organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-chloro­benz­yl)-N′′-(di­chloro­acet­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Physics, Faculty of Sciences, University of Novi Sad, 21000, Serbia
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 9 December 2010; accepted 6 January 2011; online 12 January 2011)

In the title compound, C16H16Cl4N3O2P, the phosphoryl and carbonyl groups are anti to each other. The dihedral angle between the benzene rings is 33.59 (16)°. In the crystal, adjacent mol­ecules are linked via N—H⋯O=P and N—H⋯O=C hydrogen bonds, into an extended chain running parallel to the a axis.

Related literature

For biologically active organo­phospho­rus compounds, see: Ekstrom et al. (2006[Ekstrom, F., Akfur, C., Tunemalm, A. & Lundberg, S. (2006). Biochemistry, 45, 74-81.]). For the anti­cancer activity of compounds with a C(O)NHP(O) skeleton, see: Gholivand et al. (2011[Gholivand, K., Dorosti, N., Shariatinia, Z., Ghaziany, F., Sarikhani, S. & Mirshahi, M. (2011). Med. Chem. Res. In the press.]). For related structures, see: Sabbaghi et al. (2010a[Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010a). Acta Cryst. E66, o344.],b[Sabbaghi, F., Rostami Chaijan, M. & Pourayoubi, M. (2010b). Acta Cryst. E66, o1754.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16Cl4N3O2P

  • Mr = 455.09

  • Triclinic, [P \overline 1]

  • a = 9.901 (1) Å

  • b = 10.179 (1) Å

  • c = 12.013 (2) Å

  • α = 90.403 (5)°

  • β = 112.851 (6)°

  • γ = 114.084 (6)°

  • V = 998.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 295 K

  • 0.22 × 0.12 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.978, Tmax = 1.000

  • 6193 measured reflections

  • 3510 independent reflections

  • 2786 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.156

  • S = 1.02

  • 3510 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 1.93 2.756 (4) 162
N3—H3⋯O2ii 0.86 2.24 3.024 (4) 151
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organophosphorus compounds are well-known as the biologically active substances (Ekstrom et al., 2006). Among them the anticancer activity of compounds having a C(O)NHP(O) skeleton has been studied (Gholivand et al., 2011). In the previous works, some phosphoric triamides such as P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2 (Sabbaghi et al., 2010a) and P(O)[NHC(O)C6H4(4-NO2)][N(CH3)(C6H11)]2 (Sabbaghi et al., 2010b) have been structurally investigated. We report here on the synthesis and crystal structure of P(O)[NHC(O)CHCl2][NHCH2(2-Cl—C6H4)]2. Single crystals of title compound were obtained from a solution of CH3OH and CH3CN after a slow evaporation at room temperature. The phosphoryl and carbonyl groups are anti to each other and the phosphorus atom is in a slightly distorted tetrahedral environment (Fig. 1). The bond angles are in the range of 103.08 (16)°-117.84 (17)° around the P atom. The P—N1 and P—N3 (1.616 (3) Å and 1.619 (3) Å) bond lengths are shorter than the P—N2 bond (1.682 (3) Å). The environment of nitrogen atoms is essentially planar. The PO bond length of 1.471 (3) Å is standard for phosphoramidate compounds.

In the crystal structure, adjacent molecules are linked via N–H···OP and N–H···OC hydrogen bonds, into an extended chain parallel to the a axis.

Related literature top

For biologically active organophosphorus compounds, see: Ekstrom et al. (2006). For the anticancer activity of compounds with a C(O)NHP(O) skeleton, see: Gholivand et al. (2011). For related structures, see: Sabbaghi et al. (2010a,b).

Experimental top

The reaction of phosphorus pentachloride (16.91 mmol) and CHCl2C(O)NH2 (16.91 mmol) in dry CCl4 at 358 K (3 h) and then the treatment of formic acid (16.91 mmol) at ice bath temperature leads to CHCl2C(O)NHP(O)Cl2.

To a solution of CHCl2C(O)NHP(O)Cl2 (1.04 mmol) in dry CHCl3, a solution of 2-chlorobenzylamine (4.16 mmol) in dry CHCl3 was added dropwise and stirred at 273 K. After 4 h, the solvent was evaporated at room temperature. The solid was washed with H2O. The product was obtained after recrystallization from a methanol/acetonitrile mixture (4:1) after a slow evaporation at room temperature. IR (KBr, cm-1): 3392 (NH), 3080 (NH), 2881, 1704 (CO), 1465, 1203 (PO), 1072, 887.

Refinement top

All H atoms were placed at calculated positions and were refined riding on the respective carrier atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP style plot of title compound. Ellipsoids are given at 30% probability level.
N,N'-Bis(2-chlorobenzyl)-N''-(dichloroacetyl)phosphoric triamide top
Crystal data top
C16H16Cl4N3O2PZ = 2
Mr = 455.09F(000) = 464
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.901 (1) ÅCell parameters from 2802 reflections
b = 10.179 (1) Åθ = 3.5–29.0°
c = 12.013 (2) ŵ = 0.69 mm1
α = 90.403 (5)°T = 295 K
β = 112.851 (6)°Prism, colourless
γ = 114.084 (6)°0.22 × 0.12 × 0.11 mm
V = 998.7 (2) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3510 independent reflections
Radiation source: Enhance (Mo) X-ray Source2786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.3280 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scansh = 119
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1112
Tmin = 0.978, Tmax = 1.000l = 1413
6193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0618P)2 + 1.5174P]
where P = (Fo2 + 2Fc2)/3
3510 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C16H16Cl4N3O2Pγ = 114.084 (6)°
Mr = 455.09V = 998.7 (2) Å3
Triclinic, P1Z = 2
a = 9.901 (1) ÅMo Kα radiation
b = 10.179 (1) ŵ = 0.69 mm1
c = 12.013 (2) ÅT = 295 K
α = 90.403 (5)°0.22 × 0.12 × 0.11 mm
β = 112.851 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3510 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2786 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 1.000Rint = 0.018
6193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.02Δρmax = 0.96 e Å3
3510 reflectionsΔρmin = 0.65 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.84901 (11)0.52095 (11)0.59850 (8)0.0398 (3)
Cl10.4017 (2)0.3402 (3)0.12756 (12)0.1300 (8)
Cl20.5672 (2)0.16627 (16)0.23126 (18)0.1108 (6)
Cl30.65788 (18)0.91760 (16)0.50769 (15)0.0893 (5)
Cl40.77087 (18)0.44836 (16)1.03178 (11)0.0804 (4)
O11.0238 (3)0.5568 (3)0.6484 (2)0.0543 (7)
O20.5072 (3)0.4115 (4)0.3908 (3)0.0670 (9)
N10.7379 (4)0.4006 (4)0.6531 (3)0.0496 (8)
H10.66270.31840.60480.059*
N20.7656 (3)0.4413 (3)0.4495 (3)0.0427 (7)
H20.82790.42390.42400.051*
N30.8251 (4)0.6669 (3)0.6149 (3)0.0481 (8)
H30.75380.66310.64050.058*
C10.5775 (5)0.3419 (5)0.2368 (4)0.0512 (10)
H1A0.66960.40580.21970.061*
C20.6105 (4)0.4020 (4)0.3661 (3)0.0423 (8)
C30.9204 (5)0.8049 (5)0.5877 (4)0.0611 (11)
H3A1.02920.81420.60810.073*
H3B0.93190.88590.63950.073*
C40.8437 (5)0.8158 (4)0.4545 (4)0.0524 (10)
C50.7214 (5)0.8603 (4)0.4084 (4)0.0560 (10)
C60.6453 (6)0.8610 (5)0.2847 (5)0.0741 (14)
H60.56350.89190.25700.089*
C70.6907 (8)0.8161 (6)0.2034 (5)0.0846 (16)
H70.63930.81550.11990.102*
C80.8110 (8)0.7727 (6)0.2449 (5)0.0837 (16)
H80.84240.74280.18970.100*
C90.8878 (6)0.7724 (5)0.3692 (5)0.0678 (12)
H90.97050.74250.39600.081*
C100.7581 (5)0.4233 (5)0.7789 (4)0.0513 (10)
H10A0.65850.42110.77760.062*
H10B0.84620.52030.82150.062*
C110.7950 (4)0.3128 (4)0.8509 (3)0.0458 (9)
C120.8030 (5)0.3159 (5)0.9693 (4)0.0571 (11)
C130.8391 (6)0.2189 (6)1.0401 (5)0.0745 (14)
H130.84610.22471.11960.089*
C140.8644 (7)0.1145 (7)0.9923 (6)0.0904 (17)
H140.88750.04761.03910.108*
C150.8562 (7)0.1062 (6)0.8740 (6)0.0893 (17)
H150.87330.03430.84140.107*
C160.8225 (6)0.2060 (5)0.8060 (5)0.0657 (12)
H160.81820.20130.72730.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0347 (5)0.0643 (6)0.0311 (5)0.0268 (5)0.0192 (4)0.0135 (4)
Cl10.1450 (15)0.226 (2)0.0426 (7)0.1471 (16)0.0041 (8)0.0079 (9)
Cl20.1193 (13)0.0728 (9)0.1247 (14)0.0485 (9)0.0318 (11)0.0113 (9)
Cl30.0902 (10)0.0832 (9)0.1143 (12)0.0446 (8)0.0567 (9)0.0103 (8)
Cl40.1089 (10)0.1091 (10)0.0488 (7)0.0593 (9)0.0469 (7)0.0242 (6)
O10.0390 (14)0.097 (2)0.0371 (14)0.0384 (15)0.0170 (12)0.0138 (14)
O20.0404 (15)0.119 (3)0.0490 (17)0.0405 (17)0.0219 (13)0.0053 (16)
N10.0538 (19)0.060 (2)0.0360 (17)0.0223 (16)0.0241 (15)0.0118 (14)
N20.0367 (16)0.069 (2)0.0332 (16)0.0281 (15)0.0206 (13)0.0093 (14)
N30.0443 (17)0.062 (2)0.0473 (19)0.0251 (16)0.0272 (15)0.0121 (15)
C10.050 (2)0.064 (2)0.041 (2)0.029 (2)0.0177 (18)0.0055 (18)
C20.0390 (19)0.060 (2)0.0346 (19)0.0248 (18)0.0187 (16)0.0131 (16)
C30.050 (2)0.058 (3)0.061 (3)0.018 (2)0.017 (2)0.008 (2)
C40.048 (2)0.045 (2)0.060 (3)0.0138 (18)0.025 (2)0.0131 (18)
C50.052 (2)0.047 (2)0.065 (3)0.0174 (19)0.027 (2)0.012 (2)
C60.062 (3)0.059 (3)0.084 (4)0.024 (2)0.018 (3)0.022 (3)
C70.089 (4)0.073 (3)0.067 (3)0.019 (3)0.029 (3)0.016 (3)
C80.103 (4)0.075 (3)0.078 (4)0.024 (3)0.058 (3)0.013 (3)
C90.069 (3)0.062 (3)0.086 (4)0.029 (2)0.046 (3)0.021 (2)
C100.058 (2)0.068 (3)0.041 (2)0.031 (2)0.0303 (19)0.0182 (19)
C110.039 (2)0.059 (2)0.041 (2)0.0201 (18)0.0203 (17)0.0160 (17)
C120.050 (2)0.075 (3)0.047 (2)0.027 (2)0.0222 (19)0.021 (2)
C130.070 (3)0.092 (4)0.059 (3)0.034 (3)0.027 (2)0.038 (3)
C140.095 (4)0.097 (4)0.090 (4)0.056 (4)0.036 (3)0.053 (3)
C150.097 (4)0.088 (4)0.112 (5)0.059 (3)0.053 (4)0.046 (3)
C160.069 (3)0.077 (3)0.066 (3)0.038 (3)0.038 (2)0.022 (2)
Geometric parameters (Å, º) top
P—O11.471 (3)C5—C61.382 (7)
P—N11.616 (3)C6—C71.367 (8)
P—N31.619 (3)C6—H60.9300
P—N21.682 (3)C7—C81.354 (8)
Cl1—C11.718 (4)C7—H70.9300
Cl2—C11.748 (4)C8—C91.388 (7)
Cl3—C51.741 (5)C8—H80.9300
Cl4—C121.733 (5)C9—H90.9300
O2—C21.208 (4)C10—C111.500 (5)
N1—C101.450 (5)C10—H10A0.9700
N1—H10.8600C10—H10B0.9700
N2—C21.349 (4)C11—C161.376 (6)
N2—H20.8600C11—C121.394 (5)
N3—C31.461 (5)C12—C131.375 (6)
N3—H30.8600C13—C141.358 (8)
C1—C21.525 (5)C13—H130.9300
C1—H1A0.9800C14—C151.392 (8)
C3—C41.509 (6)C14—H140.9300
C3—H3A0.9700C15—C161.373 (7)
C3—H3B0.9700C15—H150.9300
C4—C51.381 (6)C16—H160.9300
C4—C91.392 (6)
O1—P—N1117.84 (17)C7—C6—C5119.7 (5)
O1—P—N3110.86 (18)C7—C6—H6120.1
N1—P—N3106.48 (17)C5—C6—H6120.1
O1—P—N2106.38 (15)C8—C7—C6119.7 (5)
N1—P—N2103.08 (16)C8—C7—H7120.2
N3—P—N2112.03 (16)C6—C7—H7120.2
C10—N1—P123.7 (3)C7—C8—C9120.7 (5)
C10—N1—H1118.2C7—C8—H8119.7
P—N1—H1118.2C9—C8—H8119.7
C2—N2—P126.3 (2)C4—C9—C8121.3 (5)
C2—N2—H2116.9C4—C9—H9119.3
P—N2—H2116.9C8—C9—H9119.3
C3—N3—P122.2 (3)N1—C10—C11114.6 (3)
C3—N3—H3118.9N1—C10—H10A108.6
P—N3—H3118.9C11—C10—H10A108.6
C2—C1—Cl1111.5 (3)N1—C10—H10B108.6
C2—C1—Cl2109.2 (3)C11—C10—H10B108.6
Cl1—C1—Cl2111.2 (2)H10A—C10—H10B107.6
C2—C1—H1A108.3C16—C11—C12117.0 (4)
Cl1—C1—H1A108.3C16—C11—C10123.2 (4)
Cl2—C1—H1A108.3C12—C11—C10119.7 (4)
O2—C2—N2123.9 (3)C13—C12—C11122.2 (5)
O2—C2—C1123.1 (3)C13—C12—Cl4118.4 (4)
N2—C2—C1113.0 (3)C11—C12—Cl4119.4 (3)
N3—C3—C4113.0 (3)C12—C13—C14119.0 (5)
N3—C3—H3A109.0C12—C13—H13120.5
C4—C3—H3A109.0C14—C13—H13120.5
N3—C3—H3B109.0C15—C14—C13120.8 (5)
C4—C3—H3B109.0C15—C14—H14119.6
H3A—C3—H3B107.8C13—C14—H14119.6
C5—C4—C9116.2 (4)C14—C15—C16118.9 (5)
C5—C4—C3123.2 (4)C14—C15—H15120.6
C9—C4—C3120.5 (4)C16—C15—H15120.6
C4—C5—C6122.5 (4)C11—C16—C15122.0 (5)
C4—C5—Cl3119.7 (4)C11—C16—H16119.0
C6—C5—Cl3117.8 (4)C15—C16—H16119.0
O1—P—N1—C1066.5 (4)C4—C5—C6—C70.1 (7)
N3—P—N1—C1058.7 (3)Cl3—C5—C6—C7179.6 (4)
N2—P—N1—C10176.8 (3)C5—C6—C7—C80.6 (8)
O1—P—N2—C2174.1 (3)C6—C7—C8—C90.4 (8)
N1—P—N2—C261.3 (4)C5—C4—C9—C80.7 (6)
N3—P—N2—C252.8 (4)C3—C4—C9—C8175.8 (4)
O1—P—N3—C344.0 (3)C7—C8—C9—C40.3 (8)
N1—P—N3—C3173.4 (3)P—N1—C10—C11121.2 (3)
N2—P—N3—C374.6 (3)N1—C10—C11—C165.6 (6)
P—N2—C2—O24.7 (6)N1—C10—C11—C12174.5 (4)
P—N2—C2—C1176.0 (3)C16—C11—C12—C131.0 (6)
Cl1—C1—C2—O217.2 (5)C10—C11—C12—C13178.9 (4)
Cl2—C1—C2—O2106.1 (4)C16—C11—C12—Cl4179.6 (3)
Cl1—C1—C2—N2163.5 (3)C10—C11—C12—Cl40.3 (5)
Cl2—C1—C2—N273.2 (4)C11—C12—C13—C141.4 (7)
P—N3—C3—C487.6 (4)Cl4—C12—C13—C14179.9 (4)
N3—C3—C4—C583.3 (5)C12—C13—C14—C150.8 (9)
N3—C3—C4—C993.0 (5)C13—C14—C15—C160.2 (9)
C9—C4—C5—C60.5 (6)C12—C11—C16—C150.1 (7)
C3—C4—C5—C6175.9 (4)C10—C11—C16—C15180.0 (5)
C9—C4—C5—Cl3179.7 (3)C14—C15—C16—C110.7 (8)
C3—C4—C5—Cl33.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.861.932.756 (4)162
N3—H3···O2ii0.862.243.024 (4)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16Cl4N3O2P
Mr455.09
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.901 (1), 10.179 (1), 12.013 (2)
α, β, γ (°)90.403 (5), 112.851 (6), 114.084 (6)
V3)998.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.22 × 0.12 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.978, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6193, 3510, 2786
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.156, 1.02
No. of reflections3510
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.65

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.861.932.756 (4)162
N3—H3···O2ii0.862.243.024 (4)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEkstrom, F., Akfur, C., Tunemalm, A. & Lundberg, S. (2006). Biochemistry, 45, 74–81.  Web of Science CrossRef PubMed Google Scholar
First citationGholivand, K., Dorosti, N., Shariatinia, Z., Ghaziany, F., Sarikhani, S. & Mirshahi, M. (2011). Med. Chem. Res. In the press.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010a). Acta Cryst. E66, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Rostami Chaijan, M. & Pourayoubi, M. (2010b). Acta Cryst. E66, o1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds