metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(4-hy­dr­oxy­phen­yl)acetato-κO]bis­­(1,10-phenanthroline-κ2N,N′)cadmium penta­hydrate

aJinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: jhyuyy@sina.com

(Received 25 October 2010; accepted 12 January 2011; online 22 January 2011)

In the title compound, [Cd(C8H7O3)2(C12H8N2)2]·5H2O, the CdII ion is six-coordinated by two carboxylate O atoms of monodentate 2-(4-hy­droxy­phen­yl)acetate ligands and by four N atoms from two chelating 1,10-phenantroline ligands in a distorted trigonal–prismatic geometry. O—H⋯O hydrogen bonds between water mol­ecules and the complex mol­ecules result in the formation of a three-dimensional network. Four water mol­ecules act as single acceptors and double donors while the fifth water mol­ecule is involved as a single acceptor and single donor in an O—H⋯O inter­action and as a donor in an O—H⋯π inter­action.

Related literature

For metal complexes derived from carb­oxy­lic acids, see: Fang & Zhang (2006[Fang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801-4810.]); Pan et al. (2006[Pan, T.-T., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, m1597-m1599.]); Wang & Sevov (2008[Wang, X.-X. & Sevov, S. (2008). Inorg. Chem. 47, 1037-1043.]); Wang et al. (2010[Wang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. 10, 4060-4067.]); Liu et al. (2010[Liu, J.-L., Li, H.-Q. & Zhao, G.-L. (2010). Acta Cryst. E66, m9.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H7O3)2(C12H8N2)2]·5H2O

  • Mr = 865.17

  • Triclinic, [P \overline 1]

  • a = 11.020 (1) Å

  • b = 11.341 (1) Å

  • c = 16.554 (2) Å

  • α = 86.170 (1)°

  • β = 77.537 (1)°

  • γ = 70.836 (1)°

  • V = 1908.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 296 K

  • 0.31 × 0.29 × 0.11 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.823, Tmax = 0.930

  • 28812 measured reflections

  • 8705 independent reflections

  • 7876 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.04

  • 8705 reflections

  • 505 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.82 1.82 2.641 (2) 175
O6—H6A⋯O4Wii 0.82 1.87 2.670 (3) 164
O1W—H1WA⋯O5iii 0.83 1.93 2.756 (2) 177
O1W—H1WB⋯O6ii 0.77 2.03 2.798 (3) 177
O2W—H2WA⋯O1iv 0.81 2.01 2.812 (2) 168
O2W—H2WB⋯O1W 0.76 2.04 2.769 (3) 160
O3W—H3WA⋯O3i 0.84 2.02 2.817 (3) 158
O3W—H3WB⋯O2W 0.82 1.94 2.712 (3) 155
O4W—H4WB⋯O5W 0.87 1.82 2.682 (3) 168
O5W—H5WB⋯O2 0.84 1.92 2.756 (2) 176
O5W—H5WA⋯O3W 0.92 1.87 2.737 (3) 157
O4W—H4WACg5v 0.82 2.85 3.583 (2) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y+1, z; (iv) x-1, y, z; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of carboxylic metal-organic complexes have been of increasing interest for decades owing to their potential practical applications including fluorescence and magnetism (Wang, et al., 2010; Fang, et al., 2006; Wang, et al., 2008). We have worked at it before (Liu, et al., 2010). In the paper, we report the crystal structure of a new cadmiun(II) complex with p- hydroxyphenylacetic acid and 1,10-phenanthroline.

The structure of the complex is shown in Fig.1, which shows that the Cd(II) atom is coordinated by two p-hydroxyphenylacetate(PAA) anions and two 1,10-phenanthroline (phen)ligands. The monodentate PAA anions coordinate to the Cd(II) ion in an approximate trans configuration, their benzene rings being nearly parallel to each other. The phen acts as a chelate ligand via the N atoms, while the carboxylate ligand has one carboxylate groups,behaving as a monodentate site through the deprotonated O atom. The coordination geometry can be described as a distorted trigonal prism. The coordination compound is built up by a pair of PAA anions using carboxylate oxygen atoms (Cd—O2=2.3222 (15) Å,Cd—O5=2.3676 (16) Å) and by a pair of neutral 1,10-phenanthroline molecules using nitrogen atoms(Cd—N1= 2.4522 (17) Å,Cd—N2=2.3577 (16) Å,Cd—N3=2.4472 (17) Å,Cd—N4=2.3786 (18) Å)in trans positions(Pan, et al., 2006).

The packing plot is shown in Fig.2. The most significant forces contribulting the formation and stabilization of the crystal are O—H···O hydrogen bonds and weak π···π aromatic interactions between phen molecules and aromatic rings of the carboxylate ligands.

Related literature top

For metal complexes with carboxylic acids, see: Fang & Zhang (2006); Pan et al. (2006); Wang & Sevov (2008); Wang et al. (2010); Liu et al. (2010).

Experimental top

All reagents were of analytical grade and were used without further purification. 4-Hydroxyphenylacetic acid (0.152 g, 1 mmol) and 1,10- phenanthroline (0.1982 g, 1 mmol) were added to a solution of Cd(OH)2 (0.146 g,1 mmol) in 10 ml e thanol. The solution was stirred at 343 K for 12 days, and then 10 ml of ethanol were added. A wite deposit was formed within a few minutes that was kept for 12 days at 313 K. The deposit was filtered off and colorless solution was slowly evaporated resulting in formation of colorless single crystals of the title compound within 5 days.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model approximation [CH(methylene)=0.97 Å, Uiso(H) = 1.2Ueq(C); aromatic C—H = 0.93 Å,Uiso(H) = 1.2 Ueq(C)]. Water and hydroxylic H atoms were located in difference Fourier maps and refined as riding on their carrier atoms with Uiso(H) = 1.5Ueq(O). Seven rigid-bond restraints to Uij-values of Co and the coordinating O and N atoms were imposed via SHELXL97 DELU instructions.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the complex.
Bis[2-(4-hydroxyphenyl)acetato-κO]bis(1,10- phenanthroline-κ2N,N')cadmium pentahydrate top
Crystal data top
[Cd(C8H7O3)2(C12H8N2)2]·5H2OZ = 2
Mr = 865.17F(000) = 888
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.020 (1) ÅCell parameters from 9977 reflections
b = 11.341 (1) Åθ = 1.3–27.7°
c = 16.554 (2) ŵ = 0.64 mm1
α = 86.170 (1)°T = 296 K
β = 77.537 (1)°Block, colourless
γ = 70.836 (1)°0.31 × 0.29 × 0.11 mm
V = 1908.2 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
8705 independent reflections
Radiation source: fine-focus sealed tube7876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.823, Tmax = 0.930k = 1414
28812 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.6164P]
where P = (Fo2 + 2Fc2)/3
8705 reflections(Δ/σ)max = 0.002
505 parametersΔρmax = 0.60 e Å3
7 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cd(C8H7O3)2(C12H8N2)2]·5H2Oγ = 70.836 (1)°
Mr = 865.17V = 1908.2 (3) Å3
Triclinic, P1Z = 2
a = 11.020 (1) ÅMo Kα radiation
b = 11.341 (1) ŵ = 0.64 mm1
c = 16.554 (2) ÅT = 296 K
α = 86.170 (1)°0.31 × 0.29 × 0.11 mm
β = 77.537 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
8705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7876 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.930Rint = 0.020
28812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0267 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
8705 reflectionsΔρmin = 0.30 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.921272 (12)0.297983 (12)0.262351 (7)0.03811 (5)
N11.09784 (15)0.16075 (14)0.32637 (9)0.0420 (3)
N20.85159 (15)0.29728 (14)0.40757 (9)0.0429 (3)
N30.85430 (16)0.32506 (15)0.12900 (9)0.0434 (3)
N41.09251 (15)0.32116 (15)0.15377 (9)0.0437 (3)
O10.98347 (13)0.49440 (13)0.30979 (9)0.0518 (3)
O1W0.09649 (18)0.88079 (17)0.19886 (11)0.0813 (5)
H1WA0.03710.94640.21520.122*
H1WB0.15370.89900.17220.122*
O20.79307 (13)0.50615 (12)0.28232 (8)0.0479 (3)
O2W0.15247 (16)0.63322 (18)0.24663 (11)0.0727 (4)
H2WA0.10510.59530.27180.109*
H2WB0.12190.70360.24200.109*
O30.56429 (16)0.71568 (16)0.67907 (9)0.0653 (4)
H3A0.48430.73570.68490.098*
O3W0.41174 (18)0.5009 (2)0.22350 (13)0.0895 (6)
H3WA0.41110.45040.26300.134*
H3WB0.34150.55780.23350.134*
O40.69434 (15)0.21911 (14)0.29253 (9)0.0568 (4)
O4W0.52550 (19)0.82720 (19)0.14562 (13)0.0908 (6)
H4WA0.58980.85090.13420.136*
H4WB0.54410.76870.18220.136*
O50.89776 (14)0.10086 (13)0.24775 (9)0.0507 (3)
O5W0.5459 (2)0.6477 (2)0.26075 (17)0.1118 (8)
H5WB0.62030.60610.26980.168*
H5WA0.51780.58200.25450.168*
O60.69850 (16)0.05348 (17)0.09615 (9)0.0695 (4)
H6A0.62350.09230.10150.104*
C10.7764 (2)0.11842 (18)0.26384 (11)0.0443 (4)
C20.7300 (2)0.0149 (2)0.24301 (13)0.0556 (5)
H2A0.64510.02190.27800.067*
H2B0.79140.06530.25340.067*
C30.7190 (2)0.02282 (18)0.15278 (12)0.0471 (4)
C40.8299 (2)0.02101 (19)0.09063 (14)0.0544 (5)
H4A0.91110.05840.10490.065*
C50.8224 (2)0.0104 (2)0.00855 (14)0.0560 (5)
H5A0.89820.03950.03200.067*
C60.7025 (2)0.04348 (19)0.01398 (12)0.0495 (4)
C70.5906 (2)0.0863 (2)0.04668 (13)0.0524 (5)
H7A0.50920.12150.03220.063*
C80.5997 (2)0.0769 (2)0.12918 (13)0.0530 (5)
H8A0.52400.10760.16960.064*
C90.86740 (18)0.55353 (17)0.30747 (10)0.0404 (4)
C100.8083 (2)0.68753 (17)0.33848 (12)0.0457 (4)
H10A0.87690.72570.33080.055*
H10B0.74440.73440.30630.055*
C110.74249 (18)0.69351 (16)0.42914 (11)0.0413 (4)
C120.6094 (2)0.7498 (2)0.45409 (13)0.0591 (5)
H12A0.55930.78360.41450.071*
C130.5483 (2)0.7572 (2)0.53676 (13)0.0637 (6)
H13A0.45800.79570.55210.076*
C140.6205 (2)0.70798 (19)0.59631 (12)0.0490 (4)
C150.7538 (2)0.6497 (2)0.57256 (12)0.0509 (5)
H15A0.80350.61500.61220.061*
C160.81361 (19)0.64290 (19)0.48983 (12)0.0485 (4)
H16A0.90370.60340.47450.058*
C171.2147 (2)0.08956 (19)0.28732 (13)0.0528 (5)
H17A1.23540.09290.22990.063*
C181.3081 (2)0.0099 (2)0.32820 (16)0.0655 (6)
H18A1.38920.03840.29860.079*
C191.2784 (2)0.0042 (2)0.41199 (16)0.0646 (6)
H19A1.34050.04680.44030.078*
C201.1556 (2)0.07441 (19)0.45566 (13)0.0513 (5)
C211.1149 (3)0.0674 (2)0.54353 (14)0.0646 (6)
H21A1.17350.01560.57380.078*
C220.9952 (3)0.1335 (2)0.58284 (13)0.0649 (6)
H22A0.97170.12630.63990.078*
C230.9022 (2)0.2150 (2)0.53929 (11)0.0522 (5)
C240.7749 (3)0.2854 (2)0.57780 (13)0.0643 (6)
H24A0.74810.28200.63490.077*
C250.6904 (2)0.3586 (2)0.53231 (14)0.0646 (6)
H25A0.60580.40570.55770.078*
C260.7324 (2)0.3620 (2)0.44643 (13)0.0551 (5)
H26A0.67390.41190.41540.066*
C270.93710 (19)0.22480 (17)0.45242 (10)0.0414 (4)
C281.06665 (19)0.15289 (16)0.40979 (11)0.0406 (4)
C291.2023 (2)0.3332 (2)0.16604 (13)0.0524 (5)
H29A1.21390.33190.22010.063*
C301.3013 (2)0.3478 (2)0.10237 (14)0.0591 (5)
H30A1.37730.35580.11370.071*
C311.2851 (2)0.3500 (2)0.02283 (14)0.0583 (5)
H31A1.35130.35740.02070.070*
C321.1692 (2)0.34120 (18)0.00681 (11)0.0480 (4)
C331.1421 (2)0.3504 (2)0.07470 (12)0.0585 (6)
H33A1.20550.35870.11990.070*
C341.0270 (2)0.3472 (2)0.08689 (12)0.0576 (5)
H34A1.01250.35220.14050.069*
C350.9262 (2)0.33649 (17)0.01936 (11)0.0473 (4)
C360.8020 (2)0.3417 (2)0.02921 (13)0.0574 (5)
H36A0.78430.34530.08190.069*
C370.7069 (2)0.3415 (2)0.03854 (14)0.0589 (5)
H37A0.62320.34650.03280.071*
C380.7372 (2)0.3336 (2)0.11663 (13)0.0534 (5)
H38A0.67130.33430.16260.064*
C390.94879 (19)0.32743 (16)0.06202 (10)0.0410 (4)
C401.07354 (18)0.32791 (16)0.07513 (10)0.0412 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.04353 (8)0.03857 (8)0.02888 (7)0.00945 (6)0.00605 (5)0.00080 (5)
N10.0494 (8)0.0401 (8)0.0362 (7)0.0122 (6)0.0113 (6)0.0016 (6)
N20.0510 (9)0.0438 (8)0.0333 (6)0.0173 (7)0.0040 (6)0.0008 (6)
N30.0524 (9)0.0436 (9)0.0339 (7)0.0165 (7)0.0077 (6)0.0043 (6)
N40.0493 (8)0.0443 (9)0.0345 (7)0.0131 (7)0.0044 (6)0.0035 (6)
O10.0432 (7)0.0480 (8)0.0589 (8)0.0097 (6)0.0054 (6)0.0065 (6)
O1W0.0756 (12)0.0716 (12)0.0743 (11)0.0018 (9)0.0069 (9)0.0048 (9)
O20.0553 (8)0.0398 (6)0.0501 (7)0.0133 (6)0.0174 (6)0.0004 (5)
O2W0.0627 (10)0.0828 (12)0.0755 (11)0.0294 (9)0.0132 (8)0.0067 (9)
O30.0609 (9)0.0822 (11)0.0429 (8)0.0134 (8)0.0043 (7)0.0031 (7)
O3W0.0661 (11)0.0913 (14)0.1104 (15)0.0253 (10)0.0219 (10)0.0169 (12)
O40.0601 (9)0.0574 (9)0.0463 (7)0.0142 (7)0.0026 (6)0.0064 (6)
O4W0.0813 (13)0.0856 (14)0.1083 (16)0.0318 (11)0.0225 (11)0.0170 (11)
O50.0506 (8)0.0453 (7)0.0575 (8)0.0149 (6)0.0145 (6)0.0001 (6)
O5W0.0835 (14)0.0992 (16)0.166 (2)0.0272 (12)0.0632 (15)0.0193 (15)
O60.0626 (10)0.0939 (13)0.0498 (8)0.0186 (9)0.0159 (7)0.0048 (8)
C10.0549 (11)0.0462 (11)0.0346 (8)0.0199 (9)0.0114 (8)0.0077 (7)
C20.0693 (14)0.0537 (12)0.0538 (11)0.0328 (11)0.0165 (10)0.0113 (9)
C30.0566 (11)0.0387 (10)0.0523 (11)0.0222 (9)0.0142 (9)0.0016 (8)
C40.0509 (11)0.0451 (11)0.0645 (13)0.0069 (9)0.0192 (10)0.0028 (9)
C50.0486 (11)0.0544 (12)0.0572 (12)0.0065 (9)0.0068 (9)0.0109 (9)
C60.0512 (11)0.0476 (11)0.0505 (11)0.0152 (9)0.0120 (9)0.0050 (8)
C70.0447 (10)0.0552 (12)0.0577 (12)0.0141 (9)0.0133 (9)0.0028 (9)
C80.0486 (11)0.0561 (12)0.0542 (11)0.0194 (9)0.0049 (9)0.0042 (9)
C90.0485 (10)0.0375 (9)0.0323 (8)0.0136 (8)0.0035 (7)0.0026 (7)
C100.0509 (11)0.0354 (9)0.0475 (10)0.0136 (8)0.0038 (8)0.0008 (7)
C110.0437 (9)0.0335 (9)0.0457 (9)0.0128 (7)0.0046 (7)0.0054 (7)
C120.0474 (11)0.0693 (14)0.0483 (11)0.0016 (10)0.0118 (9)0.0016 (10)
C130.0414 (11)0.0802 (16)0.0521 (12)0.0001 (10)0.0032 (9)0.0027 (11)
C140.0495 (11)0.0499 (11)0.0446 (10)0.0134 (9)0.0060 (8)0.0060 (8)
C150.0491 (11)0.0541 (12)0.0504 (11)0.0133 (9)0.0166 (9)0.0021 (9)
C160.0384 (9)0.0481 (11)0.0563 (11)0.0094 (8)0.0091 (8)0.0075 (9)
C170.0549 (12)0.0485 (11)0.0499 (11)0.0088 (9)0.0107 (9)0.0052 (9)
C180.0547 (13)0.0549 (14)0.0797 (16)0.0058 (10)0.0165 (11)0.0023 (11)
C190.0658 (14)0.0528 (13)0.0791 (16)0.0124 (11)0.0369 (12)0.0115 (11)
C200.0696 (13)0.0458 (11)0.0511 (11)0.0262 (10)0.0290 (10)0.0087 (8)
C210.0953 (19)0.0643 (14)0.0533 (12)0.0381 (14)0.0414 (13)0.0193 (11)
C220.105 (2)0.0755 (16)0.0346 (10)0.0518 (15)0.0259 (11)0.0135 (10)
C230.0796 (14)0.0577 (12)0.0328 (9)0.0408 (11)0.0105 (9)0.0011 (8)
C240.0872 (17)0.0794 (16)0.0338 (9)0.0463 (14)0.0050 (10)0.0082 (10)
C250.0656 (14)0.0715 (15)0.0514 (12)0.0265 (12)0.0107 (10)0.0152 (11)
C260.0553 (12)0.0559 (12)0.0477 (11)0.0157 (10)0.0001 (9)0.0029 (9)
C270.0593 (11)0.0411 (10)0.0320 (8)0.0268 (9)0.0102 (7)0.0008 (7)
C280.0556 (11)0.0366 (9)0.0386 (9)0.0221 (8)0.0176 (8)0.0023 (7)
C290.0537 (12)0.0532 (12)0.0479 (10)0.0136 (9)0.0094 (9)0.0066 (9)
C300.0481 (11)0.0593 (13)0.0664 (14)0.0163 (10)0.0032 (10)0.0105 (10)
C310.0539 (12)0.0534 (13)0.0562 (12)0.0139 (10)0.0088 (9)0.0054 (9)
C320.0533 (11)0.0388 (10)0.0421 (9)0.0092 (8)0.0028 (8)0.0027 (7)
C330.0724 (15)0.0553 (13)0.0341 (9)0.0137 (11)0.0068 (9)0.0014 (8)
C340.0755 (15)0.0580 (13)0.0307 (9)0.0134 (11)0.0062 (9)0.0018 (8)
C350.0659 (12)0.0369 (10)0.0351 (9)0.0111 (9)0.0106 (8)0.0005 (7)
C360.0780 (15)0.0534 (12)0.0458 (11)0.0212 (11)0.0245 (10)0.0051 (9)
C370.0640 (13)0.0610 (14)0.0603 (13)0.0263 (11)0.0245 (11)0.0117 (10)
C380.0568 (12)0.0558 (12)0.0493 (11)0.0223 (10)0.0109 (9)0.0098 (9)
C390.0549 (11)0.0314 (9)0.0329 (8)0.0105 (8)0.0062 (7)0.0000 (6)
C400.0512 (10)0.0321 (9)0.0331 (8)0.0080 (8)0.0015 (7)0.0025 (6)
Geometric parameters (Å, º) top
Cd—O22.3221 (13)C10—H10B0.9700
Cd—N22.3609 (14)C11—C121.374 (3)
Cd—O52.3672 (14)C11—C161.386 (3)
Cd—N42.3790 (15)C12—C131.384 (3)
Cd—N32.4447 (15)C12—H12A0.9300
Cd—N12.4522 (15)C13—C141.375 (3)
Cd—O12.7419 (14)C13—H13A0.9300
Cd—O42.8591 (15)C14—C151.378 (3)
N1—C171.325 (2)C15—C161.381 (3)
N1—C281.354 (2)C15—H15A0.9300
N2—C261.320 (3)C16—H16A0.9300
N2—C271.352 (2)C17—C181.393 (3)
N3—C381.322 (3)C17—H17A0.9300
N3—C391.353 (2)C18—C191.357 (3)
N4—C291.320 (3)C18—H18A0.9300
N4—C401.356 (2)C19—C201.391 (3)
O1—C91.242 (2)C19—H19A0.9300
O1W—H1WA0.8283C20—C281.410 (3)
O1W—H1WB0.7668C20—C211.432 (3)
O2—C91.265 (2)C21—C221.331 (4)
O2W—H2WA0.8134C21—H21A0.9300
O2W—H2WB0.7638C22—C231.426 (3)
O3—C141.372 (2)C22—H22A0.9300
O3—H3A0.8200C23—C241.400 (3)
O3W—H3WA0.8409C23—C271.413 (2)
O3W—H3WB0.8210C24—C251.354 (4)
O4—C11.248 (2)C24—H24A0.9300
O4W—H4WA0.8194C25—C261.399 (3)
O4W—H4WB0.8719C25—H25A0.9300
O5—C11.256 (2)C26—H26A0.9300
O5W—H5WB0.8405C27—C281.442 (3)
O5W—H5WA0.9152C29—C301.388 (3)
O6—C61.366 (2)C29—H29A0.9300
O6—H6A0.8200C30—C311.364 (3)
C1—C21.511 (3)C30—H30A0.9300
C2—C31.519 (3)C31—C321.395 (3)
C2—H2A0.9700C31—H31A0.9300
C2—H2B0.9700C32—C401.407 (2)
C3—C81.385 (3)C32—C331.434 (3)
C3—C41.388 (3)C33—C341.338 (3)
C4—C51.374 (3)C33—H33A0.9300
C4—H4A0.9300C34—C351.426 (3)
C5—C61.381 (3)C34—H34A0.9300
C5—H5A0.9300C35—C361.395 (3)
C6—C71.380 (3)C35—C391.413 (2)
C7—C81.386 (3)C36—C371.361 (3)
C7—H7A0.9300C36—H36A0.9300
C8—H8A0.9300C37—C381.393 (3)
C9—C101.519 (3)C37—H37A0.9300
C10—C111.515 (2)C38—H38A0.9300
C10—H10A0.9700C39—C401.439 (3)
O2—Cd—N280.97 (5)C16—C11—C10121.53 (17)
O2—Cd—O5139.64 (5)C11—C12—C13121.49 (19)
N2—Cd—O592.60 (5)C11—C12—H12A119.3
O2—Cd—N499.31 (5)C13—C12—H12A119.3
N2—Cd—N4143.65 (5)C14—C13—C12120.21 (19)
O5—Cd—N4108.46 (5)C14—C13—H13A119.9
O2—Cd—N383.91 (5)C12—C13—H13A119.9
N2—Cd—N3146.00 (5)O3—C14—C13122.12 (18)
O5—Cd—N379.64 (5)O3—C14—C15118.63 (18)
N4—Cd—N368.89 (5)C13—C14—C15119.24 (18)
O2—Cd—N1133.16 (5)C14—C15—C16119.94 (18)
N2—Cd—N169.41 (5)C14—C15—H15A120.0
O5—Cd—N178.78 (5)C16—C15—H15A120.0
N4—Cd—N185.63 (5)C15—C16—C11121.53 (18)
N3—Cd—N1139.01 (5)C15—C16—H16A119.2
O2—Cd—O150.72 (4)C11—C16—H16A119.2
N2—Cd—O177.84 (5)N1—C17—C18123.1 (2)
O5—Cd—O1165.14 (5)N1—C17—H17A118.4
N4—Cd—O174.83 (5)C18—C17—H17A118.4
N3—Cd—O1114.60 (5)C19—C18—C17118.8 (2)
N1—Cd—O187.15 (5)C19—C18—H18A120.6
O2—Cd—O491.80 (5)C17—C18—H18A120.6
N2—Cd—O474.21 (5)C18—C19—C20120.3 (2)
O5—Cd—O448.54 (4)C18—C19—H19A119.9
N4—Cd—O4141.63 (5)C20—C19—H19A119.9
N3—Cd—O476.03 (5)C19—C20—C28117.51 (19)
N1—Cd—O4112.79 (5)C19—C20—C21123.2 (2)
O1—Cd—O4136.30 (4)C28—C20—C21119.2 (2)
C17—N1—C28118.24 (16)C22—C21—C20121.5 (2)
C17—N1—Cd126.59 (13)C22—C21—H21A119.3
C28—N1—Cd115.02 (12)C20—C21—H21A119.3
C26—N2—C27118.82 (16)C21—C22—C23121.40 (19)
C26—N2—Cd123.00 (13)C21—C22—H22A119.3
C27—N2—Cd118.16 (12)C23—C22—H22A119.3
C38—N3—C39117.93 (16)C24—C23—C27117.1 (2)
C38—N3—Cd126.23 (13)C24—C23—C22123.47 (19)
C39—N3—Cd115.81 (12)C27—C23—C22119.4 (2)
C29—N4—C40118.20 (16)C25—C24—C23120.35 (19)
C29—N4—Cd123.74 (13)C25—C24—H24A119.8
C40—N4—Cd118.00 (12)C23—C24—H24A119.8
C9—O1—Cd83.41 (11)C24—C25—C26118.9 (2)
H1WA—O1W—H1WB107.2C24—C25—H25A120.6
C9—O2—Cd102.66 (11)C26—C25—H25A120.6
H2WA—O2W—H2WB117.5N2—C26—C25122.8 (2)
C14—O3—H3A109.5N2—C26—H26A118.6
H3WA—O3W—H3WB106.8C25—C26—H26A118.6
C1—O4—Cd82.56 (12)N2—C27—C23122.01 (18)
H4WA—O4W—H4WB104.7N2—C27—C28118.77 (15)
C1—O5—Cd105.88 (12)C23—C27—C28119.20 (18)
H5WB—O5W—H5WA97.6N1—C28—C20122.03 (18)
C6—O6—H6A109.5N1—C28—C27118.64 (16)
O4—C1—O5122.44 (18)C20—C28—C27119.31 (17)
O4—C1—C2119.67 (19)N4—C29—C30123.4 (2)
O5—C1—C2117.82 (18)N4—C29—H29A118.3
C1—C2—C3110.21 (16)C30—C29—H29A118.3
C1—C2—H2A109.6C31—C30—C29118.8 (2)
C3—C2—H2A109.6C31—C30—H30A120.6
C1—C2—H2B109.6C29—C30—H30A120.6
C3—C2—H2B109.6C30—C31—C32120.01 (19)
H2A—C2—H2B108.1C30—C31—H31A120.0
C8—C3—C4117.58 (19)C32—C31—H31A120.0
C8—C3—C2121.69 (19)C31—C32—C40117.40 (18)
C4—C3—C2120.70 (19)C31—C32—C33123.10 (19)
C5—C4—C3121.46 (19)C40—C32—C33119.5 (2)
C5—C4—H4A119.3C34—C33—C32121.14 (19)
C3—C4—H4A119.3C34—C33—H33A119.4
C4—C5—C6120.3 (2)C32—C33—H33A119.4
C4—C5—H5A119.9C33—C34—C35121.35 (19)
C6—C5—H5A119.9C33—C34—H34A119.3
O6—C6—C7121.77 (19)C35—C34—H34A119.3
O6—C6—C5118.83 (19)C36—C35—C39117.69 (18)
C7—C6—C5119.40 (19)C36—C35—C34122.86 (18)
C6—C7—C8119.80 (19)C39—C35—C34119.3 (2)
C6—C7—H7A120.1C37—C36—C35119.80 (19)
C8—C7—H7A120.1C37—C36—H36A120.1
C3—C8—C7121.48 (19)C35—C36—H36A120.1
C3—C8—H8A119.3C36—C37—C38118.8 (2)
C7—C8—H8A119.3C36—C37—H37A120.6
O1—C9—O2122.91 (17)C38—C37—H37A120.6
O1—C9—C10119.66 (17)N3—C38—C37123.7 (2)
O2—C9—C10117.40 (16)N3—C38—H38A118.2
C11—C10—C9111.22 (15)C37—C38—H38A118.2
C11—C10—H10A109.4N3—C39—C35122.14 (18)
C9—C10—H10A109.4N3—C39—C40118.36 (15)
C11—C10—H10B109.4C35—C39—C40119.41 (17)
C9—C10—H10B109.4N4—C40—C32122.17 (18)
H10A—C10—H10B108.0N4—C40—C39118.49 (15)
C12—C11—C16117.57 (18)C32—C40—C39119.27 (16)
C12—C11—C10120.90 (17)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.821.822.641 (2)175
O6—H6A···O4Wii0.821.872.670 (3)164
O1W—H1WA···O5iii0.831.932.756 (2)177
O1W—H1WB···O6ii0.772.032.798 (3)177
O2W—H2WA···O1iv0.812.012.812 (2)168
O2W—H2WB···O1W0.762.042.769 (3)160
O3W—H3WA···O3i0.842.022.817 (3)158
O3W—H3WB···O2W0.821.942.712 (3)155
O4W—H4WB···O5W0.871.822.682 (3)168
O5W—H5WB···O20.841.922.756 (2)176
O5W—H5WA···O3W0.921.872.737 (3)157
O4W—H4WA···Cg5v0.822.853.583 (2)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z; (iv) x1, y, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H7O3)2(C12H8N2)2]·5H2O
Mr865.17
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.020 (1), 11.341 (1), 16.554 (2)
α, β, γ (°)86.170 (1), 77.537 (1), 70.836 (1)
V3)1908.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.31 × 0.29 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.823, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
28812, 8705, 7876
Rint0.020
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.04
No. of reflections8705
No. of parameters505
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.821.822.641 (2)175
O6—H6A···O4Wii0.821.872.670 (3)164
O1W—H1WA···O5iii0.831.932.756 (2)177
O1W—H1WB···O6ii0.772.032.798 (3)177
O2W—H2WA···O1iv0.812.012.812 (2)168
O2W—H2WB···O1W0.762.042.769 (3)160
O3W—H3WA···O3i0.842.022.817 (3)158
O3W—H3WB···O2W0.821.942.712 (3)155
O4W—H4WB···O5W0.871.822.682 (3)168
O5W—H5WB···O20.841.922.756 (2)176
O5W—H5WA···O3W0.921.872.737 (3)157
O4W—H4WA···Cg5v0.822.853.583 (2)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z; (iv) x1, y, z; (v) x, y+1, z.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801–4810.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, J.-L., Li, H.-Q. & Zhao, G.-L. (2010). Acta Cryst. E66, m9.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPan, T.-T., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, m1597–m1599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. 10, 4060–4067.  Google Scholar
First citationWang, X.-X. & Sevov, S. (2008). Inorg. Chem. 47, 1037–1043.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds