organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o483-o484

Lomefloxacinium picrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 28 December 2010; accepted 18 January 2011; online 26 January 2011)

In the cation of the title compound [systematic name: (RS)-4-(3-carb­oxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydro­quinolin-7-yl)-2-methyl­piperazin-1-ium 2,4,6-trinitro­phenolate], C17H20F2N3O3+·C6H2N3O7, the piper­azine ring adopts a slightly distorted chair conformation and contains a protonated N atom. An intra­molecular O—H⋯O hydrogen bond occurs in the cation. The dihedral angles between the mean planes of the six-atom piperazine ring and the 10-atom fused ring system is 43.3 (5)°. The picrate anion inter­acts with the protonated N atom of an adjacent cation through a bifurcated N—H⋯(O,O) three-center hydrogen bond. Strong N—H⋯O hydrogen bonds in concert with weak ππ stacking inter­actions [centroid–centroid distance = 3.6460 (14) Å] dominate the crystal packing, creating a two-dimensional network structure along [011].

Related literature

For background to lomefloxacin, see: Rubinstein et al. (2001[Rubinstein, E. (2001). Chemotherapy, 47, 3-8.]). For related structures, see: Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738-o1739.], 2010a[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010a). Acta Cryst. E66, o411-o412.],b[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010b). Acta Cryst. E66, o347-o348.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20F2N3O3+·C6H2N3O7

  • Mr = 580.47

  • Triclinic, [P \overline 1]

  • a = 10.9314 (4) Å

  • b = 11.6748 (4) Å

  • c = 12.0530 (4) Å

  • α = 92.969 (3)°

  • β = 115.555 (3)°

  • γ = 109.852 (3)°

  • V = 1269.14 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.13 mm−1

  • T = 123 K

  • 0.44 × 0.33 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.838, Tmax = 1.000

  • 8890 measured reflections

  • 5002 independent reflections

  • 4423 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.198

  • S = 1.06

  • 5002 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.74 2.520 (3) 153
N3—H3A⋯O2i 0.92 2.09 2.984 (3) 164
N3—H3B⋯O1B 0.92 1.81 2.714 (3) 166
N3—H3B⋯O2B 0.92 2.52 2.993 (3) 113
Symmetry code: (i) x+1, y+1, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lomefloxacin hydrochloride is a fluoroquinolone antibiotic used to treat bacterial infections including bronchitis and urinary tract infections. It is also used to prevent urinary tract infections prior to surgery. Lomefloxacin, chemically (RS)-1-ethyl-6,8-difluoro-7-(3-methylpiperazin- 1-yl)-4-oxo-quinoline-3-carboxylic acid, is associated with phototoxicity and adverse central nervous system adverse effects (Rubinstein et al., 2001). Recently, the crystal structures of propiverine picrate (Jasinski et al., 2009), imatinibium dipicrate (Jasinski et al., 2010a) and chlorimipraminium picrate (Jasinski et al., 2010b) have been reported. In continuation of our work on picrates of biologically active compounds, this paper reports the crystal structure of (I), obtained by the interaction of picric acid and lomefloxacin.

In the crystal structure of the title compound, there is one cation-anion pair in the asymmetric unit (Fig. 1). One N atom in the 6-membered piperazine ring (N2/C10/C11/N3/C13/C14) in the lomefloxacinium cation is protonated which adopts a slightly distorted chair conformation with puckering parameters Q, θ and ϕ of 0.565 (3) Å, 178.0 (3)° and 109 (58)° (Cremer & Pople, 1975). The dihedral angle between the mean planes of the piperazine ring (N2/C10/C11/N3/C13/C14) and the 10-atom ring system of the quinolone group is 43.3 (5)°. The picrate anion interacts with the protonated N atom of an adjacent cation through a bifurcated N—H···O three-center hydrogen bond. The dihedral angle between the mean planes of the anion benzene and cation piperizine and quinoline rings is 46.2 (9)° and 7.2 (2)°, respectively. The mean planes of the two o-NO2 and single p-NO2 groups in the picrate anion are twisted by, 37.9 (5)°, 57.0 (8)° [using predominant component (0.743 (4), O6A & O7A, of disordered O atoms] and 2.5 (1)° with respect to the mean planes of the 6-membered benzene ring. Bond distances (Allen et al., 1987) and angles are in normal ranges. Strong N—H···O hydrogen bonds in concert with weak ππ stacking interactions (Table 2) dominate the crystal packing creating a 2-D network along [011] (Fig. 2).

Related literature top

For background to lomefloxacin [systematic name: (RS)-1-ethyl-6,8-difluoro-7-(3-methylpiperazin-1-yl)-4-oxo-quinoline-3-carboxylic acid], see: Rubinstein et al. (2001). For related structures, see: Jasinski et al. (2009, 2010a,b). For puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

Lomefloxacin hydrochloride (3.87 g, 0.01 mol) of picric acid (2.99 g, 0.01 mol) was dissolved in 15 ml of dimethyl formamide. The solution was stirred for 15 min over a heating magnetic stirrer at 335 K. The resulting solution was kept aside at room temperature. X-ray quality crystals were grown from slow evaporation of dimethyl formamide solution (m.p.: 489 – 491 K).

Refinement top

The O atoms on one of the o-nitrate groups in the picrate anion are disordered [occupancy O6A and O7A = 0.762 (4); O6B and O7B = 0.238 (4)]. The N3B–O6A and N3B–O6B dstances were fixed at 1.23Å. The O6A–O7A and O6B–O7B angular distances were fixed at 2.15Å. All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3), 0.92Å (NH), or 0.84 (OH). Isotropic displacement parameters for these atoms were set to 1.20 times (NH), 1.45 (OH), 1.19-1.20 (CH, CH2) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate an intramolecular O—H···O hydrogen bond in the cation. and a bifurcated N—H···(O,O) intermolecular three-centered hydrogen bond formed between the protonated N atom from the lomefloxacinium cation and the picrate anion. In the picrate anion only the predominate disordered O6A and O7A (0.762 (4)) atoms are displayed.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate N—H···O hydrogen bonds creating a 2-D network along [011].
(RS)-4-(3-carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)- 2-methylpiperazin-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C17H20F2N3O3+·C6H2N3O7Z = 2
Mr = 580.47F(000) = 600
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.9314 (4) ÅCell parameters from 6216 reflections
b = 11.6748 (4) Åθ = 4.7–73.8°
c = 12.0530 (4) ŵ = 1.13 mm1
α = 92.969 (3)°T = 123 K
β = 115.555 (3)°Prism, pale yellow
γ = 109.852 (3)°0.44 × 0.33 × 0.19 mm
V = 1269.14 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5002 independent reflections
Radiation source: Enhance (Cu) X-ray Source4423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.5081 pixels mm-1θmax = 74.0°, θmin = 4.7°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1414
Tmin = 0.838, Tmax = 1.000l = 1511
8890 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0848P)2 + 0.7775P]
where P = (Fo2 + 2Fc2)/3
5002 reflections(Δ/σ)max = 0.011
373 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C17H20F2N3O3+·C6H2N3O7γ = 109.852 (3)°
Mr = 580.47V = 1269.14 (8) Å3
Triclinic, P1Z = 2
a = 10.9314 (4) ÅCu Kα radiation
b = 11.6748 (4) ŵ = 1.13 mm1
c = 12.0530 (4) ÅT = 123 K
α = 92.969 (3)°0.44 × 0.33 × 0.19 mm
β = 115.555 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5002 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
4423 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 1.000Rint = 0.018
8890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
5002 reflectionsΔρmin = 0.59 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.6041 (2)0.51552 (14)0.14890 (17)0.0702 (5)
F20.5633 (2)0.21345 (13)0.38653 (13)0.0626 (5)
O10.1693 (3)0.2597 (2)0.1643 (2)0.0873 (8)
O20.1665 (3)0.1195 (2)0.2795 (2)0.0762 (7)
H20.19480.04130.26700.114*
O30.3100 (2)0.1106 (2)0.17445 (17)0.0677 (6)
N10.4330 (2)0.01780 (17)0.16877 (19)0.0436 (5)
N20.6695 (3)0.46292 (19)0.3820 (2)0.0533 (6)
N30.8631 (2)0.67661 (19)0.58301 (19)0.0496 (5)
H3A0.94700.74980.62080.060*
H3B0.82070.66490.63520.060*
C10.3493 (3)0.0691 (2)0.0590 (2)0.0482 (6)
H1A0.32020.15450.06310.058*
C20.3035 (3)0.0441 (2)0.0569 (2)0.0495 (6)
C30.3465 (3)0.0821 (3)0.0690 (2)0.0485 (6)
C40.4355 (2)0.1778 (2)0.0492 (2)0.0418 (5)
C50.4789 (3)0.3043 (2)0.0451 (2)0.0478 (6)
H5A0.45420.32710.03380.057*
C60.5558 (3)0.3938 (2)0.1536 (2)0.0484 (6)
C70.5904 (3)0.3680 (2)0.2737 (2)0.0435 (5)
C80.5437 (3)0.2414 (2)0.2746 (2)0.0430 (5)
C90.4727 (2)0.1443 (2)0.1660 (2)0.0391 (5)
C100.6250 (3)0.5649 (3)0.3947 (3)0.0626 (8)
H10A0.57170.54820.44480.075*
H10B0.55620.56900.30980.075*
C110.7563 (3)0.6884 (2)0.4582 (3)0.0592 (7)
H11A0.80600.70510.40440.071*
C120.7179 (5)0.7965 (3)0.4768 (4)0.0860 (12)
H12A0.80830.87370.51710.129*
H12B0.67080.78300.53090.129*
H12C0.64950.80380.39460.129*
C130.9051 (3)0.5702 (3)0.5682 (3)0.0572 (7)
H13A0.95880.58610.51840.069*
H13B0.97230.56370.65260.069*
C140.7718 (3)0.4506 (2)0.5035 (3)0.0604 (8)
H14A0.80100.38180.48990.072*
H14B0.72290.43030.55670.072*
C150.4738 (3)0.0307 (2)0.2860 (3)0.0547 (6)
H15A0.56820.03260.35490.066*
H15B0.48970.10730.27070.066*
C160.3574 (4)0.0604 (3)0.3270 (3)0.0721 (9)
H16A0.38260.10230.39700.108*
H16B0.26120.11570.25590.108*
H16C0.35220.01730.35500.108*
C170.2083 (3)0.1516 (3)0.1695 (3)0.0635 (8)
O1B0.7431 (2)0.60714 (18)0.73716 (18)0.0620 (5)
O2B0.9064 (3)0.8637 (2)0.7905 (2)0.0755 (7)
O3B0.8490 (2)0.94720 (17)0.9138 (2)0.0563 (5)
O4B1.0085 (4)0.8183 (3)1.3141 (2)0.0968 (9)
O5B0.9630 (4)0.6231 (3)1.3095 (2)0.0926 (8)
O6A0.6327 (5)0.3366 (3)0.8566 (5)0.1035 (10)0.762 (4)
O7A0.7909 (5)0.3882 (3)0.7890 (4)0.1035 (10)0.762 (4)
O6B0.6273 (9)0.3566 (9)0.7639 (9)0.1035 (10)0.238 (4)
O7B0.8257 (10)0.3560 (9)0.9080 (10)0.1035 (10)0.238 (4)
N1B0.8724 (2)0.86209 (18)0.8747 (2)0.0466 (5)
N2B0.9639 (3)0.7109 (3)1.2577 (3)0.0683 (7)
N3B0.7447 (3)0.4116 (2)0.8604 (3)0.0675 (7)
C1B0.7998 (3)0.6332 (2)0.8548 (2)0.0476 (6)
C2B0.8633 (3)0.7566 (2)0.9345 (2)0.0443 (5)
C3B0.9121 (3)0.7818 (2)1.0621 (2)0.0482 (6)
H3BA0.94820.86491.10840.058*
C4B0.9077 (3)0.6843 (3)1.1220 (3)0.0544 (6)
C5B0.8520 (3)0.5620 (3)1.0552 (3)0.0593 (7)
H5BA0.84920.49531.09720.071*
C6B0.8019 (3)0.5399 (2)0.9289 (3)0.0544 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0779 (11)0.0377 (8)0.0661 (10)0.0129 (8)0.0173 (9)0.0181 (7)
F20.0898 (12)0.0390 (8)0.0360 (7)0.0139 (8)0.0201 (7)0.0050 (6)
O10.0778 (16)0.0513 (13)0.0785 (16)0.0096 (11)0.0083 (12)0.0238 (11)
O20.0637 (13)0.0804 (15)0.0460 (11)0.0075 (12)0.0134 (10)0.0153 (10)
O30.0677 (13)0.0764 (14)0.0347 (9)0.0175 (11)0.0137 (9)0.0042 (9)
N10.0435 (10)0.0321 (9)0.0418 (10)0.0140 (8)0.0110 (8)0.0012 (8)
N20.0547 (12)0.0340 (10)0.0436 (11)0.0187 (9)0.0010 (9)0.0036 (8)
N30.0522 (12)0.0372 (10)0.0396 (10)0.0137 (9)0.0098 (9)0.0036 (8)
C10.0421 (12)0.0350 (11)0.0525 (14)0.0124 (10)0.0141 (11)0.0045 (10)
C20.0391 (12)0.0476 (14)0.0442 (13)0.0125 (10)0.0111 (10)0.0091 (10)
C30.0392 (12)0.0571 (15)0.0373 (12)0.0158 (11)0.0123 (10)0.0010 (10)
C40.0376 (11)0.0427 (12)0.0350 (11)0.0142 (9)0.0111 (9)0.0023 (9)
C50.0461 (13)0.0479 (13)0.0395 (12)0.0169 (11)0.0133 (10)0.0124 (10)
C60.0460 (13)0.0344 (11)0.0507 (14)0.0123 (10)0.0139 (11)0.0123 (10)
C70.0384 (11)0.0345 (11)0.0399 (12)0.0117 (9)0.0069 (9)0.0007 (9)
C80.0448 (12)0.0368 (11)0.0331 (11)0.0127 (9)0.0098 (9)0.0037 (9)
C90.0371 (11)0.0337 (11)0.0377 (11)0.0129 (9)0.0120 (9)0.0033 (9)
C100.0559 (15)0.0452 (14)0.0604 (16)0.0235 (12)0.0049 (13)0.0038 (12)
C110.0684 (17)0.0419 (13)0.0485 (14)0.0221 (13)0.0131 (13)0.0025 (11)
C120.109 (3)0.0548 (18)0.071 (2)0.046 (2)0.015 (2)0.0017 (15)
C130.0565 (15)0.0496 (14)0.0442 (13)0.0240 (12)0.0056 (11)0.0034 (11)
C140.0648 (17)0.0407 (13)0.0462 (14)0.0229 (12)0.0017 (12)0.0015 (11)
C150.0656 (16)0.0363 (12)0.0500 (14)0.0222 (12)0.0160 (12)0.0106 (10)
C160.082 (2)0.0591 (17)0.0626 (18)0.0180 (16)0.0319 (17)0.0185 (14)
C170.0458 (14)0.0654 (19)0.0528 (16)0.0132 (13)0.0113 (12)0.0158 (13)
O1B0.0670 (12)0.0486 (10)0.0480 (10)0.0090 (9)0.0207 (9)0.0009 (8)
O2B0.128 (2)0.0528 (12)0.0654 (13)0.0362 (13)0.0615 (14)0.0211 (10)
O3B0.0553 (10)0.0428 (9)0.0721 (12)0.0245 (8)0.0280 (9)0.0123 (8)
O4B0.126 (2)0.100 (2)0.0534 (13)0.0370 (18)0.0404 (15)0.0133 (13)
O5B0.122 (2)0.119 (2)0.0731 (15)0.0732 (19)0.0545 (16)0.0567 (16)
O6A0.123 (2)0.0541 (13)0.137 (3)0.0198 (13)0.080 (2)0.0015 (14)
O7A0.123 (2)0.0541 (13)0.137 (3)0.0198 (13)0.080 (2)0.0015 (14)
O6B0.123 (2)0.0541 (13)0.137 (3)0.0198 (13)0.080 (2)0.0015 (14)
O7B0.123 (2)0.0541 (13)0.137 (3)0.0198 (13)0.080 (2)0.0015 (14)
N1B0.0487 (11)0.0368 (10)0.0450 (11)0.0152 (9)0.0163 (9)0.0070 (8)
N2B0.0743 (17)0.087 (2)0.0550 (14)0.0398 (15)0.0343 (13)0.0262 (14)
N3B0.0766 (17)0.0369 (12)0.0908 (19)0.0209 (12)0.0430 (15)0.0145 (12)
C1B0.0467 (13)0.0384 (12)0.0545 (14)0.0144 (10)0.0239 (11)0.0086 (10)
C2B0.0450 (12)0.0389 (12)0.0475 (13)0.0167 (10)0.0208 (10)0.0114 (10)
C3B0.0479 (13)0.0458 (13)0.0495 (13)0.0180 (11)0.0229 (11)0.0088 (10)
C4B0.0588 (15)0.0616 (16)0.0507 (14)0.0279 (13)0.0291 (13)0.0209 (12)
C5B0.0689 (17)0.0520 (15)0.0729 (19)0.0294 (14)0.0420 (15)0.0291 (14)
C6B0.0562 (15)0.0409 (13)0.0667 (17)0.0184 (11)0.0306 (13)0.0138 (12)
Geometric parameters (Å, º) top
F1—C61.351 (3)C12—H12B0.9800
F2—C81.348 (3)C12—H12C0.9800
O1—C171.202 (4)C13—C141.485 (4)
O2—C171.323 (4)C13—H13A0.9900
O2—H20.8400C13—H13B0.9900
O3—C31.258 (3)C14—H14A0.9900
N1—C11.343 (3)C14—H14B0.9900
N1—C91.397 (3)C15—C161.499 (5)
N1—C151.492 (3)C15—H15A0.9900
N2—C71.381 (3)C15—H15B0.9900
N2—C101.455 (3)C16—H16A0.9800
N2—C141.460 (3)C16—H16B0.9800
N3—C131.490 (3)C16—H16C0.9800
N3—C111.504 (3)O1B—C1B1.248 (3)
N3—H3A0.9200O2B—N1B1.221 (3)
N3—H3B0.9200O3B—N1B1.226 (3)
C1—C21.351 (4)O4B—N2B1.218 (4)
C1—H1A0.9500O5B—N2B1.227 (4)
C2—C31.422 (4)O6A—N3B1.219 (3)
C2—C171.489 (3)O7A—N3B1.2298 (19)
C3—C41.459 (3)O6B—N3B1.219 (5)
C4—C51.400 (4)O7B—N3B1.234 (2)
C4—C91.405 (3)N1B—C2B1.455 (3)
C5—C61.350 (4)N2B—C4B1.449 (4)
C5—H5A0.9500N3B—C6B1.451 (3)
C6—C71.407 (4)C1B—C2B1.443 (3)
C7—C81.392 (3)C1B—C6B1.444 (4)
C8—C91.405 (3)C2B—C3B1.370 (4)
C10—C111.503 (4)C3B—C4B1.377 (4)
C10—H10A0.9900C3B—H3BA0.9500
C10—H10B0.9900C4B—C5B1.388 (4)
C11—C121.493 (4)C5B—C6B1.351 (4)
C11—H11A1.0000C5B—H5BA0.9500
C12—H12A0.9800
C17—O2—H2109.5C14—C13—N3110.8 (2)
C1—N1—C9119.0 (2)C14—C13—H13A109.5
C1—N1—C15116.0 (2)N3—C13—H13A109.5
C9—N1—C15125.02 (19)C14—C13—H13B109.5
C7—N2—C10121.8 (2)N3—C13—H13B109.5
C7—N2—C14122.7 (2)H13A—C13—H13B108.1
C10—N2—C14112.8 (2)N2—C14—C13109.3 (2)
C13—N3—C11112.07 (19)N2—C14—H14A109.8
C13—N3—H3A109.2C13—C14—H14A109.8
C11—N3—H3A109.2N2—C14—H14B109.8
C13—N3—H3B109.2C13—C14—H14B109.8
C11—N3—H3B109.2H14A—C14—H14B108.3
H3A—N3—H3B107.9N1—C15—C16112.5 (2)
N1—C1—C2124.9 (2)N1—C15—H15A109.1
N1—C1—H1A117.5C16—C15—H15A109.1
C2—C1—H1A117.5N1—C15—H15B109.1
C1—C2—C3120.0 (2)C16—C15—H15B109.1
C1—C2—C17118.2 (3)H15A—C15—H15B107.8
C3—C2—C17121.8 (3)C15—C16—H16A109.5
O3—C3—C2122.7 (2)C15—C16—H16B109.5
O3—C3—C4121.5 (3)H16A—C16—H16B109.5
C2—C3—C4115.8 (2)C15—C16—H16C109.5
C5—C4—C9120.0 (2)H16A—C16—H16C109.5
C5—C4—C3119.2 (2)H16B—C16—H16C109.5
C9—C4—C3120.7 (2)O1—C17—O2121.1 (3)
C6—C5—C4119.9 (2)O1—C17—C2124.3 (3)
C6—C5—H5A120.1O2—C17—C2114.5 (3)
C4—C5—H5A120.1O2B—N1B—O3B122.9 (2)
C5—C6—F1119.3 (2)O2B—N1B—C2B118.9 (2)
C5—C6—C7123.6 (2)O3B—N1B—C2B118.1 (2)
F1—C6—C7117.2 (2)O4B—N2B—O5B123.5 (3)
N2—C7—C8123.3 (2)O4B—N2B—C4B118.7 (3)
N2—C7—C6121.4 (2)O5B—N2B—C4B117.9 (3)
C8—C7—C6115.2 (2)O6A—N3B—O7A121.6 (3)
F2—C8—C7116.6 (2)O6B—N3B—O7B119.2 (6)
F2—C8—C9119.6 (2)O6B—N3B—C6B126.3 (5)
C7—C8—C9123.8 (2)O6A—N3B—C6B117.5 (3)
N1—C9—C4119.3 (2)O7A—N3B—C6B119.2 (3)
N1—C9—C8123.4 (2)O7B—N3B—C6B114.5 (5)
C4—C9—C8117.2 (2)O1B—C1B—C2B125.8 (2)
N2—C10—C11111.5 (2)O1B—C1B—C6B123.3 (2)
N2—C10—H10A109.3C2B—C1B—C6B110.8 (2)
C11—C10—H10A109.3C3B—C2B—C1B124.9 (2)
N2—C10—H10B109.3C3B—C2B—N1B117.3 (2)
C11—C10—H10B109.3C1B—C2B—N1B117.8 (2)
H10A—C10—H10B108.0C2B—C3B—C4B118.7 (2)
C12—C11—C10114.0 (3)C2B—C3B—H3BA120.7
C12—C11—N3110.5 (2)C4B—C3B—H3BA120.7
C10—C11—N3108.1 (2)C3B—C4B—C5B121.3 (3)
C12—C11—H11A108.0C3B—C4B—N2B119.0 (3)
C10—C11—H11A108.0C5B—C4B—N2B119.7 (3)
N3—C11—H11A108.0C6B—C5B—C4B118.5 (3)
C11—C12—H12A109.5C6B—C5B—H5BA120.7
C11—C12—H12B109.5C4B—C5B—H5BA120.7
H12A—C12—H12B109.5C5B—C6B—C1B125.7 (3)
C11—C12—H12C109.5C5B—C6B—N3B117.9 (3)
H12A—C12—H12C109.5C1B—C6B—N3B116.4 (3)
H12B—C12—H12C109.5
C9—N1—C1—C22.6 (4)C13—N3—C11—C12179.5 (3)
C15—N1—C1—C2178.6 (2)C13—N3—C11—C1055.1 (3)
N1—C1—C2—C31.4 (4)C11—N3—C13—C1457.0 (3)
N1—C1—C2—C17178.7 (2)C7—N2—C14—C13140.2 (3)
C1—C2—C3—O3178.3 (2)C10—N2—C14—C1357.9 (4)
C17—C2—C3—O31.6 (4)N3—C13—C14—N256.2 (3)
C1—C2—C3—C42.2 (4)C1—N1—C15—C1685.8 (3)
C17—C2—C3—C4177.9 (2)C9—N1—C15—C1692.9 (3)
O3—C3—C4—C51.2 (4)C1—C2—C17—O10.1 (4)
C2—C3—C4—C5178.3 (2)C3—C2—C17—O1179.8 (3)
O3—C3—C4—C9178.6 (2)C1—C2—C17—O2179.2 (3)
C2—C3—C4—C90.9 (3)C3—C2—C17—O20.9 (4)
C9—C4—C5—C60.3 (4)O1B—C1B—C2B—C3B173.3 (3)
C3—C4—C5—C6177.1 (2)C6B—C1B—C2B—C3B3.2 (4)
C4—C5—C6—F1176.3 (2)O1B—C1B—C2B—N1B4.6 (4)
C4—C5—C6—C73.2 (4)C6B—C1B—C2B—N1B178.8 (2)
C10—N2—C7—C8129.4 (3)O2B—N1B—C2B—C3B142.1 (3)
C14—N2—C7—C830.8 (4)O3B—N1B—C2B—C3B36.0 (3)
C10—N2—C7—C652.8 (4)O2B—N1B—C2B—C1B39.8 (3)
C14—N2—C7—C6146.9 (3)O3B—N1B—C2B—C1B142.1 (2)
C5—C6—C7—N2180.0 (2)C1B—C2B—C3B—C4B3.3 (4)
F1—C6—C7—N20.4 (4)N1B—C2B—C3B—C4B178.8 (2)
C5—C6—C7—C82.0 (4)C2B—C3B—C4B—C5B1.6 (4)
F1—C6—C7—C8177.5 (2)C2B—C3B—C4B—N2B177.8 (2)
N2—C7—C8—F28.0 (4)O4B—N2B—C4B—C3B2.6 (4)
C6—C7—C8—F2174.1 (2)O5B—N2B—C4B—C3B177.9 (3)
N2—C7—C8—C9175.2 (2)O4B—N2B—C4B—C5B178.0 (3)
C6—C7—C8—C92.7 (4)O5B—N2B—C4B—C5B1.6 (4)
C1—N1—C9—C45.6 (3)C3B—C4B—C5B—C6B0.2 (4)
C15—N1—C9—C4175.7 (2)N2B—C4B—C5B—C6B179.2 (3)
C1—N1—C9—C8171.8 (2)C4B—C5B—C6B—C1B0.4 (5)
C15—N1—C9—C86.9 (4)C4B—C5B—C6B—N3B179.7 (3)
C5—C4—C9—N1177.8 (2)O1B—C1B—C6B—C5B174.9 (3)
C3—C4—C9—N14.8 (3)C2B—C1B—C6B—C5B1.8 (4)
C5—C4—C9—C84.6 (3)O1B—C1B—C6B—N3B5.0 (4)
C3—C4—C9—C8172.8 (2)C2B—C1B—C6B—N3B178.3 (2)
F2—C8—C9—N16.6 (4)O6B—N3B—C6B—C5B130.8 (9)
C7—C8—C9—N1176.6 (2)O6A—N3B—C6B—C5B65.1 (5)
F2—C8—C9—C4170.8 (2)O7A—N3B—C6B—C5B129.3 (4)
C7—C8—C9—C45.9 (4)O7B—N3B—C6B—C5B48.8 (7)
C7—N2—C10—C11139.1 (3)O6B—N3B—C6B—C1B49.1 (9)
C14—N2—C10—C1158.8 (4)O6A—N3B—C6B—C1B114.8 (4)
N2—C10—C11—C12178.6 (3)O7A—N3B—C6B—C1B50.8 (5)
N2—C10—C11—N355.3 (3)O7B—N3B—C6B—C1B131.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.742.520 (3)153
N3—H3A···O2i0.922.092.984 (3)164
N3—H3B···O1B0.921.812.714 (3)166
N3—H3B···O2B0.922.522.993 (3)113
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H20F2N3O3+·C6H2N3O7
Mr580.47
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)10.9314 (4), 11.6748 (4), 12.0530 (4)
α, β, γ (°)92.969 (3), 115.555 (3), 109.852 (3)
V3)1269.14 (8)
Z2
Radiation typeCu Kα
µ (mm1)1.13
Crystal size (mm)0.44 × 0.33 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.838, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8890, 5002, 4423
Rint0.018
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.198, 1.06
No. of reflections5002
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.59

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.742.520 (3)153
N3—H3A···O2i0.922.092.984 (3)164
N3—H3B···O1B0.921.812.714 (3)166
N3—H3B···O2B0.922.522.993 (3)113
Symmetry code: (i) x+1, y+1, z+1.
Cg···Cg π stacking interactions, Cg1 is the centroid of ring N1/C1/C2/C3/C4/C9; [Symmetry code: (i) 1-x, -y, -z] top
CgI···CgJCg···Cg (Å)CgI Perp (Å)Cgj Perp (Å)Slippage (Å)
Cg1···Cg1i3.6460 (14)3.3385 (10)3.3385 (10)1.46 (6)
 

Acknowledgements

MSS thanks the University of Mysore for the research facilities and HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738–o1739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010a). Acta Cryst. E66, o411–o412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010b). Acta Cryst. E66, o347–o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRubinstein, E. (2001). Chemotherapy, 47, 3–8.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o483-o484
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds