inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­potassium μ-arsenato-bis­­(hy­dr­oxy­tetra­molybdate) dihydrate

aCollege of Chemical Engineering, Northeast Dianli University, Jilin 132012, People's Republic of China, bJilin Institute of Chemical Technology, Jilin 132012, People's Republic of China, cCollege of Chemistry and Pharmacy, Jiamusi University, Jiamusi 154000, People's Republic of China, and dChemical Engineering Department, Huizhou University, Huizhou 516001, People's Republic of China
*Correspondence e-mail: kongli99@yahoo.cn

(Received 19 October 2010; accepted 25 December 2010; online 15 January 2011)

The title arsenatomolybdate, K5[Mo8O24(OH)2(AsO4)]·2H2O, which was obtained hydro­thermally, features an [AsMo8O28(OH)2]5− anion, which is formed by two Mo4O14(OH) units that are linked by As in a sandwich-like fashion. The overall symmetry of the anion is m2m. The {Mo4O14(OH)} core is composed of two pairs of confacial biocta­hedral {Mo2O9} units with two μ4-O atoms which have been characterized as hydroxyl groups. The anions are further inter­connected by potassium cations, forming a three-dimensional network structure with the uncoordinated water mol­ecules occupying the channels. The structure is further stabilized by O—H⋯O hydrogen bonding.

Related literature

For isotypic K5-x(NH4)xP[Mo4O14(OH)]2·2H2O (x = 2.43), see: Chen et al. (2009[Chen, S., Hoffman, S., Prots, S., Zhao, J.-T. & Kniep, R. (2009). Z. Kristallogr. New Crystal Struct. 224, 15-16.]). For a general overview of polyoxometalates, see: Pope (1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag.]). For the Mo/As/O system, see: Sun et al. (2007[Sun, C. Y., Li, Y. G., Wang, E. B., Xiao, D. R., An, H. Y. & Xu, L. (2007). Inorg. Chem. 46, 1563-1574.]); He & Wang (1999[He, Q. L. & Wang, E. B. (1999). Inorg. Chem. Commun. pp. 399-341.]). For bond-valence-sum calculatios, see: Brown (1981[Brown, I. D. (1981). In Structure and Bonding in Crystals, Vol. 2, edited by M. O'Keeffe and A. Navrotsky, pp. 1-30. New York: Academic Press.]); Hsu & Wang (1997[Hsu, K. F. & Wang, S. L. (1997). Inorg. Chem. pp. 3049-3054.]).

Experimental

Crystal data
  • K5[Mo8O24(OH)2(AsO4)]·2H2O

  • Mr = 1553.95

  • Orthorhombic, C m c m

  • a = 8.3024 (12) Å

  • b = 23.008 (3) Å

  • c = 15.279 (2) Å

  • V = 2918.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.28 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.418, Tmax = 0.486

  • 12346 measured reflections

  • 1606 independent reflections

  • 1216 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.098

  • S = 1.07

  • 1606 reflections

  • 133 parameters

  • Only H-atom coordinates refined

  • Δρmax = 1.99 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O12i 0.82 (9) 2.06 (9) 2.831 (11) 157 (9)
O11—H4⋯O1W 0.87 (11) 1.81 (11) 2.684 (13) 180 (1)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Polyoxometalates(POMs) are metal-oxygen anionic clusters, which act as multidentate inorganic ligands. They can bind most transition metals, rare earth metals and alkali metals, leading to a family of compounds with a variety of structures (Pope, 1983). Performing as an important part in this field, a number of compounds from the A/Mo/P/O system have been synthesized and structurally characterized, where A is an organic or inorganic cation. In contrast to the rich structural chemistry of molybdenum phosphates, the Mo/As/O system remains relatively undeveloped (Sun et al., 2007; He & Wang, 1999). Here, we have hydrothermally synthesized the title compound, K5Mo8O24(OH)2AsO4.2H2O, which is isostructural with K5-x(NH4)xP[Mo4O14(OH)]2.2 H2O where x=2.43 (Chen et al. (2009).

The structure of the title compound consists of [AsMo8O28(OH)2]5-cluster anions, K+ cations, and water molecules (Fig. 1). The anion is formed by two crystallographically independent {Mo4O14(OH)}cores, linked by an arsenic(V) atom in a sandwich-like fashion. The anion possesses m2m symmetry in that all four molybdenum atoms in the {Mo4O14(OH)}core are coplanar, and one oxygen atom in each core is characterized as hydroxyl (O4 and O11) which is indicated by literature and bond valence sum calculation value (Hsu & Wang 1997, Brown et al., 1981). The [AsMo8O30H2]5-cluster anions are bridged together by K+ cations into one-dimensional strings firstly. The anion-cation interactions are further extended into a three-dimensional architecture by other two K+ cations with each linking four cluster anions and one water molecule.

Related literature top

For isotypic K5-x(NH4)xP[Mo4O14(OH)]2.2H2O (x = 2.43), see: Chen et al. (2009). For a general overview of polyoxometalates, see: Pope (1983). For the Mo/As/O system, see: Sun et al. (2007); He & Wang (1999). For bond-valence-sum calculatios, see: Brown (1981); Hsu & Wang (1997).

Experimental top

The title compound was synthesized by hydrothermal reaction of Fe(NO3)3.9 H2O(2.5 mmol),As2O3 (2.5 mmol), MoO3.2H2O (3.0 mmol),KOH (5.0 mmol) and H2O(18 ml) were stirred for 120 min. The pH of the mixture was adjusted to 6.5 with 1M nitric acid. The resultant mixture was sealed in a 25 ml Teflon-lined autoclave andheated at 180 oC for 8 d. The autoclave was then cooled to room temperature. The crystalline product was filtered, washed with distilled water and dried at ambient temperature to give black block solids.

Refinement top

The H atoms attached to oxygen molecular were located from difference Fourier maps, and the H atom attached o2w was disordered. The highest peak in the Fourier map is located 1.30Å from O9.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound withthermal ellipsoids at 50% probability.
[Figure 2] Fig. 2. A polyhedral representationof the three-dimensional network structure of the title compound. All of the water molecular is omitted forclarity. [symmetry codes:(i) x, y,z; (ii) -x, -y, 1/2 + z; (iii) x, -y, -z; (iv) -x, y, 1/2 - z; (v) -x, -y, -z; (vi) x, y, 1/2 + z; (vii) -x, y, z; (viii) x, -y, 1/2 + z.]
Pentapotassium µ-arsenato-bis(hydroxytetramolybdate) dihydrate top
Crystal data top
K5[Mo8O24(OH)2(AsO4)]·2H2OF(000) = 2904
Mr = 1553.95Dx = 3.541 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 3063 reflections
a = 8.3024 (12) Åθ = 2.6–26.0°
b = 23.008 (3) ŵ = 5.28 mm1
c = 15.279 (2) ÅT = 293 K
V = 2918.6 (7) Å3Block, black
Z = 40.20 × 0.18 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1606 independent reflections
Radiation source: fine-focus sealed tube1216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2828
Tmin = 0.418, Tmax = 0.486l = 1818
12346 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098Only H-atom coordinates refined
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
1606 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 1.99 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
K5[Mo8O24(OH)2(AsO4)]·2H2OV = 2918.6 (7) Å3
Mr = 1553.95Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 8.3024 (12) ŵ = 5.28 mm1
b = 23.008 (3) ÅT = 293 K
c = 15.279 (2) Å0.20 × 0.18 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1606 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1216 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.486Rint = 0.048
12346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.098Only H-atom coordinates refined
S = 1.07Δρmax = 1.99 e Å3
1606 reflectionsΔρmin = 0.72 e Å3
133 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O2W0.50000.3660 (4)0.75000.046 (3)
H2W0.41280.35990.72240.069*0.50
Mo10.30043 (6)0.49010 (2)0.35477 (3)0.01904 (18)
Mo20.30698 (6)0.26333 (2)0.35911 (3)0.02029 (18)
As10.50000.37665 (4)0.25000.0140 (3)
K10.00000.38267 (14)0.25000.0504 (10)
K20.50000.12103 (8)0.46558 (14)0.0300 (5)
K30.50000.36453 (9)0.52457 (14)0.0341 (5)
O120.1808 (7)0.5103 (3)0.25000.0332 (16)
O110.50000.2312 (3)0.25000.0198 (18)
O100.1715 (6)0.4466 (2)0.4095 (3)0.0379 (12)
O90.50000.4605 (3)0.3962 (4)0.0328 (15)
O80.2890 (6)0.55608 (19)0.4041 (3)0.0404 (13)
O70.2196 (7)0.1971 (2)0.3681 (3)0.0516 (15)
O60.50000.2443 (3)0.4234 (4)0.0341 (16)
O50.2029 (6)0.30763 (19)0.4280 (3)0.0382 (12)
O40.50000.5206 (3)0.25000.0189 (17)
O30.3350 (7)0.4194 (2)0.25000.0268 (14)
O20.50000.3333 (2)0.3397 (4)0.0288 (15)
O10.2301 (8)0.2928 (3)0.25000.0338 (15)
O1W0.50000.1146 (4)0.25000.067 (5)
H10.426 (11)0.091 (4)0.25000.04 (3)*
H40.50000.193 (5)0.25000.02 (3)*
H30.50000.562 (5)0.25000.02 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2W0.046 (7)0.017 (5)0.076 (8)0.0000.0000.000
Mo10.0219 (3)0.0168 (3)0.0184 (3)0.0015 (2)0.0028 (2)0.00153 (19)
Mo20.0246 (4)0.0173 (3)0.0190 (3)0.0017 (2)0.0040 (2)0.00186 (19)
As10.0179 (6)0.0104 (5)0.0138 (6)0.0000.0000.000
K10.0242 (18)0.047 (2)0.080 (3)0.0000.0000.000
K20.0328 (12)0.0281 (11)0.0291 (11)0.0000.0000.0002 (8)
K30.0390 (13)0.0324 (11)0.0310 (11)0.0000.0000.0039 (9)
O120.027 (4)0.039 (4)0.034 (4)0.006 (3)0.0000.000
O110.032 (5)0.012 (4)0.016 (4)0.0000.0000.000
O100.036 (3)0.035 (3)0.042 (3)0.004 (2)0.016 (2)0.000 (2)
O90.029 (4)0.038 (4)0.031 (4)0.0000.0000.005 (3)
O80.051 (4)0.028 (2)0.042 (3)0.005 (2)0.006 (3)0.006 (2)
O70.058 (4)0.031 (3)0.066 (4)0.013 (3)0.021 (3)0.006 (2)
O60.042 (4)0.035 (4)0.025 (3)0.0000.0000.005 (3)
O50.046 (3)0.034 (3)0.034 (3)0.002 (2)0.021 (2)0.000 (2)
O40.021 (5)0.009 (4)0.027 (4)0.0000.0000.000
O30.030 (4)0.025 (3)0.025 (3)0.006 (3)0.0000.000
O20.032 (4)0.027 (3)0.027 (3)0.0000.0000.005 (3)
O10.029 (4)0.047 (4)0.026 (3)0.003 (3)0.0000.000
O1W0.039 (8)0.012 (5)0.150 (14)0.0000.0000.000
Geometric parameters (Å, º) top
Mo1—O101.687 (4)K2—O8viii2.979 (5)
Mo1—O81.697 (4)K2—O8ix2.979 (5)
Mo1—O91.900 (3)K2—O7ii3.272 (6)
Mo1—O121.940 (3)K2—O73.272 (6)
Mo1—O32.300 (4)K2—O1W3.297 (2)
Mo1—O42.409 (2)K2—O1W3.297 (2)
Mo1—Mo1i3.2015 (10)K2—Mo2ii3.9915 (18)
Mo1—K13.859 (2)K3—O8x2.756 (5)
Mo2—O71.692 (5)K3—O8xi2.756 (5)
Mo2—O51.701 (4)K3—O7vi2.833 (5)
Mo2—O11.910 (3)K3—O7vii2.833 (5)
Mo2—O61.930 (3)K3—O22.914 (6)
Mo2—O22.291 (4)K3—O92.953 (6)
Mo2—O112.427 (2)K3—O53.158 (5)
Mo2—Mo2ii3.2050 (12)K3—O5ii3.158 (5)
Mo2—K33.792 (2)K3—O63.168 (6)
Mo2—K23.9915 (18)K3—Mo2ii3.7922 (19)
Mo2—K14.100 (2)K3—K2xii4.1672 (6)
As1—O3iii1.687 (6)O12—Mo1i1.940 (3)
As1—O31.687 (6)O11—Mo2ii2.427 (2)
As1—O21.695 (6)O11—Mo2i2.427 (2)
As1—O2i1.695 (6)O11—Mo2iii2.427 (2)
K1—O1iv2.815 (7)O10—K2vii2.844 (5)
K1—O12.815 (7)O9—Mo1ii1.900 (3)
K1—O32.907 (6)O8—K3x2.756 (5)
K1—O3iv2.907 (6)O8—K2xiii2.979 (5)
K1—O103.183 (5)O7—K3vii2.833 (5)
K1—O10v3.183 (5)O6—Mo2ii1.930 (3)
K1—O10iv3.183 (5)O5—K2vii2.859 (4)
K1—O10i3.183 (5)O4—Mo1i2.409 (2)
K1—O12iv3.298 (7)O4—Mo1ii2.409 (2)
K1—O123.298 (7)O4—Mo1iii2.409 (2)
K1—Mo1i3.859 (2)O3—Mo1i2.300 (4)
K2—O10vi2.844 (5)O2—Mo2ii2.291 (4)
K2—O10vii2.844 (5)O1—Mo2i1.910 (3)
K2—O5vi2.859 (4)O1W—O1W0.00 (2)
K2—O5vii2.859 (4)O1W—K2i3.297 (2)
K2—O62.909 (6)
O10—Mo1—O8106.0 (2)O10vi—K2—O7ii104.00 (13)
O10—Mo1—O9100.1 (2)O10vii—K2—O7ii162.64 (14)
O8—Mo1—O9102.8 (3)O5vi—K2—O7ii62.12 (14)
O10—Mo1—O12103.1 (2)O5vii—K2—O7ii111.77 (14)
O8—Mo1—O1297.1 (2)O6—K2—O7ii51.49 (10)
O9—Mo1—O12143.8 (2)O8viii—K2—O7ii134.27 (14)
O10—Mo1—O390.3 (2)O8ix—K2—O7ii63.37 (14)
O8—Mo1—O3161.5 (2)O10vi—K2—O7162.64 (14)
O9—Mo1—O382.5 (2)O10vii—K2—O7104.00 (13)
O12—Mo1—O370.04 (19)O5vi—K2—O7111.77 (14)
O10—Mo1—O4159.8 (2)O5vii—K2—O762.12 (13)
O8—Mo1—O494.2 (2)O6—K2—O751.49 (10)
O9—Mo1—O474.11 (18)O8viii—K2—O763.37 (13)
O12—Mo1—O474.57 (16)O8ix—K2—O7134.27 (14)
O3—Mo1—O470.0 (2)O7ii—K2—O790.72 (18)
O10—Mo1—Mo1i119.71 (17)O10vi—K2—O1W130.22 (18)
O8—Mo1—Mo1i116.36 (16)O10vii—K2—O1W130.22 (18)
O9—Mo1—Mo1i109.46 (18)O5vi—K2—O1W126.43 (16)
O12—Mo1—Mo1i34.40 (15)O5vii—K2—O1W126.43 (16)
O3—Mo1—Mo1i45.89 (10)O6—K2—O1W79.8 (2)
O4—Mo1—Mo1i48.35 (5)O8viii—K2—O1W70.27 (14)
O10—Mo1—K154.24 (16)O8ix—K2—O1W70.27 (14)
O8—Mo1—K1136.12 (19)O7ii—K2—O1W64.48 (14)
O9—Mo1—K1118.16 (19)O7—K2—O1W64.48 (14)
O12—Mo1—K158.68 (19)O10vi—K2—O1W130.22 (18)
O3—Mo1—K148.63 (15)O10vii—K2—O1W130.22 (18)
O4—Mo1—K1110.84 (10)O5vi—K2—O1W126.43 (16)
Mo1i—Mo1—K165.495 (16)O5vii—K2—O1W126.43 (16)
O7—Mo2—O5105.7 (2)O6—K2—O1W79.8 (2)
O7—Mo2—O1104.3 (3)O8viii—K2—O1W70.27 (14)
O5—Mo2—O199.1 (2)O8ix—K2—O1W70.27 (14)
O7—Mo2—O696.4 (3)O7ii—K2—O1W64.48 (14)
O5—Mo2—O6104.0 (2)O7—K2—O1W64.48 (14)
O1—Mo2—O6143.4 (2)O1W—K2—O1W0.0 (4)
O7—Mo2—O2160.5 (2)O10vi—K2—Mo2ii121.40 (10)
O5—Mo2—O290.80 (19)O10vii—K2—Mo2ii157.37 (11)
O1—Mo2—O282.6 (2)O5vi—K2—Mo2ii61.60 (9)
O6—Mo2—O269.15 (19)O5vii—K2—Mo2ii89.85 (10)
O7—Mo2—O1193.7 (2)O6—K2—Mo2ii27.12 (6)
O5—Mo2—O11160.5 (2)O8viii—K2—Mo2ii127.33 (10)
O1—Mo2—O1174.28 (19)O8ix—K2—Mo2ii87.68 (9)
O6—Mo2—O1174.49 (16)O7ii—K2—Mo2ii24.47 (9)
O2—Mo2—O1170.33 (19)O7—K2—Mo2ii70.20 (9)
O7—Mo2—Mo2ii115.4 (2)O1W—K2—Mo2ii68.26 (16)
O5—Mo2—Mo2ii120.53 (17)O1W—K2—Mo2ii68.26 (16)
O1—Mo2—Mo2ii109.53 (19)O8x—K3—O8xi78.9 (2)
O6—Mo2—Mo2ii33.86 (14)O8x—K3—O7vi72.18 (16)
O2—Mo2—Mo2ii45.62 (10)O8xi—K3—O7vi120.80 (17)
O11—Mo2—Mo2ii48.69 (5)O8x—K3—O7vii120.80 (17)
O7—Mo2—K3132.82 (18)O8xi—K3—O7vii72.18 (16)
O5—Mo2—K355.55 (17)O7vi—K3—O7vii80.1 (2)
O1—Mo2—K3120.34 (19)O8x—K3—O2123.14 (14)
O6—Mo2—K356.54 (18)O8xi—K3—O2123.14 (14)
O2—Mo2—K350.13 (14)O7vi—K3—O2115.96 (14)
O11—Mo2—K3111.44 (10)O7vii—K3—O2115.96 (14)
Mo2ii—Mo2—K365.002 (16)O8x—K3—O976.54 (14)
O7—Mo2—K253.2 (2)O8xi—K3—O976.54 (14)
O5—Mo2—K2116.31 (15)O7vi—K3—O9139.37 (12)
O1—Mo2—K2141.38 (18)O7vii—K3—O9139.37 (12)
O6—Mo2—K243.40 (17)O2—K3—O962.64 (17)
O2—Mo2—K2110.39 (11)O8x—K3—O5162.95 (14)
O11—Mo2—K276.43 (14)O8xi—K3—O587.88 (13)
Mo2ii—Mo2—K266.329 (14)O7vi—K3—O5124.43 (15)
K3—Mo2—K293.57 (4)O7vii—K3—O563.91 (14)
O7—Mo2—K1111.7 (2)O2—K3—O556.30 (9)
O5—Mo2—K162.27 (16)O9—K3—O589.98 (12)
O1—Mo2—K136.82 (17)O8x—K3—O5ii87.88 (13)
O6—Mo2—K1151.01 (18)O8xi—K3—O5ii162.95 (14)
O2—Mo2—K184.92 (11)O7vi—K3—O5ii63.91 (14)
O11—Mo2—K1109.56 (11)O7vii—K3—O5ii124.43 (15)
Mo2ii—Mo2—K1128.43 (3)O2—K3—O5ii56.30 (9)
K3—Mo2—K197.04 (4)O9—K3—O5ii89.98 (12)
K2—Mo2—K1164.67 (4)O5—K3—O5ii102.71 (16)
O3iii—As1—O3108.6 (4)O8x—K3—O6140.50 (10)
O3iii—As1—O2110.06 (13)O8xi—K3—O6140.50 (10)
O3—As1—O2110.06 (13)O7vi—K3—O681.10 (14)
O3iii—As1—O2i110.06 (13)O7vii—K3—O681.10 (14)
O3—As1—O2i110.06 (13)O2—K3—O646.54 (15)
O2—As1—O2i108.0 (4)O9—K3—O6109.18 (17)
O1iv—K1—O185.5 (3)O5—K3—O653.87 (9)
O1iv—K1—O3149.7 (2)O5ii—K3—O653.87 (9)
O1—K1—O364.18 (17)O8x—K3—Mo2159.94 (12)
O1iv—K1—O3iv64.18 (17)O8xi—K3—Mo2113.71 (10)
O1—K1—O3iv149.7 (2)O7vi—K3—Mo2110.51 (12)
O3—K1—O3iv146.2 (3)O7vii—K3—Mo278.84 (11)
O1iv—K1—O10130.02 (9)O2—K3—Mo237.12 (8)
O1—K1—O1092.05 (13)O9—K3—Mo290.93 (12)
O3—K1—O1055.77 (9)O5—K3—Mo226.37 (8)
O3iv—K1—O10107.08 (13)O5ii—K3—Mo276.36 (9)
O1iv—K1—O10v92.05 (13)O6—K3—Mo230.55 (6)
O1—K1—O10v130.02 (9)O8x—K3—Mo2ii113.71 (10)
O3—K1—O10v107.08 (13)O8xi—K3—Mo2ii159.94 (12)
O3iv—K1—O10v55.77 (9)O7vi—K3—Mo2ii78.84 (11)
O10—K1—O10v53.16 (17)O7vii—K3—Mo2ii110.51 (12)
O1iv—K1—O10iv92.05 (13)O2—K3—Mo2ii37.12 (8)
O1—K1—O10iv130.02 (9)O9—K3—Mo2ii90.93 (12)
O3—K1—O10iv107.08 (13)O5—K3—Mo2ii76.36 (9)
O3iv—K1—O10iv55.77 (9)O5ii—K3—Mo2ii26.37 (8)
O10—K1—O10iv125.0 (2)O6—K3—Mo2ii30.55 (6)
O10v—K1—O10iv99.94 (17)Mo2—K3—Mo2ii50.00 (3)
O1iv—K1—O10i130.02 (9)O8x—K3—K2xii45.54 (10)
O1—K1—O10i92.05 (13)O8xi—K3—K2xii124.48 (12)
O3—K1—O10i55.77 (9)O7vi—K3—K2xii51.54 (12)
O3iv—K1—O10i107.08 (13)O7vii—K3—K2xii131.30 (14)
O10—K1—O10i99.94 (17)O2—K3—K2xii93.13 (4)
O10v—K1—O10i125.0 (2)O9—K3—K2xii87.96 (4)
O10iv—K1—O10i53.16 (17)O5—K3—K2xii145.89 (10)
O1iv—K1—O12iv110.18 (16)O5ii—K3—K2xii43.27 (8)
O1—K1—O12iv164.35 (19)O6—K3—K2xii95.00 (4)
O3—K1—O12iv100.17 (18)Mo2—K3—K2xii119.60 (5)
O3iv—K1—O12iv46.00 (15)Mo2ii—K3—K2xii69.64 (3)
O10—K1—O12iv78.02 (13)Mo1—O12—Mo1i111.2 (3)
O10v—K1—O12iv52.04 (9)Mo1—O12—K191.2 (2)
O10iv—K1—O12iv52.04 (9)Mo1i—O12—K191.2 (2)
O10i—K1—O12iv78.02 (13)Mo2ii—O11—Mo2i144.6 (3)
O1iv—K1—O12164.35 (19)Mo2ii—O11—Mo2iii86.75 (11)
O1—K1—O12110.18 (16)Mo2i—O11—Mo2iii82.63 (10)
O3—K1—O1246.00 (15)Mo2ii—O11—Mo282.63 (10)
O3iv—K1—O12100.17 (18)Mo2i—O11—Mo286.75 (11)
O10—K1—O1252.04 (9)Mo2iii—O11—Mo2144.6 (3)
O10v—K1—O1278.02 (13)Mo1—O10—K2vii167.1 (3)
O10iv—K1—O1278.02 (13)Mo1—O10—K1100.3 (2)
O10i—K1—O1252.04 (9)K2vii—O10—K192.12 (14)
O12iv—K1—O1254.2 (2)Mo1ii—O9—Mo1121.4 (3)
O1iv—K1—Mo1155.37 (3)Mo1ii—O9—K3119.31 (16)
O1—K1—Mo191.82 (12)Mo1—O9—K3119.31 (16)
O3—K1—Mo136.42 (8)Mo1—O8—K3x137.1 (3)
O3iv—K1—Mo1115.59 (13)Mo1—O8—K2xiii129.3 (3)
O10—K1—Mo125.48 (8)K3x—O8—K2xiii93.14 (13)
O10v—K1—Mo171.07 (10)Mo2—O7—K3vii140.7 (3)
O10iv—K1—Mo1108.11 (12)Mo2—O7—K2102.3 (3)
O10i—K1—Mo174.48 (9)K3vii—O7—K285.77 (13)
O12iv—K1—Mo173.98 (11)Mo2ii—O6—Mo2112.3 (3)
O12—K1—Mo130.17 (6)Mo2ii—O6—K2109.48 (19)
O1iv—K1—Mo1i155.37 (3)Mo2—O6—K2109.48 (19)
O1—K1—Mo1i91.82 (12)Mo2ii—O6—K392.91 (19)
O3—K1—Mo1i36.42 (8)Mo2—O6—K392.91 (19)
O3iv—K1—Mo1i115.59 (13)K2—O6—K3138.0 (2)
O10—K1—Mo1i74.48 (9)Mo2—O5—K2vii174.3 (3)
O10v—K1—Mo1i108.11 (12)Mo2—O5—K398.1 (2)
O10iv—K1—Mo1i71.07 (10)K2vii—O5—K387.51 (12)
O10i—K1—Mo1i25.48 (8)Mo1i—O4—Mo1ii146.1 (3)
O12iv—K1—Mo1i73.98 (11)Mo1i—O4—Mo183.31 (9)
O12—K1—Mo1i30.17 (6)Mo1ii—O4—Mo186.93 (10)
Mo1—K1—Mo1i49.01 (3)Mo1i—O4—Mo1iii86.93 (10)
O10vi—K2—O10vii60.1 (2)Mo1ii—O4—Mo1iii83.31 (9)
O10vi—K2—O5vi68.74 (15)Mo1—O4—Mo1iii146.1 (3)
O10vii—K2—O5vi103.14 (16)As1—O3—Mo1i120.9 (2)
O10vi—K2—O5vii103.14 (16)As1—O3—Mo1120.9 (2)
O10vii—K2—O5vii68.74 (15)Mo1i—O3—Mo188.2 (2)
O5vi—K2—O5vii72.2 (2)As1—O3—K1127.4 (3)
O10vi—K2—O6132.99 (14)Mo1i—O3—K194.95 (18)
O10vii—K2—O6132.99 (14)Mo1—O3—K194.95 (18)
O5vi—K2—O664.28 (13)As1—O2—Mo2121.18 (19)
O5vii—K2—O664.28 (13)As1—O2—Mo2ii121.18 (19)
O10vi—K2—O8viii109.91 (14)Mo2—O2—Mo2ii88.8 (2)
O10vii—K2—O8viii62.22 (14)As1—O2—K3129.7 (3)
O5vi—K2—O8viii160.37 (15)Mo2—O2—K392.75 (17)
O5vii—K2—O8viii89.59 (13)Mo2ii—O2—K392.75 (17)
O6—K2—O8viii114.80 (11)Mo2—O1—Mo2i121.6 (3)
O10vi—K2—O8ix62.22 (14)Mo2—O1—K1119.19 (17)
O10vii—K2—O8ix109.91 (14)Mo2i—O1—K1119.19 (17)
O5vi—K2—O8ix89.59 (13)O1W—O1W—K2i0 (10)
O5vii—K2—O8ix160.37 (15)O1W—O1W—K20 (10)
O6—K2—O8ix114.80 (11)K2i—O1W—K2174.9 (4)
O8viii—K2—O8ix107.32 (19)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z+1/2; (iv) x, y, z+1/2; (v) x, y, z; (vi) x+1/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y1/2, z; (ix) x+1/2, y1/2, z; (x) x+1, y+1, z+1; (xi) x, y+1, z+1; (xii) x+3/2, y+1/2, z+1; (xiii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O12xiv0.82 (9)2.06 (9)2.831 (11)157 (9)
O11—H4···O1W0.87 (11)1.81 (11)2.684 (13)180 (1)
Symmetry code: (xiv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK5[Mo8O24(OH)2(AsO4)]·2H2O
Mr1553.95
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)293
a, b, c (Å)8.3024 (12), 23.008 (3), 15.279 (2)
V3)2918.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.28
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.418, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
12346, 1606, 1216
Rint0.048
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.098, 1.07
No. of reflections1606
No. of parameters133
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)1.99, 0.72

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O12i0.82 (9)2.06 (9)2.831 (11)157 (9)
O11—H4···O1W0.87 (11)1.81 (11)2.684 (13)180.000 (1)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of Heilongjiang Province (Nos. B200901 and B200917).

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany  Google Scholar
First citationBrown, I. D. (1981). In Structure and Bonding in Crystals, Vol. 2, edited by M. O'Keeffe and A. Navrotsky, pp. 1–30. New York: Academic Press.  Google Scholar
First citationChen, S., Hoffman, S., Prots, S., Zhao, J.-T. & Kniep, R. (2009). Z. Kristallogr. New Crystal Struct. 224, 15–16.  CAS Google Scholar
First citationHe, Q. L. & Wang, E. B. (1999). Inorg. Chem. Commun. pp. 399–341.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHsu, K. F. & Wang, S. L. (1997). Inorg. Chem. pp. 3049–3054.  CrossRef Web of Science Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Li, Y. G., Wang, E. B., Xiao, D. R., An, H. Y. & Xu, L. (2007). Inorg. Chem. 46, 1563–1574.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds