organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 5 January 2011; accepted 15 January 2011; online 22 January 2011)

In the title compound, C21H21FO2S, the cyclo­hexyl ring adopts a classic chair conformation. The 4-fluoro­phenyl ring makes a dihedral angle of 31.05 (6)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked through weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For our previous structural studies of related 2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan derivatives, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2649.], 2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o44.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o104.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21FO2S

  • Mr = 356.44

  • Orthorhombic, P b c a

  • a = 16.4070 (6) Å

  • b = 11.3751 (4) Å

  • c = 18.7490 (7) Å

  • V = 3499.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.26 × 0.17 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.972

  • 17170 measured reflections

  • 4007 independent reflections

  • 3190 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 0.93

  • 4007 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C9–C14 4-fluoro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯O2i 0.98 2.51 3.468 (2) 166
C13—H13⋯Cg1i 0.95 2.55 3.427 (2) 153
C20—H20ACg2ii 0.99 2.73 3.537 (2) 140
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds involving a benzofuran ring system have aroused much attention owing to their pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As part of our ongoing program of the substituent effect on the solid state structures of 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009, 2010a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.017 (1) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form. The 4-fluorophenyl ring makes a dihedral angle of 31.05 (6)° with the mean plane of the benzofuran ring. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O interaction between a methyl H atom and the oxygen of the SO unit (Table 1; C21—H21B···O2i). The crystal packing (Fig. 2) is further stabilized by intermolecular C–H···π interactions; the first one between a 4-fluorophenyl H atom and the furan ring (Table 1; C13—H13···Cg1i, Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring), and the second one between a cyclohexyl H atom and the 4-fluorophenyl ring (Table 1; C20—H20A···Cg2ii, Cg2 is the centriod of the C9-C14 4-fluorophenyl ring).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For our previous structural studies of related 2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-(4-fluorophenyl)-3-methylsulfanyl-1-benzofuran (306 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 464–465 K; Rf = 0.54 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1/2, y - 1/2, z; (ii) - x + 1, - y , - z + 1 ; (iii) - x +1/2, y + 1/2, z.]
5-Cyclohexyl-2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C21H21FO2SF(000) = 1504
Mr = 356.44Dx = 1.353 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4239 reflections
a = 16.4070 (6) Åθ = 2.2–27.3°
b = 11.3751 (4) ŵ = 0.21 mm1
c = 18.7490 (7) ÅT = 173 K
V = 3499.1 (2) Å3Block, colourless
Z = 80.26 × 0.17 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4007 independent reflections
Radiation source: rotating anode3190 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.2°
ϕ and ω scansh = 2116
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.949, Tmax = 0.972l = 2423
17170 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.112H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0621P)2 + 1.9145P]
where P = (Fo2 + 2Fc2)/3
4007 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C21H21FO2SV = 3499.1 (2) Å3
Mr = 356.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.4070 (6) ŵ = 0.21 mm1
b = 11.3751 (4) ÅT = 173 K
c = 18.7490 (7) Å0.26 × 0.17 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3190 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.972Rint = 0.041
17170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.93Δρmax = 0.32 e Å3
4007 reflectionsΔρmin = 0.44 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22808 (2)0.03255 (4)0.46770 (2)0.02460 (12)
F10.19074 (7)0.29503 (10)0.76480 (6)0.0432 (3)
O10.42443 (7)0.03716 (10)0.59102 (6)0.0241 (3)
O20.20712 (7)0.14989 (11)0.43665 (7)0.0324 (3)
C10.32425 (9)0.04757 (14)0.50865 (8)0.0215 (3)
C20.38848 (9)0.12710 (14)0.48685 (8)0.0215 (3)
C30.39949 (9)0.20728 (14)0.43111 (8)0.0220 (3)
H30.35910.21590.39520.026*
C40.47040 (9)0.27410 (15)0.42914 (8)0.0231 (3)
C50.52971 (9)0.25870 (15)0.48281 (8)0.0256 (3)
H50.57840.30370.48050.031*
C60.51959 (10)0.18048 (16)0.53860 (8)0.0259 (4)
H60.55980.17110.57460.031*
C70.44797 (9)0.11676 (15)0.53917 (8)0.0227 (3)
C80.34835 (10)0.00304 (15)0.57127 (8)0.0227 (3)
C90.30871 (10)0.08261 (14)0.62133 (8)0.0231 (3)
C100.32514 (10)0.07323 (15)0.69434 (8)0.0246 (3)
H100.36330.01650.71060.030*
C110.28651 (10)0.14560 (15)0.74306 (8)0.0272 (4)
H110.29800.14020.79260.033*
C120.23105 (11)0.22544 (15)0.71749 (9)0.0286 (4)
C130.21323 (11)0.23782 (16)0.64647 (9)0.0310 (4)
H130.17420.29400.63100.037*
C140.25320 (11)0.16691 (15)0.59778 (8)0.0292 (4)
H140.24280.17570.54820.035*
C150.48353 (9)0.35926 (14)0.36836 (8)0.0229 (3)
H150.43010.36820.34330.028*
C160.51036 (12)0.48237 (16)0.39185 (9)0.0314 (4)
H16A0.46950.51530.42520.038*
H16B0.56310.47700.41730.038*
C170.51939 (12)0.56396 (17)0.32774 (10)0.0364 (4)
H17A0.46540.57580.30530.044*
H17B0.53950.64150.34400.044*
C180.57831 (12)0.51361 (19)0.27288 (11)0.0406 (5)
H18A0.63380.51080.29360.049*
H18B0.57990.56580.23060.049*
C190.55313 (12)0.39042 (18)0.24985 (9)0.0370 (4)
H19A0.50070.39440.22380.044*
H19B0.59470.35790.21710.044*
C200.54405 (11)0.30958 (16)0.31408 (9)0.0293 (4)
H20A0.59780.29920.33720.035*
H20B0.52500.23140.29790.035*
C210.26034 (12)0.05707 (17)0.39440 (9)0.0338 (4)
H21A0.21530.06590.36050.051*
H21B0.27660.13470.41210.051*
H21C0.30670.01970.37050.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0214 (2)0.0258 (2)0.0266 (2)0.00355 (16)0.00049 (14)0.00255 (16)
F10.0587 (7)0.0383 (7)0.0326 (6)0.0129 (6)0.0100 (5)0.0092 (5)
O10.0261 (6)0.0242 (6)0.0221 (5)0.0022 (5)0.0018 (4)0.0027 (4)
O20.0283 (6)0.0280 (7)0.0411 (7)0.0044 (5)0.0038 (5)0.0052 (6)
C10.0241 (7)0.0195 (8)0.0208 (7)0.0006 (6)0.0002 (6)0.0027 (6)
C20.0212 (7)0.0208 (8)0.0224 (7)0.0001 (6)0.0002 (5)0.0035 (6)
C30.0219 (7)0.0239 (8)0.0201 (7)0.0008 (6)0.0009 (5)0.0011 (6)
C40.0238 (7)0.0227 (9)0.0228 (7)0.0008 (6)0.0020 (6)0.0006 (6)
C50.0217 (7)0.0276 (9)0.0273 (8)0.0034 (7)0.0006 (6)0.0013 (7)
C60.0233 (7)0.0297 (9)0.0248 (8)0.0004 (7)0.0039 (6)0.0010 (7)
C70.0253 (7)0.0221 (8)0.0207 (7)0.0020 (7)0.0005 (6)0.0002 (6)
C80.0248 (7)0.0203 (8)0.0230 (7)0.0005 (6)0.0006 (6)0.0019 (6)
C90.0277 (8)0.0183 (8)0.0232 (7)0.0011 (6)0.0011 (6)0.0007 (6)
C100.0280 (8)0.0222 (9)0.0237 (7)0.0009 (7)0.0020 (6)0.0004 (6)
C110.0343 (9)0.0264 (9)0.0209 (7)0.0055 (7)0.0007 (6)0.0013 (7)
C120.0374 (9)0.0218 (9)0.0265 (8)0.0018 (7)0.0082 (6)0.0049 (7)
C130.0408 (9)0.0224 (9)0.0299 (9)0.0071 (8)0.0003 (7)0.0013 (7)
C140.0415 (9)0.0244 (9)0.0218 (7)0.0028 (8)0.0013 (7)0.0008 (7)
C150.0224 (7)0.0226 (8)0.0238 (7)0.0018 (6)0.0006 (6)0.0018 (6)
C160.0389 (9)0.0244 (9)0.0309 (9)0.0017 (8)0.0008 (7)0.0033 (7)
C170.0420 (10)0.0249 (10)0.0423 (10)0.0038 (8)0.0001 (8)0.0046 (8)
C180.0394 (10)0.0375 (11)0.0449 (11)0.0041 (9)0.0089 (8)0.0146 (9)
C190.0437 (10)0.0384 (11)0.0291 (8)0.0045 (9)0.0095 (7)0.0057 (8)
C200.0340 (9)0.0264 (9)0.0277 (8)0.0014 (7)0.0050 (6)0.0009 (7)
C210.0443 (10)0.0270 (9)0.0302 (8)0.0018 (8)0.0083 (7)0.0053 (7)
Geometric parameters (Å, º) top
S1—O21.4959 (13)C12—C131.371 (2)
S1—C11.7633 (16)C13—C141.384 (2)
S1—C211.7910 (18)C13—H130.9500
F1—C121.3607 (18)C14—H140.9500
O1—C81.3800 (19)C15—C201.530 (2)
O1—C71.3836 (19)C15—C161.533 (2)
C1—C81.366 (2)C15—H151.0000
C1—C21.448 (2)C16—C171.526 (2)
C2—C71.389 (2)C16—H16A0.9900
C2—C31.399 (2)C16—H16B0.9900
C3—C41.390 (2)C17—C181.523 (3)
C3—H30.9500C17—H17A0.9900
C4—C51.411 (2)C17—H17B0.9900
C4—C151.511 (2)C18—C191.523 (3)
C5—C61.383 (2)C18—H18A0.9900
C5—H50.9500C18—H18B0.9900
C6—C71.381 (2)C19—C201.522 (2)
C6—H60.9500C19—H19A0.9900
C8—C91.457 (2)C19—H19B0.9900
C9—C141.394 (2)C20—H20A0.9900
C9—C101.399 (2)C20—H20B0.9900
C10—C111.383 (2)C21—H21A0.9800
C10—H100.9500C21—H21B0.9800
C11—C121.372 (2)C21—H21C0.9800
C11—H110.9500
O2—S1—C1106.78 (7)C13—C14—H14119.9
O2—S1—C21106.10 (8)C9—C14—H14119.9
C1—S1—C2197.17 (8)C4—C15—C20110.95 (13)
C8—O1—C7106.31 (11)C4—C15—C16114.25 (13)
C8—C1—C2107.21 (13)C20—C15—C16110.01 (14)
C8—C1—S1126.32 (12)C4—C15—H15107.1
C2—C1—S1126.07 (12)C20—C15—H15107.1
C7—C2—C3119.46 (14)C16—C15—H15107.1
C7—C2—C1105.02 (14)C17—C16—C15110.99 (14)
C3—C2—C1135.46 (14)C17—C16—H16A109.4
C4—C3—C2119.00 (14)C15—C16—H16A109.4
C4—C3—H3120.5C17—C16—H16B109.4
C2—C3—H3120.5C15—C16—H16B109.4
C3—C4—C5119.36 (15)H16A—C16—H16B108.0
C3—C4—C15119.36 (13)C18—C17—C16111.38 (15)
C5—C4—C15121.26 (14)C18—C17—H17A109.4
C6—C5—C4122.44 (15)C16—C17—H17A109.4
C6—C5—H5118.8C18—C17—H17B109.4
C4—C5—H5118.8C16—C17—H17B109.4
C7—C6—C5116.47 (14)H17A—C17—H17B108.0
C7—C6—H6121.8C17—C18—C19111.44 (15)
C5—C6—H6121.8C17—C18—H18A109.3
C6—C7—O1125.93 (14)C19—C18—H18A109.3
C6—C7—C2123.25 (15)C17—C18—H18B109.3
O1—C7—C2110.81 (13)C19—C18—H18B109.3
C1—C8—O1110.65 (13)H18A—C18—H18B108.0
C1—C8—C9133.35 (14)C20—C19—C18110.97 (15)
O1—C8—C9115.89 (13)C20—C19—H19A109.4
C14—C9—C10119.18 (15)C18—C19—H19A109.4
C14—C9—C8121.00 (14)C20—C19—H19B109.4
C10—C9—C8119.81 (14)C18—C19—H19B109.4
C11—C10—C9120.83 (15)H19A—C19—H19B108.0
C11—C10—H10119.6C19—C20—C15111.52 (14)
C9—C10—H10119.6C19—C20—H20A109.3
C12—C11—C10117.84 (14)C15—C20—H20A109.3
C12—C11—H11121.1C19—C20—H20B109.3
C10—C11—H11121.1C15—C20—H20B109.3
F1—C12—C13118.01 (16)H20A—C20—H20B108.0
F1—C12—C11118.67 (14)S1—C21—H21A109.5
C13—C12—C11123.31 (15)S1—C21—H21B109.5
C12—C13—C14118.66 (16)H21A—C21—H21B109.5
C12—C13—H13120.7S1—C21—H21C109.5
C14—C13—H13120.7H21A—C21—H21C109.5
C13—C14—C9120.15 (15)H21B—C21—H21C109.5
O2—S1—C1—C8141.75 (14)C7—O1—C8—C9175.83 (13)
C21—S1—C1—C8108.99 (15)C1—C8—C9—C1432.7 (3)
O2—S1—C1—C230.00 (15)O1—C8—C9—C14151.68 (15)
C21—S1—C1—C279.26 (15)C1—C8—C9—C10146.03 (18)
C8—C1—C2—C70.58 (17)O1—C8—C9—C1029.6 (2)
S1—C1—C2—C7173.63 (12)C14—C9—C10—C110.6 (2)
C8—C1—C2—C3176.33 (17)C8—C9—C10—C11178.17 (15)
S1—C1—C2—C33.3 (3)C9—C10—C11—C120.8 (2)
C7—C2—C3—C40.6 (2)C10—C11—C12—F1178.13 (15)
C1—C2—C3—C4177.17 (17)C10—C11—C12—C131.0 (3)
C2—C3—C4—C50.6 (2)F1—C12—C13—C14179.42 (16)
C2—C3—C4—C15178.85 (14)C11—C12—C13—C140.3 (3)
C3—C4—C5—C61.1 (2)C12—C13—C14—C91.8 (3)
C15—C4—C5—C6179.33 (15)C10—C9—C14—C131.9 (3)
C4—C5—C6—C70.4 (2)C8—C9—C14—C13176.85 (16)
C5—C6—C7—O1177.69 (15)C3—C4—C15—C20103.02 (17)
C5—C6—C7—C20.9 (2)C5—C4—C15—C2075.18 (19)
C8—O1—C7—C6178.41 (16)C3—C4—C15—C16131.93 (16)
C8—O1—C7—C20.35 (17)C5—C4—C15—C1649.9 (2)
C3—C2—C7—C61.4 (2)C4—C15—C16—C17178.01 (14)
C1—C2—C7—C6178.94 (15)C20—C15—C16—C1756.44 (19)
C3—C2—C7—O1177.37 (13)C15—C16—C17—C1856.0 (2)
C1—C2—C7—O10.14 (17)C16—C17—C18—C1955.1 (2)
C2—C1—C8—O10.83 (18)C17—C18—C19—C2054.9 (2)
S1—C1—C8—O1173.86 (11)C18—C19—C20—C1556.2 (2)
C2—C1—C8—C9174.93 (17)C4—C15—C20—C19175.80 (14)
S1—C1—C8—C91.9 (3)C16—C15—C20—C1956.79 (18)
C7—O1—C8—C10.74 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C9–C14 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C21—H21B···O2i0.982.513.468 (2)166
C13—H13···Cg1i0.952.553.427 (2)153
C20—H20A···Cg2ii0.992.733.537 (2)140
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H21FO2S
Mr356.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)16.4070 (6), 11.3751 (4), 18.7490 (7)
V3)3499.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.26 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.949, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
17170, 4007, 3190
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 0.93
No. of reflections4007
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and C9–C14 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C21—H21B···O2i0.982.513.468 (2)166
C13—H13···Cg1i0.952.553.427 (2)153
C20—H20A···Cg2ii0.992.733.537 (2)140
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds