organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-{1-[(2-Hy­dr­oxy­ethyl)­amino]­ethyl­­idene}-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and bDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 17 November 2010; accepted 24 December 2010; online 22 January 2011)

In the title compound C14H17N3O2, the dihedral angle between the rings is 16.68 (13)°. Although the compound crystallizes in the keto form, the possibility of keto-enamine–enol-imine tautomerism is explained by a strong intra­molecular N—H⋯O hydrogen bond.

Related literature

4-Acyl­pyrazolo­nes are good chelating ligands and also show anti­bacterial, anti­fungal, anti-inflammatory, carcino-static and enzyme inhibitory activity, see: Patel et al. (2000[Patel, K. M., Patel, K. N., Patel, N. H., Patel, M. N., Chandrasekhar, S. & Cunico, R. F. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1965-1973.], 2001[Patel, K. M., Patel, K. N., Patel, N. H. & Patel, M. N. (2001). Synth. React. Inorg. Met. Org. Chem, 31, 239-246.]); Chohan & Kausar (2000[Chohan, Z. H. & Kausar, S. (2000). Met. Based Drugs, 7, 17-22.]); Chohan, Jaffery & Supuran (2001[Chohan, Z. H., Jaffery, M. F. & Supuran, C. T. (2001). Met. Based Drugs. 8, 95-101.]); Chohan, Munawar & Supuran (2001[Chohan, Z. H., Munawar, A. & Supuran, C. T. (2001). Met. Based Drugs. 8, 137-143.]); Chohan et al. (2002)[Chohan, Z. H., Rauf, A. & Supuran, C. T. (2002). Met. Based Drugs. 8, 287-291.]; Yang et al. (2000[Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599-2604.]). For analgesic agents, see: Gursoy et al. (2000[Gursoy, A., Demiravak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N3O2

  • Mr = 259.31

  • Monoclinic, C 2/c

  • a = 22.4703 (13) Å

  • b = 7.0902 (4) Å

  • c = 18.0565 (11) Å

  • β = 110.926 (7)°

  • V = 2687.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.978, Tmax = 0.982

  • 4492 measured reflections

  • 2353 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.173

  • S = 0.98

  • 2353 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H⋯O1 0.90 (3) 1.92 (3) 2.711 (3) 146 (3)

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

The ORTEP diagram for the molecule of the title compound is given in Fig:1. The molecule is almost planar where the phenyl ring is tilted by 17.66° to the rest of the molecule. The planarity is explained by the torsion angles C3—C4—C13—N3(-179.49°) and C13—N3—C15—C16 (173.88°).

The hydroxyl oxygen (O2) shows disorder and hence O2A and O2B were not refined using anisotropic thermal parameters.This disordered nature show a dynamic rotation about C15—C16 single bond.

The hydrogen (H3) of the imino group(N3) forms a strong intra-molecular hydrogen bond with keto oxygen O1 (2.711 Å, 146.56°). Along with this, the double bond character of C13—N3, show the possibility of proton shuttling between O1 and N3.

Though phenyl ring and pyrazol ring can adopt perpendicularity,the weak C11—H11···O1 interaction (2.954 Å, 121.13°) keeps them with near planarity.

The crystal packing diagram in Fig:2.

Related literature top

4-Acylpyrazolones are good chelating ligands and also show antibacterial, antifungal, anti-inflammatory, carcino-static and enzyme inhibitory activity, see: Patel et al. (2000, 2001); Chohan & Kausar (2000); Chohan, Jaffery & Supuran (2001); Chohan, Munawar & Supuran (2001); Chohan et al. (2002); Yang et al. (2000). For related literature [on what subject?], see: Gursoy et al. (2000).

Experimental top

Ethanolic solution of 3-methyl-1-phenyl-4-acetylpyrazolin-5-ol (0.432 g, 2 mmol) and 2-aminoethanol (0.122 g, 2mmoL) were taken in a round bottom flask and refluxed for 4 h. The solid product was filtered and washed with cold ethanol. The product obtained was pure by TLC and NMR spectroscopy. However, the product was further purified by re-crystallization from ethanol and dried under vacuum. The compound was crystallized by slow evaporation technique using methanol as solvent at room temperature.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of molecule H-atoms are involved in hydrogen bonding are shown as Dashed lines.
[Figure 2] Fig. 2. Crystal Packing Diagram.
(Z)-4-{1-[(2-Hydroxyethyl)amino]ethylidene}-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C14H17N3O2F(000) = 1104
Mr = 259.31Dx = 1.282 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2447 reflections
a = 22.4703 (13) Åθ = 2.7–29.3°
b = 7.0902 (4) ŵ = 0.09 mm1
c = 18.0565 (11) ÅT = 273 K
β = 110.926 (7)°Monoclinic, colourless
V = 2687.0 (3) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2353 independent reflections
Radiation source: fine-focus sealed tube1544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 2626
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 84
Tmin = 0.978, Tmax = 0.982l = 1921
4492 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1157P)2]
where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H17N3O2V = 2687.0 (3) Å3
Mr = 259.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.4703 (13) ŵ = 0.09 mm1
b = 7.0902 (4) ÅT = 273 K
c = 18.0565 (11) Å0.20 × 0.20 × 0.20 mm
β = 110.926 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2353 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1544 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.026
4492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.46 e Å3
2353 reflectionsΔρmin = 0.24 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.05676 (8)0.3364 (3)0.35564 (9)0.0534 (5)
N10.11378 (9)0.2982 (3)0.44012 (10)0.0384 (5)
N20.10103 (10)0.2539 (3)0.51998 (10)0.0439 (5)
C110.19444 (10)0.4030 (3)0.31598 (12)0.0432 (6)
H110.16280.44570.29820.052*
C100.25819 (11)0.4237 (4)0.26886 (14)0.0523 (7)
H100.26900.47940.21920.063*
N30.06883 (10)0.2770 (3)0.43754 (13)0.0500 (6)
C60.17841 (10)0.3190 (3)0.38911 (12)0.0378 (6)
C40.00882 (11)0.2571 (3)0.49473 (13)0.0382 (6)
C90.30523 (12)0.3635 (4)0.29449 (15)0.0586 (8)
H90.34780.37930.26280.070*
C130.05492 (11)0.2441 (3)0.50051 (13)0.0397 (6)
C140.10798 (12)0.1939 (4)0.57534 (14)0.0539 (7)
H14A0.14750.19300.56610.081*
H14B0.10040.07110.59260.081*
H14C0.11030.28520.61550.081*
C80.28911 (13)0.2791 (4)0.36768 (16)0.0627 (8)
H80.32100.23740.38520.075*
C30.03936 (12)0.2315 (3)0.55172 (13)0.0413 (6)
C70.22638 (12)0.2558 (4)0.41503 (14)0.0510 (7)
H70.21590.19800.46430.061*
C50.05950 (11)0.3010 (3)0.42224 (12)0.0379 (6)
C120.01114 (13)0.1893 (4)0.63896 (13)0.0569 (7)
H12A0.04460.18070.66020.085*
H12B0.01770.28840.66540.085*
H12C0.01150.07180.64700.085*
C160.12548 (15)0.2950 (5)0.34639 (18)0.0694 (9)
C150.13080 (13)0.2678 (5)0.42954 (18)0.0677 (8)
H15A0.15010.14610.44810.081*
H15B0.15830.36440.46240.081*
O2A0.08008 (17)0.1945 (5)0.2936 (2)0.0683 (13)*0.567 (5)
O2B0.0870 (2)0.4236 (7)0.3041 (3)0.0637 (16)*0.433 (5)
H0.0343 (14)0.315 (4)0.3970 (16)0.063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0487 (10)0.0768 (13)0.0344 (9)0.0027 (9)0.0143 (8)0.0094 (8)
N10.0392 (11)0.0452 (11)0.0299 (10)0.0004 (8)0.0115 (8)0.0011 (8)
N20.0461 (12)0.0548 (13)0.0294 (10)0.0018 (9)0.0116 (9)0.0022 (9)
C110.0442 (13)0.0431 (13)0.0410 (13)0.0009 (11)0.0135 (11)0.0001 (10)
C100.0544 (15)0.0531 (15)0.0421 (14)0.0072 (12)0.0084 (12)0.0011 (12)
N30.0375 (12)0.0651 (15)0.0450 (13)0.0036 (10)0.0120 (10)0.0048 (11)
C60.0441 (13)0.0344 (12)0.0336 (12)0.0012 (10)0.0122 (10)0.0046 (10)
C40.0437 (13)0.0346 (12)0.0323 (12)0.0009 (10)0.0087 (10)0.0005 (10)
C90.0436 (14)0.077 (2)0.0485 (16)0.0075 (13)0.0083 (12)0.0075 (14)
C130.0467 (14)0.0324 (12)0.0356 (13)0.0027 (10)0.0093 (11)0.0034 (10)
C140.0487 (15)0.0547 (15)0.0471 (15)0.0001 (12)0.0035 (12)0.0006 (12)
C80.0467 (16)0.092 (2)0.0538 (17)0.0024 (14)0.0234 (13)0.0078 (15)
C30.0489 (14)0.0369 (13)0.0350 (12)0.0027 (10)0.0110 (11)0.0003 (10)
C70.0445 (14)0.0710 (19)0.0388 (14)0.0002 (13)0.0163 (12)0.0012 (12)
C50.0443 (13)0.0381 (12)0.0310 (12)0.0007 (10)0.0131 (10)0.0014 (9)
C120.0632 (17)0.0698 (18)0.0328 (13)0.0007 (14)0.0110 (12)0.0068 (12)
C160.0639 (18)0.091 (2)0.0568 (18)0.0034 (17)0.0262 (15)0.0007 (17)
C150.0434 (16)0.094 (2)0.0663 (19)0.0048 (14)0.0208 (14)0.0060 (16)
Geometric parameters (Å, º) top
O1—C51.251 (3)C9—H90.9300
N1—C51.369 (3)C13—C141.491 (3)
N1—N21.402 (2)C14—H14A0.9600
N1—C61.423 (3)C14—H14B0.9600
N2—C31.306 (3)C14—H14C0.9600
C11—C61.374 (3)C8—C71.373 (3)
C11—C101.388 (3)C8—H80.9300
C11—H110.9300C3—C121.503 (3)
C10—C91.365 (4)C7—H70.9300
C10—H100.9300C12—H12A0.9600
N3—C131.303 (3)C12—H12B0.9600
N3—C151.452 (4)C12—H12C0.9600
N3—H0.90 (3)C16—O2B1.300 (5)
C6—C71.394 (4)C16—O2A1.328 (4)
C4—C131.401 (4)C16—C151.476 (4)
C4—C31.438 (3)C15—H15A0.9700
C4—C51.429 (3)C15—H15B0.9700
C9—C81.376 (4)
C5—N1—N2111.97 (17)H14A—C14—H14C109.5
C5—N1—C6129.44 (18)H14B—C14—H14C109.5
N2—N1—C6118.40 (18)C7—C8—C9120.7 (3)
C3—N2—N1105.88 (18)C7—C8—H8119.7
C6—C11—C10119.6 (2)C9—C8—H8119.7
C6—C11—H11120.2N2—C3—C4111.9 (2)
C10—C11—H11120.2N2—C3—C12117.9 (2)
C9—C10—C11120.9 (2)C4—C3—C12130.1 (2)
C9—C10—H10119.5C8—C7—C6119.8 (2)
C11—C10—H10119.5C8—C7—H7120.1
C13—N3—C15128.0 (2)C6—C7—H7120.1
C13—N3—H111.0 (18)O1—C5—N1125.7 (2)
C15—N3—H120.9 (18)O1—C5—C4128.8 (2)
C11—C6—C7119.6 (2)N1—C5—C4105.45 (19)
C11—C6—N1121.6 (2)C3—C12—H12A109.5
C7—C6—N1118.8 (2)C3—C12—H12B109.5
C13—C4—C3132.4 (2)H12A—C12—H12B109.5
C13—C4—C5122.8 (2)C3—C12—H12C109.5
C3—C4—C5104.8 (2)H12A—C12—H12C109.5
C10—C9—C8119.4 (2)H12B—C12—H12C109.5
C10—C9—H9120.3O2B—C16—O2A77.0 (3)
C8—C9—H9120.3O2B—C16—C15119.0 (3)
N3—C13—C4118.7 (2)O2A—C16—C15114.9 (3)
N3—C13—C14118.0 (2)N3—C15—C16111.3 (2)
C4—C13—C14123.3 (2)N3—C15—H15A109.4
C13—C14—H14A109.5C16—C15—H15A109.4
C13—C14—H14B109.5N3—C15—H15B109.4
H14A—C14—H14B109.5C16—C15—H15B109.4
C13—C14—H14C109.5H15A—C15—H15B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H···O10.90 (3)1.92 (3)2.711 (3)146 (3)

Experimental details

Crystal data
Chemical formulaC14H17N3O2
Mr259.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)22.4703 (13), 7.0902 (4), 18.0565 (11)
β (°) 110.926 (7)
V3)2687.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4492, 2353, 1544
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.173, 0.98
No. of reflections2353
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H···O10.90 (3)1.92 (3)2.711 (3)146 (3)
 

Acknowledgements

RJ thanks the UGC, India, for the award of Rajiv Gandhi National Fellowship. GV thanks the UGC, India, and the DST–India (Green Chemistry open-ended project) for financial assistance and the DST–FIST for the single crystal X-ray facility at the Department of Chemistry, Pondicherry University, Puducherry.

References

First citationChohan, Z. H., Jaffery, M. F. & Supuran, C. T. (2001). Met. Based Drugs. 8, 95–101.  CrossRef PubMed CAS Google Scholar
First citationChohan, Z. H. & Kausar, S. (2000). Met. Based Drugs, 7, 17–22.  CrossRef PubMed CAS Google Scholar
First citationChohan, Z. H., Munawar, A. & Supuran, C. T. (2001). Met. Based Drugs. 8, 137–143.  CrossRef PubMed CAS Google Scholar
First citationChohan, Z. H., Rauf, A. & Supuran, C. T. (2002). Met. Based Drugs. 8, 287–291.  CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGursoy, A., Demiravak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPatel, K. M., Patel, K. N., Patel, N. H. & Patel, M. N. (2001). Synth. React. Inorg. Met. Org. Chem, 31, 239–246.  Web of Science CrossRef CAS Google Scholar
First citationPatel, K. M., Patel, K. N., Patel, N. H., Patel, M. N., Chandrasekhar, S. & Cunico, R. F. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1965–1973.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds