copper atom is shifted ca 0.232 (2)Å out of the basal plane toward the water molecule. The asymmetric unit is completed by two solvate water molecules. The distances and angles within the square pyramid framework agree with related structures (Beznischenko et al., 2007); Pajunen, 1981).

These water molecules participate to the formation of an intricated hydrogen bonds resulting in three dimensionnal network involving the coordinated water molecule and the NH groups (Table 1, Fig. 2).

Related literature top

For the chemical properties of imidazole derivatives, see: Bouwman et al. (2000). For synthesis, see: Delgado et al. (2008). For related structures, see: Beznischenko et al. (2007); Pajunen (1981)

Experimental top

Crystals of the title compound were synthesized by the reaction between copper(II) nitrate trihydrate, potassium oxalate and 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) ligand. Copper salt and oxalate chemicals used (reagent grade) were commercially available, the 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) ligand was synthesized as described below . 0.2 mmol(48.4 mg) solid copper(II) nitrate trihydrate was added to a 15 ml aqueous solution of 0.1 mmol(16.6 mg) potassium oxalate under continuous stirring. The suspension was heated at 40–50 °C during 1 h. Then this suspension was mixed with a 5 ml EtOH solution of 0.1 mmol(23.2mg)4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole). Finally, the blue solution which results from the mixture was filtered off and allowed to evaporate at room temperature(Delgado, et al.,2008). Single crystals of the title compound as blue prisms were grown from the solution by slow evaporation at room temperature within a few days.

The ligand 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) was synthesized as follows: 4.35 g (30 mmol) 2-ethyl-5-methylimidazole was added to a solution of 1.5 g (15 mmol)glycine (40% in H2O). This suspension was vigorously stirred, and 3.1 g (30 mmol) formaldehyde (37% in H2O) was added dropwise. The resulting turbid mixture was made alkaline with a concentrated sodium hydroxide solution until a pH of 12 was reached(Bouwman, et al.,2000). The reaction mixture was stirred for 8 days at room temperature in a closed vessel. During which time a white solid formed. The white solid was collected by filtration, washed with acetonitrile and diethyl ether, and air-dry at room temperature.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(methyl) . H atoms of water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as riding on their parent O atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing view down the a axis showing the three dimensionnal network. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
Aqua[bis(2-ethyl-5-methyl-1H-imidazol-4-yl- κN3)methane]oxalatocopper(II) dihydrate top
Crystal data top
[Cu(C2O4)(C13H20N4)(H2O)]·2H2OF(000) = 916
Mr = 437.94Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1383 reflections
a = 12.1711 (13) Åθ = 3.0–26.0°
b = 23.167 (2) ŵ = 1.13 mm1
c = 7.4400 (8) ÅT = 298 K
β = 107.304 (1)°Prism, blue
V = 2002.9 (4) Å30.35 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku MODEL? CCD area-detector
diffractometer
3528 independent reflections
Radiation source: fine-focus sealed tube1958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.5°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2721
Tmin = 0.693, Tmax = 0.876l = 88
10119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max = 0.003
248 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C2O4)(C13H20N4)(H2O)]·2H2OV = 2002.9 (4) Å3
Mr = 437.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1711 (13) ŵ = 1.13 mm1
b = 23.167 (2) ÅT = 298 K
c = 7.4400 (8) Å0.35 × 0.18 × 0.12 mm
β = 107.304 (1)°
Data collection top
Rigaku MODEL? CCD area-detector
diffractometer
3528 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1958 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.876Rint = 0.071
10119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.81Δρmax = 0.34 e Å3
3528 reflectionsΔρmin = 0.31 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76270 (4)0.413233 (19)0.51168 (7)0.03980 (17)
O10.7228 (2)0.49415 (10)0.4554 (4)0.0521 (8)
O20.7628 (2)0.56946 (12)0.2999 (4)0.0607 (9)
O30.8807 (2)0.43059 (12)0.3849 (4)0.0489 (8)
O40.9308 (3)0.50045 (13)0.2201 (5)0.0744 (11)
O50.8745 (2)0.44573 (12)0.8111 (4)0.0598 (8)
H510.89280.43560.92590.090*
H520.93160.46370.79480.090*
N10.6093 (2)0.39498 (13)0.5450 (4)0.0350 (8)
N20.4439 (3)0.39461 (14)0.6014 (5)0.0454 (9)
H20.38820.40560.64230.055*
N30.8036 (3)0.33050 (12)0.5306 (5)0.0392 (8)
N40.8869 (3)0.24674 (13)0.5968 (5)0.0435 (9)
H40.93960.22120.63950.052*
C10.5428 (3)0.42338 (16)0.6240 (5)0.0355 (10)
C20.4464 (3)0.34484 (17)0.5008 (6)0.0455 (11)
C30.5486 (3)0.34484 (16)0.4666 (6)0.0365 (10)
C40.5695 (3)0.47801 (16)0.7361 (6)0.0441 (11)
H4A0.62520.50000.69460.053*
H4B0.49980.50090.71110.053*
C50.6159 (4)0.46803 (18)0.9430 (7)0.0665 (14)
H5A0.68740.44740.96980.100*
H5B0.56170.44580.98500.100*
H5C0.62840.50451.00730.100*
C60.3461 (3)0.30308 (19)0.4455 (7)0.0729 (16)
H6A0.32180.29420.55380.109*
H6B0.36960.26830.39730.109*
H6C0.28350.32030.35030.109*
C70.9028 (3)0.30417 (17)0.6091 (6)0.0403 (10)
C80.7732 (4)0.23503 (16)0.5055 (6)0.0417 (11)
C90.7212 (3)0.28746 (16)0.4628 (6)0.0385 (10)
C101.0158 (3)0.33196 (18)0.7043 (7)0.0669 (15)
H10A1.02930.36140.62070.080*
H10B1.00920.35140.81610.080*
C111.1157 (4)0.2954 (2)0.7594 (10)0.116 (3)
H11A1.12820.27850.64940.173*
H11B1.10380.26540.84080.173*
H11C1.18160.31800.82480.173*
C120.7272 (3)0.17517 (16)0.4687 (6)0.0559 (13)
H12A0.64540.17660.41110.084*
H12B0.74380.15440.58540.084*
H12C0.76260.15600.38600.084*
C130.5996 (3)0.30202 (16)0.3626 (6)0.0450 (11)
H13A0.55400.26690.34340.054*
H13B0.59520.31760.23980.054*
C140.7802 (3)0.51976 (19)0.3595 (6)0.0420 (11)
C150.8731 (4)0.48180 (19)0.3153 (6)0.0465 (11)
O61.1845 (3)0.07904 (14)0.6127 (5)0.0904 (11)
H6F1.18140.04930.67790.136*
H6G1.15520.07010.49750.136*
O71.0089 (3)0.14122 (14)0.7024 (6)0.1067 (15)
H7C0.97220.11940.75630.160*
H7D1.06080.12140.67620.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0386 (3)0.0339 (3)0.0511 (3)0.0007 (2)0.0197 (3)0.0014 (3)
O10.0566 (19)0.0352 (17)0.078 (2)0.0074 (13)0.0411 (18)0.0105 (15)
O20.066 (2)0.041 (2)0.084 (3)0.0000 (15)0.0355 (19)0.0150 (17)
O30.0421 (17)0.046 (2)0.066 (2)0.0043 (13)0.0285 (16)0.0026 (15)
O40.079 (2)0.064 (2)0.105 (3)0.0064 (17)0.067 (2)0.012 (2)
O50.0454 (18)0.084 (2)0.051 (2)0.0148 (15)0.0156 (16)0.0019 (16)
N10.0313 (18)0.037 (2)0.039 (2)0.0026 (14)0.0142 (17)0.0010 (15)
N20.033 (2)0.047 (2)0.060 (3)0.0009 (16)0.0204 (18)0.0009 (18)
N30.036 (2)0.033 (2)0.050 (2)0.0015 (16)0.0155 (18)0.0029 (16)
N40.044 (2)0.035 (2)0.055 (3)0.0080 (16)0.0182 (19)0.0012 (17)
C10.035 (2)0.033 (3)0.038 (3)0.0006 (19)0.009 (2)0.0045 (19)
C20.039 (3)0.041 (3)0.055 (3)0.002 (2)0.012 (2)0.006 (2)
C30.029 (2)0.040 (3)0.037 (3)0.0010 (18)0.006 (2)0.0020 (19)
C40.045 (3)0.035 (3)0.057 (3)0.0029 (19)0.022 (2)0.000 (2)
C50.070 (3)0.065 (3)0.061 (4)0.013 (3)0.014 (3)0.006 (3)
C60.046 (3)0.068 (4)0.109 (5)0.016 (2)0.032 (3)0.021 (3)
C70.040 (3)0.031 (3)0.052 (3)0.003 (2)0.017 (2)0.000 (2)
C80.057 (3)0.034 (2)0.043 (3)0.002 (2)0.028 (2)0.007 (2)
C90.040 (3)0.040 (3)0.038 (3)0.002 (2)0.015 (2)0.008 (2)
C100.042 (3)0.052 (3)0.100 (5)0.003 (2)0.011 (3)0.001 (3)
C110.051 (4)0.068 (4)0.205 (8)0.010 (3)0.004 (4)0.008 (4)
C120.065 (3)0.038 (3)0.073 (4)0.005 (2)0.034 (3)0.011 (2)
C130.044 (3)0.042 (3)0.050 (3)0.003 (2)0.016 (2)0.010 (2)
C140.040 (3)0.042 (3)0.042 (3)0.007 (2)0.011 (2)0.003 (2)
C150.043 (3)0.046 (3)0.053 (3)0.009 (2)0.017 (2)0.001 (2)
O60.086 (3)0.076 (3)0.114 (3)0.0166 (19)0.038 (2)0.001 (2)
O70.119 (3)0.070 (2)0.167 (4)0.045 (2)0.098 (3)0.062 (2)
Geometric parameters (Å, º) top
Cu1—O11.951 (2)C4—H4B0.9700
Cu1—N31.975 (3)C5—H5A0.9600
Cu1—O31.980 (3)C5—H5B0.9600
Cu1—N12.000 (3)C5—H5C0.9600
Cu1—O52.362 (3)C6—H6A0.9600
O1—C141.283 (4)C6—H6B0.9600
O2—C141.230 (4)C6—H6C0.9600
O3—C151.287 (4)C7—C101.493 (5)
O4—C151.216 (4)C8—C91.363 (5)
O5—H510.8489C8—C121.490 (5)
O5—H520.8497C9—C131.485 (5)
N1—C11.311 (4)C10—C111.437 (5)
N1—C31.407 (4)C10—H10A0.9700
N2—C11.342 (4)C10—H10B0.9700
N2—C21.380 (5)C11—H11A0.9600
N2—H20.8599C11—H11B0.9600
N3—C71.323 (4)C11—H11C0.9600
N3—C91.398 (4)C12—H12A0.9600
N4—C71.344 (4)C12—H12B0.9600
N4—C81.375 (5)C12—H12C0.9600
N4—H40.8603C13—H13A0.9700
C1—C41.497 (5)C13—H13B0.9700
C2—C31.341 (5)C14—C151.543 (5)
C2—C61.515 (5)O6—H6F0.8505
C3—C131.501 (5)O6—H6G0.8503
C4—C51.491 (6)O7—H7C0.8504
C4—H4A0.9700O7—H7D0.8495
O1—Cu1—N3171.72 (13)C2—C6—H6A109.5
O1—Cu1—O382.66 (11)C2—C6—H6B109.5
N3—Cu1—O391.60 (12)H6A—C6—H6B109.5
O1—Cu1—N192.73 (11)C2—C6—H6C109.5
N3—Cu1—N190.62 (12)H6A—C6—H6C109.5
O3—Cu1—N1159.73 (12)H6B—C6—H6C109.5
O1—Cu1—O586.16 (11)N3—C7—N4109.4 (3)
N3—Cu1—O5100.35 (12)N3—C7—C10127.0 (4)
O3—Cu1—O595.07 (11)N4—C7—C10123.6 (4)
N1—Cu1—O5104.34 (11)C9—C8—N4105.6 (3)
C14—O1—Cu1114.9 (3)C9—C8—C12131.6 (4)
C15—O3—Cu1113.8 (2)N4—C8—C12122.9 (4)
Cu1—O5—H51140.0C8—C9—N3108.5 (3)
Cu1—O5—H52106.7C8—C9—C13130.1 (4)
H51—O5—H52107.4N3—C9—C13121.4 (3)
C1—N1—C3106.3 (3)C11—C10—C7117.6 (4)
C1—N1—Cu1132.3 (3)C11—C10—H10A107.9
C3—N1—Cu1121.2 (2)C7—C10—H10A107.9
C1—N2—C2108.6 (3)C11—C10—H10B107.9
C1—N2—H2125.5C7—C10—H10B107.9
C2—N2—H2125.8H10A—C10—H10B107.2
C7—N3—C9107.0 (3)C10—C11—H11A109.5
C7—N3—Cu1131.0 (3)C10—C11—H11B109.5
C9—N3—Cu1121.9 (3)H11A—C11—H11B109.5
C7—N4—C8109.4 (3)C10—C11—H11C109.5
C7—N4—H4125.3H11A—C11—H11C109.5
C8—N4—H4125.2H11B—C11—H11C109.5
N1—C1—N2110.2 (3)C8—C12—H12A109.5
N1—C1—C4127.8 (3)C8—C12—H12B109.5
N2—C1—C4121.9 (3)H12A—C12—H12B109.5
C3—C2—N2105.9 (3)C8—C12—H12C109.5
C3—C2—C6131.7 (4)H12A—C12—H12C109.5
N2—C2—C6122.3 (3)H12B—C12—H12C109.5
C2—C3—N1108.9 (3)C9—C13—C3113.3 (3)
C2—C3—C13130.3 (4)C9—C13—H13A108.9
N1—C3—C13120.8 (3)C3—C13—H13A108.9
C5—C4—C1113.4 (3)C9—C13—H13B108.9
C5—C4—H4A108.9C3—C13—H13B108.9
C1—C4—H4A108.9H13A—C13—H13B107.7
C5—C4—H4B108.9O2—C14—O1124.7 (4)
C1—C4—H4B108.9O2—C14—C15121.0 (4)
H4A—C4—H4B107.7O1—C14—C15114.2 (4)
C4—C5—H5A109.5O4—C15—O3125.3 (4)
C4—C5—H5B109.5O4—C15—C14120.6 (4)
H5A—C5—H5B109.5O3—C15—C14114.2 (4)
C4—C5—H5C109.5H6F—O6—H6G107.5
H5A—C5—H5C109.5H7C—O7—H7D108.5
H5B—C5—H5C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.852.583.177 (4)128
O5—H52···O4ii0.851.902.748 (4)174
N2—H2···O2iii0.862.092.943 (4)171
N4—H4···O70.862.032.847 (4)158
O6—H6F···O5iv0.852.503.259 (4)149
O6—H6G···O4v0.852.303.057 (5)148
O7—H7C···O3vi0.852.032.882 (4)178
O7—H7D···O60.851.972.818 (4)177
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y1/2, z+3/2; (v) x+2, y1/2, z+1/2; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C2O4)(C13H20N4)(H2O)]·2H2O
Mr437.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.1711 (13), 23.167 (2), 7.4400 (8)
β (°) 107.304 (1)
V3)2002.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.35 × 0.18 × 0.12
Data collection
DiffractometerRigaku MODEL? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.693, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
10119, 3528, 1958
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.092, 0.81
No. of reflections3528
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O4i0.852.583.177 (4)128
O5—H52···O4ii0.851.902.748 (4)174
N2—H2···O2iii0.862.092.943 (4)171
N4—H4···O70.862.032.847 (4)158
O6—H6F···O5iv0.852.503.259 (4)149
O6—H6G···O4v0.852.303.057 (5)148
O7—H7C···O3vi0.852.032.882 (4)178
O7—H7D···O60.851.972.818 (4)177
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y1/2, z+3/2; (v) x+2, y1/2, z+1/2; (vi) x, y+1/2, z+1/2.
 

References

First citationBeznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325–1329  CAS Google Scholar
First citationBouwman, E., Douziech, B., Gutierrez-Soto, L., Beretta, M., Driessen, W. L., Reedijk, J. & Mendoza-Daz, G. (2000). Inorg. Chim. Acta, 304, 250–259.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDelgado, F. S., Lahoz, F., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2008). J. Cryst. Growth Des. 8, 3219–3232.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPajunen, A. (1981). Cryst. Struct. Commun. 10, 957–958.  CAS Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds