organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o355-o356

5,5′-Bis[(2,2,2-tri­fluoro­eth­­oxy)meth­yl]-2,2′-bi­pyridine

aInstitute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
*Correspondence e-mail: normanlu@ntut.edu.tw

(Received 6 November 2010; accepted 6 January 2011; online 12 January 2011)

The complete molecule of the title compound, C16H14F6N2O2, is generated by crystallographic inversion symmetry, which results in two short intramolecular C—H⋯N hydrogen-bond contacts per molecule. In the crystal, aromatic ππ stacking [centroid–centroid distance = 3.457 (2) Å] and weak C—H⋯π inter­actions occur. A short H⋯H [2.32 (3) Å] contact is present.

Related literature

For related structures and background to the anti-planar geometry of bpy, see: Lu, Tu, Wu et al. (2010[Lu, N., Tu, W.-H., Wu, Z.-W., Wen, Y.-S. & Liu, L.-K. (2010). Acta Cryst. C66, o289-o291.]); Iyer et al. (2005[Iyer, V. M., Stoeckli-Evans, H., D'Aléo, A., Cola, L. D. & Belser, P. (2005). Acta Cryst. C61, o259-o261.]); Heirtzler et al. (2002[Heirtzler, F., Neuburger, M. & Kulike, K. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 809-820.]); Maury et al. (2001[Maury, O., Guegan, J.-P., Renouard, T., Hilton, A., Dupau, P., Sandon, N., Toupet, L. & Le Bozec, H. (2001). New J. Chem. 25, 1553-1566.]); Vogtle et al. (1990[Vogtle, F., Hochberg, R., Kochendorfer, F., Windscheif, P.-M., Volkmann, M. & Jansen, M. (1990). Chem. Ber. 123, 2181-2185.]). For background to the bipyridine (bpy) ligand, see: Bain et al. (1989[Bain, C. D., Troughton, E. B., Tao, Y., Evall, J., Whitesides, G. M. & Nuzzo, R. G. (1989). J. Am. Chem. Soc. 111, 321-335.]); Chambron & Sauvage (1986[Chambron, J.-C. & Sauvage, J.-P. (1986). Tetrahedron Lett. 27, 865-868.], 1987[Chambron, J.-C. & Sauvage, J.-P. (1987). Tetrahedron, 43, 895-904.]); Grätzel (2001[Grätzel, M. (2001). Nature (London), 414, 338-344.]); Haga et al. (2000[Haga, M., Hong, H., Shiozawa, Y., Kawata, Y., Monjushiro, H., Fukuo, T. & Arakawa, R. (2000). Inorg. Chem. 39, 4566-4573.]); Lu, Tu, Hou et al. (2010[Lu, N., Tu, W. H., Hou, H. C., Lin, C. T., Li, C. K. & Liu, L. K. (2010). Polyhedron, 29, 1123-1129.]); Lu, Tu, Wen et al. (2010[Lu, N., Tu, W. H., Wen, Y. S., Liu, L. K., Chou, C. Y. & Jiang, J. C. (2010). CrystEngComm, 26, 538-542.]); Lu et al. (2007[Lu, N., Lin, Y. C., Chen, J. Y., Chen, T. C., Chen, S. C., Wen, Y. S. & Liu, L. K. (2007). Polyhedron, 26, 3045-3053.]). For C—H⋯H—C inter­actions, see: Wolstenholme & Cameron (2006[Wolstenholme, D. J. & Cameron, T. S. (2006). J. Phys. Chem. A, 110, 8970-8978.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14F6N2O2

  • Mr = 380.29

  • Triclinic, [P \overline 1]

  • a = 4.6573 (2) Å

  • b = 5.6842 (3) Å

  • c = 15.7273 (8) Å

  • α = 94.298 (3)°

  • β = 98.473 (3)°

  • γ = 105.689 (4)°

  • V = 393.57 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.2 × 0.14 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.664, Tmax = 0.746

  • 6627 measured reflections

  • 1577 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.104

  • S = 1.12

  • 1577 reflections

  • 146 parameters

  • All H-atom parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N,C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Ni 0.925 (17) 2.464 (18) 2.809 (2) 102.3 (12)
C6—H6ACgii 0.990 (19) 2.59 3.5089 (16) 155
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Bipyridine (bpy) ligand is among the most versatile ligands in organometallics. It has been extensively used to prepare various chelating compounds with different metal ions (Haga et al., 2000; Bain et al., 1989; Grätzel, 2001; Chambron & Sauvage, 1987, 1986). Structures with the motif {[4,4'-bis(RfCH2OCH2) -2,2'-bpy]MCl2, M = Pd or Pt} are interesting and reveal the blue shifting C–H···F–C hydrogen bonding (Lu, Tu, Hou et al., 2010; Lu, Tu, Wen et al., 2010; Lu, et al., 2007). However, the X-ray crystal structure of poly-fluorinated bpy ligands still remains elusive until recent elucidation of the structure on simplest 4,4'-bis(CF3CH2OCH2)-2,2'-bpy (Lu, Tu, Wu et al., 2010). Reported here is the significantly different crystal structure on its 5,5'-isomer. They vary only on the positions of two identical substituents, yet features of packing in the solid state show little in similarity.

The title compound I is centro-symmetric and crystallizes in the space group of P-1, one half of the molecule being crystallographically independent. Two structural features of the title compound I are the planarity and the anti conformation of connected pyridyl units. The bpy exhibits a planar core and the N–C3–C3i–Ni torsion angle is 180°, similar to the values in its 4,4'-isomer (Lu, Tu, Wu et al., 2010). Also noticed is the intramolecular weak hydrogen bonding interaction on C4–H4···Ni, as suggested by the short H4···Ni distance of 2.46 (2) Å and the C4–H4···Ni angle of 102 (1)° (see Fig. 1).

Although both the title compound and its 4,4'-isomer (Lu, Tu, Wu et al., 2010) have the same molecular formula and their bpy cores are similarly planar, their identical side chains, positioned differently, show very different intermolecular interactions and packing methods. The intramolecular C–H···O and intermolecular C–H···N and C–H···F interactions, which were observed in 4,4'-bis(2,2,2-trifluoroethoxymethyl)-2,2'-bipyridine (Lu, Tu, Wu et al., 2010), are missing in I. There is almost no intramolecular C–H···O interaction in I, judged from the C5–C1–C6–O torsion angle of 41.5 (2)°, which deviates significantly from that reported for such a hydrogen-bonding system. In its 4,4'-isomer, the corresponding H3···O8 distance is 2.52 (1) Å and the C3–C4–C7–O8 torsion angle measures -21.9 (1)°.

Instead of intermolecular C–H···N and C–H···F interactions, stabilization of the structure of I is likely due to effective intermolecular C–H..π and F···F interactions. The π-π stacking is the driving force towards crystallization, with two adjacent bpy layers at a distance of 3.512 (2) Å. On top of this, the C6–H6A..π hydrogen bonding interaction has been observed between the methylene H atom and one of the adjacent bpy rings on the a-translation related direction. As shown in Table 1, the distance of H6A to bpy plane is 2.57 (2) Å, making less than 10° with the vector of H6A to centroid of the bpy ring. The terminal CF3 groups shown in Fig. 2 are then fixed in crystalline state by the F···F interaction between two adjacent stacking layers. The F1···F3' distance is 2.857 (2) Å, the C8–F1···F3' angle 101.4 (1)°, and the C8–F3···F1" angle 166.0 (1)°.

In particular, the weak C4–H4···H4'–C4' (Wolstenholme et al., 2006) interaction shown in Fig. 2 has also been identified with H4···H4' distance of 2.32 (3) Å and the C4–H4···H4' angle of 113 (2)°. The C4–H4···H4'–C4' interaction connects two neighboring π stacking piles. Inside one π stacking pile, the π..π stacking distance between consecutive layers is 3.512 (2) Å, whereas the shifting step between two neighboring π stacking piles is 1.448 (2) Å. It is believed that this rare C–H···H–C supramolecular interaction seems to be derived from the dipole-induced interactions, defined by Wolstenholme, on the symmetry-related hydrogen atoms.

Related literature top

For related structures and background [to what?], see: Lu, Tu, Wu et al. (2010); Iyer et al. (2005); Heirtzler et al. (2002); Maury et al. (2001); Vogtle et al. (1990). For background to the bipyridine (bpy) ligand, see: Bain et al. (1989); Chambron & Sauvage (1986, 1987); Grätzel (2001); Haga et al. (2000); Lu, Tu, Hou et al. (2010); Lu, Tu, Wen et al. (2010); Lu et al. (2007). For C—H···H—C interactions, see: Wolstenholme & Cameron (2006).

Experimental top

5,5'-bis(CF3CH2OCH2)-2,2'-bpy, (I), was prepared according to the general procedure described in Lu et al., (2007). The crude product was further purified by vacuum sublimation or chromatography to obtain the title compound as a colorless solid. Full characterization data are listed below.

Analytical data of (I): Yield 76 %, m.p. = 393 K. 1H NMR (500 MHz, d-DMSO, room temperature), δ(ppm) Pyridine ring H: 8.66 s, H6, 2H), 8.39 (d, H4, 3JHH=8.24 Hz, 2H), 7.92 (d, H3, 3JHH=8.24 Hz, 2H), 4.77 (s, bpy-CH2, 4H), 4.17 (q, -OCH2CF3, 3JHF=9.34 Hz, 4H); 19F NMR (470.5 MHz, d-DMSO, room temperature), δ (ppm) -73.1 (t, -CH2CF3, 3JHF = 9.7 Hz, 6F); 13C NMR (126 MHz,d-DMSO, room temperature) δ (ppm) 120.3, 133.1, 136.9, 148.7, 154.7 (s, bpy, 10C), 121.1-127.8 (q, -CF3, 1JCF = 279.6 Hz, 2C), 70.6 (s, bpy-CH2, 2C), 66.8 (q, -CH2CF3, 2JCF = 33.2 Hz, 2C).

GC/MS (M/e) : M+ = 380, (M-C2H3F3O)+ = 281, [M-(C2H3F3O)2]+= 182, (C6H5N)+ = 91.

FT-IR (cm-1): 1601.5, 1553.8, 1469.4, 1360.1 (bpy-ring, m), 1155.8, 1122.6 (CF2 stretch, s).

Recrystallization proceeded with dissolution of I in DMSO to form a saturated solution, to which the water overlayer (5 cm3) was added. Solvent diffusion over a period of ten days at 298 K afforded needle shaped crystals.

Refinement top

The diffraction data were collected at 100K employing a Bruker CCD diffractometer; the structure was solved by successive Fourier maps. All H atoms were located at the end of anisotropic refinements and refined isotropically to convergence.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of I with displacement ellipsoids at the 50% probability level. [Symmetry code: (i) 1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. The rare C4–H4···H4'–C4' interaction on inversion related molecules; the H4···H4' distance and C4–H4···H4' angle are 2.32 (3) Å and 113 (2) °. [Symmetry code: (ii) 2-x, 1-y, 1-z.]
5,5'-Bis[(2,2,2-trifluoroethoxy)methyl]-2,2'-bipyridine top
Crystal data top
C16H14F6N2O2Z = 1
Mr = 380.29F(000) = 194
Triclinic, P1Dx = 1.605 Mg m3
Dm = 1.53 Mg m3
Dm measured by w/v
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6573 (2) ÅCell parameters from 3201 reflections
b = 5.6842 (3) Åθ = 2.6–27.1°
c = 15.7273 (8) ŵ = 0.15 mm1
α = 94.298 (3)°T = 100 K
β = 98.473 (3)°Prism, colourless
γ = 105.689 (4)°0.2 × 0.14 × 0.12 mm
V = 393.57 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 55
Tmin = 0.664, Tmax = 0.746k = 77
6627 measured reflectionsl = 1919
1577 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.094P]
where P = (Fo2 + 2Fc2)/3
1577 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H14F6N2O2γ = 105.689 (4)°
Mr = 380.29V = 393.57 (3) Å3
Triclinic, P1Z = 1
a = 4.6573 (2) ÅMo Kα radiation
b = 5.6842 (3) ŵ = 0.15 mm1
c = 15.7273 (8) ÅT = 100 K
α = 94.298 (3)°0.2 × 0.14 × 0.12 mm
β = 98.473 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1577 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1348 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.746Rint = 0.024
6627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 1.12Δρmax = 0.29 e Å3
1577 reflectionsΔρmin = 0.27 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.8989 (2)1.22574 (16)0.98212 (6)0.0271 (3)
F21.8270 (2)1.35589 (16)0.85765 (6)0.0299 (3)
F31.4537 (2)1.23169 (17)0.92410 (6)0.0294 (3)
O1.4170 (2)0.88799 (19)0.79273 (7)0.0225 (3)
N0.6609 (3)0.3432 (2)0.58189 (8)0.0173 (3)
C11.1096 (3)0.6201 (3)0.67039 (9)0.0160 (3)
C20.8935 (3)0.3918 (3)0.64727 (10)0.0174 (3)
C30.6289 (3)0.5286 (2)0.53652 (8)0.0144 (3)
C40.8268 (3)0.7658 (3)0.55708 (10)0.0181 (3)
C51.0718 (3)0.8098 (3)0.62300 (10)0.0189 (3)
C61.3693 (3)0.6554 (3)0.74291 (10)0.0187 (3)
C71.6509 (4)0.9271 (3)0.86434 (10)0.0214 (4)
C81.7066 (3)1.1854 (3)0.90685 (10)0.0204 (3)
H20.903 (4)0.259 (4)0.6804 (12)0.025 (5)*
H40.789 (4)0.887 (3)0.5248 (11)0.023 (4)*
H51.215 (4)0.970 (4)0.6343 (12)0.029 (5)*
H6A1.556 (4)0.658 (3)0.7197 (11)0.021 (4)*
H6B1.327 (4)0.527 (3)0.7796 (12)0.024 (4)*
H7A1.594 (4)0.813 (4)0.9065 (12)0.026 (5)*
H7B1.843 (4)0.916 (3)0.8461 (12)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0318 (5)0.0225 (5)0.0219 (5)0.0071 (4)0.0072 (4)0.0029 (4)
F20.0381 (6)0.0217 (5)0.0283 (5)0.0050 (4)0.0051 (4)0.0072 (4)
F30.0266 (5)0.0305 (5)0.0318 (5)0.0125 (4)0.0036 (4)0.0048 (4)
O0.0264 (6)0.0187 (5)0.0205 (6)0.0106 (4)0.0067 (5)0.0044 (4)
N0.0208 (6)0.0119 (6)0.0188 (6)0.0044 (5)0.0024 (5)0.0025 (5)
C10.0161 (7)0.0164 (7)0.0168 (7)0.0063 (6)0.0046 (6)0.0002 (6)
C20.0223 (8)0.0126 (7)0.0182 (7)0.0065 (6)0.0031 (6)0.0027 (5)
C30.0162 (7)0.0125 (7)0.0156 (7)0.0044 (5)0.0054 (6)0.0023 (5)
C40.0208 (7)0.0133 (7)0.0198 (7)0.0035 (6)0.0026 (6)0.0055 (6)
C50.0187 (7)0.0139 (7)0.0217 (8)0.0006 (6)0.0028 (6)0.0022 (6)
C60.0192 (7)0.0156 (7)0.0210 (8)0.0061 (6)0.0015 (6)0.0002 (6)
C70.0236 (8)0.0205 (8)0.0188 (8)0.0084 (6)0.0033 (7)0.0004 (6)
C80.0212 (8)0.0209 (8)0.0183 (7)0.0074 (6)0.0008 (6)0.0015 (6)
Geometric parameters (Å, º) top
F1—C81.3386 (17)C3—C41.396 (2)
F2—C81.3411 (18)C3—C3i1.481 (3)
F3—C81.3347 (18)C4—C51.377 (2)
O—C71.4053 (18)C4—H40.926 (19)
O—C61.4304 (17)C5—H50.96 (2)
N—C21.3322 (19)C6—H6A0.990 (19)
N—C31.3446 (18)C6—H6B0.960 (19)
C1—C51.390 (2)C7—C81.505 (2)
C1—C21.394 (2)C7—H7A0.98 (2)
C1—C61.494 (2)C7—H7B1.00 (2)
C2—H20.96 (2)
C7—O—C6111.24 (11)O—C6—H6A108.1 (10)
C2—N—C3117.65 (12)C1—C6—H6A110.2 (10)
C5—C1—C2117.07 (14)O—C6—H6B109.2 (11)
C5—C1—C6122.24 (13)C1—C6—H6B110.7 (11)
C2—C1—C6120.69 (13)H6A—C6—H6B109.9 (14)
N—C2—C1124.41 (13)O—C7—C8107.27 (12)
N—C2—H2115.6 (11)O—C7—H7A111.5 (11)
C1—C2—H2119.9 (11)C8—C7—H7A108.4 (11)
N—C3—C4122.04 (13)O—C7—H7B111.4 (10)
N—C3—C3i117.10 (15)C8—C7—H7B107.4 (11)
C4—C3—C3i120.85 (15)H7A—C7—H7B110.6 (16)
C5—C4—C3119.25 (13)F3—C8—F1107.01 (12)
C5—C4—H4122.6 (11)F3—C8—F2106.48 (12)
C3—C4—H4118.2 (11)F1—C8—F2107.15 (12)
C4—C5—C1119.49 (14)F3—C8—C7112.67 (13)
C4—C5—H5119.0 (11)F1—C8—C7110.74 (12)
C1—C5—H5121.5 (11)F2—C8—C7112.46 (13)
O—C6—C1108.60 (11)
C3—N—C2—C11.6 (2)C6—C1—C5—C4179.74 (13)
C5—C1—C2—N1.9 (2)C7—O—C6—C1177.45 (12)
C6—C1—C2—N177.87 (13)C5—C1—C6—O41.49 (19)
C2—N—C3—C41.1 (2)C2—C1—C6—O138.72 (14)
C2—N—C3—C3i179.43 (14)C6—O—C7—C8174.02 (13)
N—C3—C4—C53.4 (2)O—C7—C8—F352.09 (17)
C3i—C3—C4—C5177.17 (15)O—C7—C8—F1171.89 (12)
C3—C4—C5—C13.0 (2)O—C7—C8—F268.27 (17)
C2—C1—C5—C40.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Ni0.925 (17)2.464 (18)2.809 (2)102.3 (12)
C6—H6A···Cgii0.990 (19)2.593.5089 (16)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14F6N2O2
Mr380.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.6573 (2), 5.6842 (3), 15.7273 (8)
α, β, γ (°)94.298 (3), 98.473 (3), 105.689 (4)
V3)393.57 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.2 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.664, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
6627, 1577, 1348
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.104, 1.12
No. of reflections1577
No. of parameters146
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Ni0.925 (17)2.464 (18)2.809 (2)102.3 (12)
C6—H6A···Cgii0.990 (19)2.593.5089 (16)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
C—H···π contact for (I); hpd = H-atom-to-ring-plane distance, hcd = H-atom-to-ring-center distance, and sa = slippage angle (angle subtended by the hcd vector to the plane normal). top
hpd(Å)hcd(Å)sa(°)
C6-H6A···πiii2.57 (2)2.59 (2)6.4 (2)
Symmetry code: (iii) x-1, y, z.
 

Acknowledgements

NL thanks the Taiwan NSC for financial support (NSC 98-2113-M- 027-002-MY3). We also thank Mr T. S. Kuo (Department of Chemistry, National Taiwan Normal University, Taiwan) for the assistance with the structure analysis.

References

First citationBain, C. D., Troughton, E. B., Tao, Y., Evall, J., Whitesides, G. M. & Nuzzo, R. G. (1989). J. Am. Chem. Soc. 111, 321–335.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChambron, J.-C. & Sauvage, J.-P. (1986). Tetrahedron Lett. 27, 865–868.  CrossRef CAS Web of Science Google Scholar
First citationChambron, J.-C. & Sauvage, J.-P. (1987). Tetrahedron, 43, 895–904.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrätzel, M. (2001). Nature (London), 414, 338–344.  Web of Science PubMed Google Scholar
First citationHaga, M., Hong, H., Shiozawa, Y., Kawata, Y., Monjushiro, H., Fukuo, T. & Arakawa, R. (2000). Inorg. Chem. 39, 4566–4573.  Web of Science CrossRef CAS Google Scholar
First citationHeirtzler, F., Neuburger, M. & Kulike, K. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 809–820.  Web of Science CSD CrossRef Google Scholar
First citationIyer, V. M., Stoeckli-Evans, H., D'Aléo, A., Cola, L. D. & Belser, P. (2005). Acta Cryst. C61, o259–o261.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLu, N., Lin, Y. C., Chen, J. Y., Chen, T. C., Chen, S. C., Wen, Y. S. & Liu, L. K. (2007). Polyhedron, 26, 3045–3053.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, N., Tu, W. H., Hou, H. C., Lin, C. T., Li, C. K. & Liu, L. K. (2010). Polyhedron, 29, 1123–1129.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, N., Tu, W. H., Wen, Y. S., Liu, L. K., Chou, C. Y. & Jiang, J. C. (2010). CrystEngComm, 26, 538–542.  Web of Science CSD CrossRef Google Scholar
First citationLu, N., Tu, W.-H., Wu, Z.-W., Wen, Y.-S. & Liu, L.-K. (2010). Acta Cryst. C66, o289–o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaury, O., Guegan, J.-P., Renouard, T., Hilton, A., Dupau, P., Sandon, N., Toupet, L. & Le Bozec, H. (2001). New J. Chem. 25, 1553–1566.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogtle, F., Hochberg, R., Kochendorfer, F., Windscheif, P.-M., Volkmann, M. & Jansen, M. (1990). Chem. Ber. 123, 2181–2185.  CrossRef Web of Science Google Scholar
First citationWolstenholme, D. J. & Cameron, T. S. (2006). J. Phys. Chem. A, 110, 8970–8978.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o355-o356
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds