organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane bis­­(hexa­fluoro­phosphate)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 13 December 2010; accepted 5 January 2011; online 12 January 2011)

In the crystal structure of the title compound, C7H15ClN22+·2PF6, the cations and anions are linked by inter­molecular N—H⋯F hydrogen bonds.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • C7H15ClN22+·2PF6

  • Mr = 452.6

  • Orthorhombic, P b c a

  • a = 14.414 (8) Å

  • b = 12.976 (7) Å

  • c = 16.115 (9) Å

  • V = 3014 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.836, Tmax = 0.888

  • 30798 measured reflections

  • 3447 independent reflections

  • 3197 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.146

  • S = 1.24

  • 3447 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯F3i 0.91 2.26 2.924 (3) 130
N2—H2C⋯F4i 0.91 2.40 3.073 (3) 131
N2—H2C⋯F9i 0.91 2.43 3.055 (3) 126
Symmetry code: (i) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We synthesized the title compound to find ferroelectric material by dielectric measurements of compound as a function of temperature(Fu et al. 2009;Ye et al.2006; Zhang et al.2008; Zhang et al.2010). In the range from 190 K to near its melting point(m.p. >452 K), no dielectric anomaly was observed.

Single crystal of the title compound suitable for X-ray diffraction analysis were obtained by evaporating an water solution in 123.5 K. As Fig.1, the compound consists of one 1-(chloromethyl)-1,4- diazabicyclo[2.2.2]octane-1,4-diium cations and two hexafluorophosphate anions. The hydrogen bonds linked one 1-(chloromethyl)-1,4- diazabicyclo[2.2.2]octane-1,4-diium cations and two hexafluorophosphate anions of the another cell as showed in the Fig.2.

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

1,4-Diazabicyclo[2.2.2]octane(5.6 g,0.05 mol)was dissolved in 20 ml of dichloromethane and the mixture solution was refluxed for 8 h. A white precipitate of 1-(chloromethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride were obtained. The title compound was synthesized by the mixed solution of 1-(chloromethyl)-1,4-diazabicyclo[2.2.2]octan-1-ium chloride(1.97 g, 10 mmol) and hexafluorophosphoric acid(20 mmol). After a few days, colorless block crystals of the title compound were obtained on slow evaporation of the solvent.

Refinement top

Positional parameter of all the H atoms except for H2 were calculated geometrically and the H atoms were set to ride on the C atoms to which they are bonded, with Uiso(H) =1.2Ueq(C). The position of the H atom on N2 was determined from a difference Fourier map and was not refined.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A partial packing diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, hydrogen bonds are shown as dashed lines.
1-Chloromethyl-1,4-diazoniabicyclo[2.2.2]octane bis(hexafluorophosphate) top
Crystal data top
C7H15ClN22+·2PF6F(000) = 1808
Mr = 452.6Dx = 1.995 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6697 reflections
a = 14.414 (8) Åθ = 2.5–27.5°
b = 12.976 (7) ŵ = 0.60 mm1
c = 16.115 (9) ÅT = 293 K
V = 3014 (3) Å3Prism, colorless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3447 independent reflections
Radiation source: fine-focus sealed tube3197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
CCD Profile fitting scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1818
Tmin = 0.836, Tmax = 0.888k = 1616
30798 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0625P)2 + 3.8206P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
3447 reflectionsΔρmax = 0.58 e Å3
217 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (1)
Crystal data top
C7H15ClN22+·2PF6V = 3014 (3) Å3
Mr = 452.6Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.414 (8) ŵ = 0.60 mm1
b = 12.976 (7) ÅT = 293 K
c = 16.115 (9) Å0.30 × 0.25 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3447 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3197 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.888Rint = 0.050
30798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.24Δρmax = 0.58 e Å3
3447 reflectionsΔρmin = 0.46 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.10243 (5)0.80778 (6)0.38500 (5)0.01982 (19)
P20.25717 (5)0.96221 (6)0.14312 (5)0.01997 (19)
F80.19471 (13)0.87588 (16)0.38218 (13)0.0359 (5)
F90.06202 (13)0.87478 (14)0.30870 (11)0.0293 (4)
F110.05718 (12)0.88833 (14)0.44911 (11)0.0268 (4)
F100.00885 (13)0.74127 (15)0.38738 (13)0.0331 (4)
F70.14303 (13)0.74224 (16)0.46061 (11)0.0343 (5)
F120.14650 (13)0.72793 (15)0.32030 (12)0.0322 (4)
F30.15177 (12)1.00058 (16)0.15861 (13)0.0347 (5)
F10.23000 (15)0.92628 (16)0.05253 (11)0.0363 (5)
F40.28151 (16)0.99851 (17)0.23639 (13)0.0430 (6)
F20.36096 (14)0.92349 (19)0.13078 (16)0.0479 (6)
F50.22953 (16)0.85130 (15)0.17743 (14)0.0421 (5)
F60.28287 (17)1.07397 (16)0.11115 (15)0.0465 (6)
Cl10.09951 (6)0.45726 (7)0.44115 (7)0.0419 (3)
N10.05494 (16)0.26975 (18)0.37949 (15)0.0189 (5)
N20.11243 (16)0.10322 (19)0.31629 (15)0.0206 (5)
H2C0.13320.04340.29330.025*
C50.02655 (19)0.2006 (2)0.35656 (18)0.0207 (6)
H5A0.06540.18960.40490.025*
H5B0.06380.23360.31410.025*
C10.1107 (2)0.2924 (2)0.30230 (19)0.0224 (6)
H1A0.16570.33160.31680.027*
H1B0.07400.33330.26410.027*
C30.1568 (2)0.1167 (2)0.39967 (18)0.0278 (7)
H3A0.22340.12390.39350.033*
H3B0.14460.05690.43410.033*
C70.0138 (2)0.3663 (2)0.4162 (2)0.0266 (6)
H7A0.02070.34860.46600.032*
H7B0.02930.39640.37690.032*
C20.1390 (2)0.1914 (2)0.2609 (2)0.0280 (7)
H2A0.10800.18470.20770.034*
H2B0.20540.19080.25130.034*
C40.1162 (2)0.2138 (2)0.44068 (18)0.0232 (6)
H4A0.08040.19460.48920.028*
H4B0.16620.25880.45840.028*
C60.0090 (2)0.0978 (3)0.3247 (3)0.0364 (8)
H6A0.00780.04340.36310.044*
H6B0.01880.08250.27130.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0173 (4)0.0238 (4)0.0184 (4)0.0025 (3)0.0000 (3)0.0006 (3)
P20.0181 (4)0.0220 (4)0.0198 (4)0.0001 (3)0.0000 (3)0.0018 (3)
F80.0217 (9)0.0451 (12)0.0410 (11)0.0067 (8)0.0054 (8)0.0014 (9)
F90.0340 (10)0.0322 (10)0.0218 (9)0.0108 (8)0.0020 (7)0.0035 (7)
F110.0282 (9)0.0286 (9)0.0235 (9)0.0024 (7)0.0050 (7)0.0028 (7)
F100.0264 (9)0.0311 (10)0.0419 (11)0.0074 (8)0.0020 (8)0.0041 (9)
F70.0372 (10)0.0422 (11)0.0235 (9)0.0133 (9)0.0027 (8)0.0073 (8)
F120.0367 (10)0.0335 (10)0.0265 (10)0.0142 (8)0.0038 (8)0.0031 (8)
F30.0199 (9)0.0403 (11)0.0440 (11)0.0016 (8)0.0030 (8)0.0162 (9)
F10.0466 (12)0.0429 (11)0.0195 (9)0.0112 (10)0.0053 (8)0.0082 (8)
F40.0560 (14)0.0420 (12)0.0310 (11)0.0127 (10)0.0191 (10)0.0121 (9)
F20.0208 (10)0.0539 (14)0.0690 (16)0.0064 (9)0.0004 (10)0.0187 (12)
F50.0614 (14)0.0256 (10)0.0392 (11)0.0020 (10)0.0077 (10)0.0035 (9)
F60.0572 (14)0.0280 (10)0.0544 (14)0.0099 (10)0.0148 (11)0.0055 (10)
Cl10.0285 (4)0.0331 (4)0.0641 (6)0.0071 (3)0.0121 (4)0.0250 (4)
N10.0164 (11)0.0205 (11)0.0199 (11)0.0001 (9)0.0005 (9)0.0011 (9)
N20.0191 (12)0.0200 (11)0.0227 (12)0.0001 (9)0.0003 (9)0.0010 (10)
C50.0159 (13)0.0237 (14)0.0225 (14)0.0027 (10)0.0020 (10)0.0003 (11)
C10.0218 (14)0.0202 (13)0.0252 (14)0.0011 (11)0.0051 (11)0.0007 (11)
C30.0348 (17)0.0266 (15)0.0220 (14)0.0078 (13)0.0052 (12)0.0007 (12)
C70.0204 (14)0.0213 (14)0.0382 (17)0.0025 (11)0.0046 (12)0.0076 (13)
C20.0377 (17)0.0239 (15)0.0223 (15)0.0035 (13)0.0074 (13)0.0043 (12)
C40.0200 (13)0.0294 (15)0.0201 (13)0.0005 (12)0.0014 (11)0.0014 (11)
C60.0190 (15)0.0282 (16)0.062 (2)0.0040 (13)0.0030 (15)0.0145 (16)
Geometric parameters (Å, º) top
P1—F71.597 (2)N2—C21.501 (4)
P1—F81.598 (2)N2—H2C0.9100
P1—F121.601 (2)C5—C61.518 (4)
P1—F101.602 (2)C5—H5A0.9700
P1—F111.6079 (19)C5—H5B0.9700
P1—F91.6147 (19)C1—C21.527 (4)
P2—F11.582 (2)C1—H1A0.9700
P2—F61.583 (2)C1—H1B0.9700
P2—F21.591 (2)C3—C41.538 (4)
P2—F51.592 (2)C3—H3A0.9700
P2—F41.614 (2)C3—H3B0.9700
P2—F31.618 (2)C7—H7A0.9700
Cl1—C71.756 (3)C7—H7B0.9700
N1—C71.507 (4)C2—H2A0.9700
N1—C41.510 (4)C2—H2B0.9700
N1—C11.510 (4)C4—H4A0.9700
N1—C51.524 (3)C4—H4B0.9700
N2—C61.498 (4)C6—H6A0.9700
N2—C31.498 (4)C6—H6B0.9700
F7—P1—F890.65 (12)C6—C5—N1109.8 (2)
F7—P1—F1290.40 (11)C6—C5—H5A109.7
F8—P1—F1290.53 (12)N1—C5—H5A109.7
F7—P1—F1090.19 (12)C6—C5—H5B109.7
F8—P1—F10178.98 (12)N1—C5—H5B109.7
F12—P1—F1090.06 (11)H5A—C5—H5B108.2
F7—P1—F1190.26 (11)N1—C1—C2109.6 (2)
F8—P1—F1189.79 (11)N1—C1—H1A109.8
F12—P1—F11179.26 (11)C2—C1—H1A109.8
F10—P1—F1189.62 (11)N1—C1—H1B109.8
F7—P1—F9179.52 (13)C2—C1—H1B109.8
F8—P1—F988.90 (11)H1A—C1—H1B108.2
F12—P1—F989.75 (11)N2—C3—C4108.6 (2)
F10—P1—F990.26 (11)N2—C3—H3A110.0
F11—P1—F989.59 (10)C4—C3—H3A110.0
F1—P2—F691.58 (13)N2—C3—H3B110.0
F1—P2—F291.39 (12)C4—C3—H3B110.0
F6—P2—F291.64 (14)H3A—C3—H3B108.3
F1—P2—F589.54 (12)N1—C7—Cl1111.8 (2)
F6—P2—F5178.30 (13)N1—C7—H7A109.3
F2—P2—F589.61 (13)Cl1—C7—H7A109.3
F1—P2—F4178.20 (13)N1—C7—H7B109.3
F6—P2—F489.13 (13)Cl1—C7—H7B109.3
F2—P2—F490.24 (13)H7A—C7—H7B107.9
F5—P2—F489.71 (13)N2—C2—C1109.1 (2)
F1—P2—F390.03 (11)N2—C2—H2A109.9
F6—P2—F389.32 (13)C1—C2—H2A109.9
F2—P2—F3178.26 (14)N2—C2—H2B109.9
F5—P2—F389.40 (12)C1—C2—H2B109.9
F4—P2—F388.32 (11)H2A—C2—H2B108.3
C7—N1—C4111.9 (2)N1—C4—C3109.6 (2)
C7—N1—C1111.8 (2)N1—C4—H4A109.8
C4—N1—C1108.7 (2)C3—C4—H4A109.8
C7—N1—C5106.3 (2)N1—C4—H4B109.8
C4—N1—C5109.0 (2)C3—C4—H4B109.8
C1—N1—C5109.0 (2)H4A—C4—H4B108.2
C6—N2—C3110.4 (3)N2—C6—C5109.0 (2)
C6—N2—C2110.1 (3)N2—C6—H6A109.9
C3—N2—C2109.6 (2)C5—C6—H6A109.9
C6—N2—H2C108.9N2—C6—H6B109.9
C3—N2—H2C108.9C5—C6—H6B109.9
C2—N2—H2C108.9H6A—C6—H6B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···F3i0.912.262.924 (3)130
N2—H2C···F4i0.912.403.073 (3)131
N2—H2C···F9i0.912.433.055 (3)126
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H15ClN22+·2PF6
Mr452.6
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.414 (8), 12.976 (7), 16.115 (9)
V3)3014 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.836, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
30798, 3447, 3197
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.146, 1.24
No. of reflections3447
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.46

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···F3i0.912.262.924 (3)130
N2—H2C···F4i0.912.403.073 (3)131
N2—H2C···F9i0.912.433.055 (3)126
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds