metal-organic compounds
Aqua[bis(2-ethyl-5-methyl-1H-imidazol-4-yl-κN3)methane]oxalatocopper(II) dihydrate
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn
In the title compound, [Cu(C2O4)(C13H20N4)(H2O)]·2H2O, the CuII atom exhibits a distorted square-pyramidal geometry with the two N atoms of the imidazole ligand and the two O atoms of the oxalate ligand forming the basal plane, while the O atom of the coordinated water molecule is in an apical position. The CuII atom is shifted 0.232 (2) Å out of the basal plane toward the water molecule. The is completed by two solvent water molecules. These water molecules participate in the formation of an intricate three-dimensionnal network of hydrogen bonds involving the coordinated water molecule and the NH groups.
Related literature
For the chemical properties of imidazole derivatives, see: Bouwman et al. (2000). For synthesis, see: Delgado et al. (2008). For related structures, see: Beznischenko et al. (2007); Pajunen (1981).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811001012/dn2649sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811001012/dn2649Isup2.hkl
Crystals of the title compound were synthesized by the reaction between copper(II) nitrate trihydrate, potassium oxalate and 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) ligand. Copper salt and oxalate chemicals used (reagent grade) were commercially available, the 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) ligand was synthesized as described below . 0.2 mmol(48.4 mg) solid copper(II) nitrate trihydrate was added to a 15 ml aqueous solution of 0.1 mmol(16.6 mg) potassium oxalate under continuous stirring. The suspension was heated at 40–50 °C during 1 h. Then this suspension was mixed with a 5 ml EtOH solution of 0.1 mmol(23.2mg)4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole). Finally, the blue solution which results from the mixture was filtered off and allowed to evaporate at room temperature(Delgado, et al.,2008). Single crystals of the title compound as blue prisms were grown from the solution by slow evaporation at room temperature within a few days.
The ligand 4,4'-methanediylbis(2-ethyl-5-methyl-1H-imidazole) was synthesized as follows: 4.35 g (30 mmol) 2-ethyl-5-methylimidazole was added to a solution of 1.5 g (15 mmol)glycine (40% in H2O). This suspension was vigorously stirred, and 3.1 g (30 mmol) formaldehyde (37% in H2O) was added dropwise. The resulting turbid mixture was made alkaline with a concentrated sodium hydroxide solution until a pH of 12 was reached(Bouwman, et al.,2000). The reaction mixture was stirred for 8 days at room temperature in a closed vessel. During which time a white solid formed. The white solid was collected by filtration, washed with acetonitrile and diethyl ether, and air-dry at room temperature.
All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(methyl) . H atoms of water molecules were located in difference Fourier maps and included in the subsequent
using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of they were treated as riding on their parent O atoms.Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. A packing view down the a axis showing the three dimensionnal network. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. |
[Cu(C2O4)(C13H20N4)(H2O)]·2H2O | F(000) = 916 |
Mr = 437.94 | Dx = 1.452 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1383 reflections |
a = 12.1711 (13) Å | θ = 3.0–26.0° |
b = 23.167 (2) Å | µ = 1.13 mm−1 |
c = 7.4400 (8) Å | T = 298 K |
β = 107.304 (1)° | Prism, blue |
V = 2002.9 (4) Å3 | 0.35 × 0.18 × 0.12 mm |
Z = 4 |
Rigaku MODEL? CCD area-detector diffractometer | 3528 independent reflections |
Radiation source: fine-focus sealed tube | 1958 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 8.192 pixels mm-1 | θmax = 25.0°, θmin = 2.5° |
ϕ and ω scans | h = −14→14 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −27→21 |
Tmin = 0.693, Tmax = 0.876 | l = −8→8 |
10119 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.81 | w = 1/[σ2(Fo2) + (0.0336P)2] where P = (Fo2 + 2Fc2)/3 |
3528 reflections | (Δ/σ)max = 0.003 |
248 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
[Cu(C2O4)(C13H20N4)(H2O)]·2H2O | V = 2002.9 (4) Å3 |
Mr = 437.94 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.1711 (13) Å | µ = 1.13 mm−1 |
b = 23.167 (2) Å | T = 298 K |
c = 7.4400 (8) Å | 0.35 × 0.18 × 0.12 mm |
β = 107.304 (1)° |
Rigaku MODEL? CCD area-detector diffractometer | 3528 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1958 reflections with I > 2σ(I) |
Tmin = 0.693, Tmax = 0.876 | Rint = 0.071 |
10119 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.81 | Δρmax = 0.34 e Å−3 |
3528 reflections | Δρmin = −0.31 e Å−3 |
248 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.76270 (4) | 0.413233 (19) | 0.51168 (7) | 0.03980 (17) | |
O1 | 0.7228 (2) | 0.49415 (10) | 0.4554 (4) | 0.0521 (8) | |
O2 | 0.7628 (2) | 0.56946 (12) | 0.2999 (4) | 0.0607 (9) | |
O3 | 0.8807 (2) | 0.43059 (12) | 0.3849 (4) | 0.0489 (8) | |
O4 | 0.9308 (3) | 0.50045 (13) | 0.2201 (5) | 0.0744 (11) | |
O5 | 0.8745 (2) | 0.44573 (12) | 0.8111 (4) | 0.0598 (8) | |
H51 | 0.8928 | 0.4356 | 0.9259 | 0.090* | |
H52 | 0.9316 | 0.4637 | 0.7948 | 0.090* | |
N1 | 0.6093 (2) | 0.39498 (13) | 0.5450 (4) | 0.0350 (8) | |
N2 | 0.4439 (3) | 0.39461 (14) | 0.6014 (5) | 0.0454 (9) | |
H2 | 0.3882 | 0.4056 | 0.6423 | 0.055* | |
N3 | 0.8036 (3) | 0.33050 (12) | 0.5306 (5) | 0.0392 (8) | |
N4 | 0.8869 (3) | 0.24674 (13) | 0.5968 (5) | 0.0435 (9) | |
H4 | 0.9396 | 0.2212 | 0.6395 | 0.052* | |
C1 | 0.5428 (3) | 0.42338 (16) | 0.6240 (5) | 0.0355 (10) | |
C2 | 0.4464 (3) | 0.34484 (17) | 0.5008 (6) | 0.0455 (11) | |
C3 | 0.5486 (3) | 0.34484 (16) | 0.4666 (6) | 0.0365 (10) | |
C4 | 0.5695 (3) | 0.47801 (16) | 0.7361 (6) | 0.0441 (11) | |
H4A | 0.6252 | 0.5000 | 0.6946 | 0.053* | |
H4B | 0.4998 | 0.5009 | 0.7111 | 0.053* | |
C5 | 0.6159 (4) | 0.46803 (18) | 0.9430 (7) | 0.0665 (14) | |
H5A | 0.6874 | 0.4474 | 0.9698 | 0.100* | |
H5B | 0.5617 | 0.4458 | 0.9850 | 0.100* | |
H5C | 0.6284 | 0.5045 | 1.0073 | 0.100* | |
C6 | 0.3461 (3) | 0.30308 (19) | 0.4455 (7) | 0.0729 (16) | |
H6A | 0.3218 | 0.2942 | 0.5538 | 0.109* | |
H6B | 0.3696 | 0.2683 | 0.3973 | 0.109* | |
H6C | 0.2835 | 0.3203 | 0.3503 | 0.109* | |
C7 | 0.9028 (3) | 0.30417 (17) | 0.6091 (6) | 0.0403 (10) | |
C8 | 0.7732 (4) | 0.23503 (16) | 0.5055 (6) | 0.0417 (11) | |
C9 | 0.7212 (3) | 0.28746 (16) | 0.4628 (6) | 0.0385 (10) | |
C10 | 1.0158 (3) | 0.33196 (18) | 0.7043 (7) | 0.0669 (15) | |
H10A | 1.0293 | 0.3614 | 0.6207 | 0.080* | |
H10B | 1.0092 | 0.3514 | 0.8161 | 0.080* | |
C11 | 1.1157 (4) | 0.2954 (2) | 0.7594 (10) | 0.116 (3) | |
H11A | 1.1282 | 0.2785 | 0.6494 | 0.173* | |
H11B | 1.1038 | 0.2654 | 0.8408 | 0.173* | |
H11C | 1.1816 | 0.3180 | 0.8248 | 0.173* | |
C12 | 0.7272 (3) | 0.17517 (16) | 0.4687 (6) | 0.0559 (13) | |
H12A | 0.6454 | 0.1766 | 0.4111 | 0.084* | |
H12B | 0.7438 | 0.1544 | 0.5854 | 0.084* | |
H12C | 0.7626 | 0.1560 | 0.3860 | 0.084* | |
C13 | 0.5996 (3) | 0.30202 (16) | 0.3626 (6) | 0.0450 (11) | |
H13A | 0.5540 | 0.2669 | 0.3434 | 0.054* | |
H13B | 0.5952 | 0.3176 | 0.2398 | 0.054* | |
C14 | 0.7802 (3) | 0.51976 (19) | 0.3595 (6) | 0.0420 (11) | |
C15 | 0.8731 (4) | 0.48180 (19) | 0.3153 (6) | 0.0465 (11) | |
O6 | 1.1845 (3) | 0.07904 (14) | 0.6127 (5) | 0.0904 (11) | |
H6F | 1.1814 | 0.0493 | 0.6779 | 0.136* | |
H6G | 1.1552 | 0.0701 | 0.4975 | 0.136* | |
O7 | 1.0089 (3) | 0.14122 (14) | 0.7024 (6) | 0.1067 (15) | |
H7C | 0.9722 | 0.1194 | 0.7563 | 0.160* | |
H7D | 1.0608 | 0.1214 | 0.6762 | 0.160* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0386 (3) | 0.0339 (3) | 0.0511 (3) | 0.0007 (2) | 0.0197 (3) | 0.0014 (3) |
O1 | 0.0566 (19) | 0.0352 (17) | 0.078 (2) | 0.0074 (13) | 0.0411 (18) | 0.0105 (15) |
O2 | 0.066 (2) | 0.041 (2) | 0.084 (3) | 0.0000 (15) | 0.0355 (19) | 0.0150 (17) |
O3 | 0.0421 (17) | 0.046 (2) | 0.066 (2) | 0.0043 (13) | 0.0285 (16) | 0.0026 (15) |
O4 | 0.079 (2) | 0.064 (2) | 0.105 (3) | −0.0064 (17) | 0.067 (2) | 0.012 (2) |
O5 | 0.0454 (18) | 0.084 (2) | 0.051 (2) | −0.0148 (15) | 0.0156 (16) | −0.0019 (16) |
N1 | 0.0313 (18) | 0.037 (2) | 0.039 (2) | 0.0026 (14) | 0.0142 (17) | 0.0010 (15) |
N2 | 0.033 (2) | 0.047 (2) | 0.060 (3) | 0.0009 (16) | 0.0204 (18) | 0.0009 (18) |
N3 | 0.036 (2) | 0.033 (2) | 0.050 (2) | 0.0015 (16) | 0.0155 (18) | 0.0029 (16) |
N4 | 0.044 (2) | 0.035 (2) | 0.055 (3) | 0.0080 (16) | 0.0182 (19) | 0.0012 (17) |
C1 | 0.035 (2) | 0.033 (3) | 0.038 (3) | 0.0006 (19) | 0.009 (2) | 0.0045 (19) |
C2 | 0.039 (3) | 0.041 (3) | 0.055 (3) | −0.002 (2) | 0.012 (2) | −0.006 (2) |
C3 | 0.029 (2) | 0.040 (3) | 0.037 (3) | −0.0010 (18) | 0.006 (2) | −0.0020 (19) |
C4 | 0.045 (3) | 0.035 (3) | 0.057 (3) | 0.0029 (19) | 0.022 (2) | 0.000 (2) |
C5 | 0.070 (3) | 0.065 (3) | 0.061 (4) | 0.013 (3) | 0.014 (3) | −0.006 (3) |
C6 | 0.046 (3) | 0.068 (4) | 0.109 (5) | −0.016 (2) | 0.032 (3) | −0.021 (3) |
C7 | 0.040 (3) | 0.031 (3) | 0.052 (3) | 0.003 (2) | 0.017 (2) | 0.000 (2) |
C8 | 0.057 (3) | 0.034 (2) | 0.043 (3) | −0.002 (2) | 0.028 (2) | −0.007 (2) |
C9 | 0.040 (3) | 0.040 (3) | 0.038 (3) | −0.002 (2) | 0.015 (2) | −0.008 (2) |
C10 | 0.042 (3) | 0.052 (3) | 0.100 (5) | 0.003 (2) | 0.011 (3) | −0.001 (3) |
C11 | 0.051 (4) | 0.068 (4) | 0.205 (8) | 0.010 (3) | 0.004 (4) | 0.008 (4) |
C12 | 0.065 (3) | 0.038 (3) | 0.073 (4) | −0.005 (2) | 0.034 (3) | −0.011 (2) |
C13 | 0.044 (3) | 0.042 (3) | 0.050 (3) | −0.003 (2) | 0.016 (2) | −0.010 (2) |
C14 | 0.040 (3) | 0.042 (3) | 0.042 (3) | −0.007 (2) | 0.011 (2) | 0.003 (2) |
C15 | 0.043 (3) | 0.046 (3) | 0.053 (3) | −0.009 (2) | 0.017 (2) | −0.001 (2) |
O6 | 0.086 (3) | 0.076 (3) | 0.114 (3) | 0.0166 (19) | 0.038 (2) | −0.001 (2) |
O7 | 0.119 (3) | 0.070 (2) | 0.167 (4) | 0.045 (2) | 0.098 (3) | 0.062 (2) |
Cu1—O1 | 1.951 (2) | C4—H4B | 0.9700 |
Cu1—N3 | 1.975 (3) | C5—H5A | 0.9600 |
Cu1—O3 | 1.980 (3) | C5—H5B | 0.9600 |
Cu1—N1 | 2.000 (3) | C5—H5C | 0.9600 |
Cu1—O5 | 2.362 (3) | C6—H6A | 0.9600 |
O1—C14 | 1.283 (4) | C6—H6B | 0.9600 |
O2—C14 | 1.230 (4) | C6—H6C | 0.9600 |
O3—C15 | 1.287 (4) | C7—C10 | 1.493 (5) |
O4—C15 | 1.216 (4) | C8—C9 | 1.363 (5) |
O5—H51 | 0.8489 | C8—C12 | 1.490 (5) |
O5—H52 | 0.8497 | C9—C13 | 1.485 (5) |
N1—C1 | 1.311 (4) | C10—C11 | 1.437 (5) |
N1—C3 | 1.407 (4) | C10—H10A | 0.9700 |
N2—C1 | 1.342 (4) | C10—H10B | 0.9700 |
N2—C2 | 1.380 (5) | C11—H11A | 0.9600 |
N2—H2 | 0.8599 | C11—H11B | 0.9600 |
N3—C7 | 1.323 (4) | C11—H11C | 0.9600 |
N3—C9 | 1.398 (4) | C12—H12A | 0.9600 |
N4—C7 | 1.344 (4) | C12—H12B | 0.9600 |
N4—C8 | 1.375 (5) | C12—H12C | 0.9600 |
N4—H4 | 0.8603 | C13—H13A | 0.9700 |
C1—C4 | 1.497 (5) | C13—H13B | 0.9700 |
C2—C3 | 1.341 (5) | C14—C15 | 1.543 (5) |
C2—C6 | 1.515 (5) | O6—H6F | 0.8505 |
C3—C13 | 1.501 (5) | O6—H6G | 0.8503 |
C4—C5 | 1.491 (6) | O7—H7C | 0.8504 |
C4—H4A | 0.9700 | O7—H7D | 0.8495 |
O1—Cu1—N3 | 171.72 (13) | C2—C6—H6A | 109.5 |
O1—Cu1—O3 | 82.66 (11) | C2—C6—H6B | 109.5 |
N3—Cu1—O3 | 91.60 (12) | H6A—C6—H6B | 109.5 |
O1—Cu1—N1 | 92.73 (11) | C2—C6—H6C | 109.5 |
N3—Cu1—N1 | 90.62 (12) | H6A—C6—H6C | 109.5 |
O3—Cu1—N1 | 159.73 (12) | H6B—C6—H6C | 109.5 |
O1—Cu1—O5 | 86.16 (11) | N3—C7—N4 | 109.4 (3) |
N3—Cu1—O5 | 100.35 (12) | N3—C7—C10 | 127.0 (4) |
O3—Cu1—O5 | 95.07 (11) | N4—C7—C10 | 123.6 (4) |
N1—Cu1—O5 | 104.34 (11) | C9—C8—N4 | 105.6 (3) |
C14—O1—Cu1 | 114.9 (3) | C9—C8—C12 | 131.6 (4) |
C15—O3—Cu1 | 113.8 (2) | N4—C8—C12 | 122.9 (4) |
Cu1—O5—H51 | 140.0 | C8—C9—N3 | 108.5 (3) |
Cu1—O5—H52 | 106.7 | C8—C9—C13 | 130.1 (4) |
H51—O5—H52 | 107.4 | N3—C9—C13 | 121.4 (3) |
C1—N1—C3 | 106.3 (3) | C11—C10—C7 | 117.6 (4) |
C1—N1—Cu1 | 132.3 (3) | C11—C10—H10A | 107.9 |
C3—N1—Cu1 | 121.2 (2) | C7—C10—H10A | 107.9 |
C1—N2—C2 | 108.6 (3) | C11—C10—H10B | 107.9 |
C1—N2—H2 | 125.5 | C7—C10—H10B | 107.9 |
C2—N2—H2 | 125.8 | H10A—C10—H10B | 107.2 |
C7—N3—C9 | 107.0 (3) | C10—C11—H11A | 109.5 |
C7—N3—Cu1 | 131.0 (3) | C10—C11—H11B | 109.5 |
C9—N3—Cu1 | 121.9 (3) | H11A—C11—H11B | 109.5 |
C7—N4—C8 | 109.4 (3) | C10—C11—H11C | 109.5 |
C7—N4—H4 | 125.3 | H11A—C11—H11C | 109.5 |
C8—N4—H4 | 125.2 | H11B—C11—H11C | 109.5 |
N1—C1—N2 | 110.2 (3) | C8—C12—H12A | 109.5 |
N1—C1—C4 | 127.8 (3) | C8—C12—H12B | 109.5 |
N2—C1—C4 | 121.9 (3) | H12A—C12—H12B | 109.5 |
C3—C2—N2 | 105.9 (3) | C8—C12—H12C | 109.5 |
C3—C2—C6 | 131.7 (4) | H12A—C12—H12C | 109.5 |
N2—C2—C6 | 122.3 (3) | H12B—C12—H12C | 109.5 |
C2—C3—N1 | 108.9 (3) | C9—C13—C3 | 113.3 (3) |
C2—C3—C13 | 130.3 (4) | C9—C13—H13A | 108.9 |
N1—C3—C13 | 120.8 (3) | C3—C13—H13A | 108.9 |
C5—C4—C1 | 113.4 (3) | C9—C13—H13B | 108.9 |
C5—C4—H4A | 108.9 | C3—C13—H13B | 108.9 |
C1—C4—H4A | 108.9 | H13A—C13—H13B | 107.7 |
C5—C4—H4B | 108.9 | O2—C14—O1 | 124.7 (4) |
C1—C4—H4B | 108.9 | O2—C14—C15 | 121.0 (4) |
H4A—C4—H4B | 107.7 | O1—C14—C15 | 114.2 (4) |
C4—C5—H5A | 109.5 | O4—C15—O3 | 125.3 (4) |
C4—C5—H5B | 109.5 | O4—C15—C14 | 120.6 (4) |
H5A—C5—H5B | 109.5 | O3—C15—C14 | 114.2 (4) |
C4—C5—H5C | 109.5 | H6F—O6—H6G | 107.5 |
H5A—C5—H5C | 109.5 | H7C—O7—H7D | 108.5 |
H5B—C5—H5C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O4i | 0.85 | 2.58 | 3.177 (4) | 128 |
O5—H52···O4ii | 0.85 | 1.90 | 2.748 (4) | 174 |
N2—H2···O2iii | 0.86 | 2.09 | 2.943 (4) | 171 |
N4—H4···O7 | 0.86 | 2.03 | 2.847 (4) | 158 |
O6—H6F···O5iv | 0.85 | 2.50 | 3.259 (4) | 149 |
O6—H6G···O4v | 0.85 | 2.30 | 3.057 (5) | 148 |
O7—H7C···O3vi | 0.85 | 2.03 | 2.882 (4) | 178 |
O7—H7D···O6 | 0.85 | 1.97 | 2.818 (4) | 177 |
Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2O4)(C13H20N4)(H2O)]·2H2O |
Mr | 437.94 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 12.1711 (13), 23.167 (2), 7.4400 (8) |
β (°) | 107.304 (1) |
V (Å3) | 2002.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.13 |
Crystal size (mm) | 0.35 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Rigaku MODEL? CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.693, 0.876 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10119, 3528, 1958 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.092, 0.81 |
No. of reflections | 3528 |
No. of parameters | 248 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.31 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H51···O4i | 0.85 | 2.58 | 3.177 (4) | 128 |
O5—H52···O4ii | 0.85 | 1.90 | 2.748 (4) | 174 |
N2—H2···O2iii | 0.86 | 2.09 | 2.943 (4) | 171 |
N4—H4···O7 | 0.86 | 2.03 | 2.847 (4) | 158 |
O6—H6F···O5iv | 0.85 | 2.50 | 3.259 (4) | 149 |
O6—H6G···O4v | 0.85 | 2.30 | 3.057 (5) | 148 |
O7—H7C···O3vi | 0.85 | 2.03 | 2.882 (4) | 178 |
O7—H7D···O6 | 0.85 | 1.97 | 2.818 (4) | 177 |
Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2. |
References
Beznischenko, A. O., Makhankova, V. G., Kokozay, V. N., Zubatyuk, R. I. & Shishkin, O. V. (2007). Inorg. Chim. Acta, 10, 1325–1329 CAS Google Scholar
Bouwman, E., Douziech, B., Gutierrez-Soto, L., Beretta, M., Driessen, W. L., Reedijk, J. & Mendoza-Daz, G. (2000). Inorg. Chim. Acta, 304, 250–259. Web of Science CSD CrossRef CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Delgado, F. S., Lahoz, F., Lloret, F., Julve, M. & Ruiz-Pérez, C. (2008). J. Cryst. Growth Des. 8, 3219–3232. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Pajunen, A. (1981). Cryst. Struct. Commun. 10, 957–958. CAS Google Scholar
Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Imidazole derivatives are versatile ligands towards transition metal ions both in man-made and natural systems. They are not only used for catalytic and biocatalysts but also for dioxygen transport and electron storage (Bouwman et al., 2000). As part of our interest in imidazole derivatives, we report here the crystal structure of a new copper complex.
The structure around CuII is best decribed as distorted square pyramid environnement with the two N atoms of the imidazole ligand and the two O atoms of the oxalate forming the basal plane whereas the oxygen atom of the coordinated water molecule is in apical position. As expected, the copper atom is shifted ca 0.232 (2)Å out of the basal plane toward the water molecule. The asymmetric unit is completed by two solvate water molecules. The distances and angles within the square pyramid framework agree with related structures (Beznischenko et al., 2007); Pajunen, 1981).
These water molecules participate to the formation of an intricated hydrogen bonds resulting in three dimensionnal network involving the coordinated water molecule and the NH groups (Table 1, Fig. 2).