organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Butanoyl-3-hy­dr­oxy­phen­yl)butanamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fangshi.li@njut.edu.cn

(Received 14 December 2010; accepted 10 January 2011; online 22 January 2011)

The title compound, C14H19NO3, was prepared via the intra­molecular rearrangement of 3-(butanoyl­amino)­phenyl butano­ate in the presence of anhydrous aluminium chloride. The near coplanarity of the aromatic ring, the amide group and the carbonyl group of the butanoyl fragment [N—C—C—C = −179.65 (17) and O—C—C—C = −178.34 (17)°] results from the intra­molecular O—H⋯O and C—H⋯O hydrogen bonds. In the crystal, the mol­ecules form a one-dimensional polymeric structure via N—H⋯O inter­actions between their amide groups.

Related literature

For the synthesis, see: Wang et al. (2006[Wang, X. Z., Zhang, S. J., Dai, L. Y. & Chen, Y. Q. (2006). CN Patent No. 173303.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19NO3

  • Mr = 249.30

  • Monoclinic, P 21 /n

  • a = 6.2870 (13) Å

  • b = 10.008 (2) Å

  • c = 21.680 (4) Å

  • β = 97.96 (3)°

  • V = 1351.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.983

  • 2684 measured reflections

  • 2448 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.160

  • S = 1.00

  • 2448 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.29 3.109 (2) 160
O2—H2A⋯O3 0.82 1.83 2.552 (3) 146
C6—H6A⋯O1 0.93 2.27 2.875 (3) 122
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate for the synthesis of an anticoccidial drug Nequinate. It was prepared via intramolecular rearrangement of 3-(butanoylamino)phenyl butanoate in 1,2-dichloroethane in the presence of anhydrous aluminium chloride. We report here the crystal structure of the title compound.

The molecular structure is shown in Fig. 1.

In the crystal, molecules are linked via intermolecular N—H···O hydrogen bond to form chains.

Related literature top

For details of the synthetic procedure, see: Wang et al. (2006).

Experimental top

The title compound (m.p. 381 K) was prepared by a method reported by Wang et al. (2006). The crystals were obtained from methanolic solution by slow evaporation.

Refinement top

All H atoms were positioned geometrically, with O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93-0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. A packing diagram. Hhydrogen bond is shown by dashed lines.
N-(4-Butanoyl-3-hydroxyphenyl)butanamide top
Crystal data top
C14H19NO3F(000) = 536
Mr = 249.30Dx = 1.226 Mg m3
Monoclinic, P21/nMelting point: 381 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.2870 (13) ÅCell parameters from 25 reflections
b = 10.008 (2) Åθ = 10–13°
c = 21.680 (4) ŵ = 0.09 mm1
β = 97.96 (3)°T = 293 K
V = 1351.0 (5) Å3Plate, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1732 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.975, Tmax = 0.983l = 2625
2684 measured reflections3 standard reflections every 200 reflections
2448 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.1P)2 + 0.080P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2448 reflectionsΔρmax = 0.19 e Å3
164 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (6)
Crystal data top
C14H19NO3V = 1351.0 (5) Å3
Mr = 249.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2870 (13) ŵ = 0.09 mm1
b = 10.008 (2) ÅT = 293 K
c = 21.680 (4) Å0.30 × 0.20 × 0.20 mm
β = 97.96 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1732 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.975, Tmax = 0.9833 standard reflections every 200 reflections
2684 measured reflections intensity decay: 1%
2448 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2448 reflectionsΔρmin = 0.18 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1152 (3)0.62012 (16)0.25206 (8)0.0443 (5)
H1N0.14380.70340.24800.053*
O10.2269 (3)0.41334 (15)0.22806 (8)0.0653 (5)
O20.3406 (3)0.31968 (14)0.34457 (8)0.0624 (5)
H2A0.43870.31910.36590.094*
O30.6164 (3)0.41920 (16)0.40749 (9)0.0686 (5)
C10.1729 (6)0.5577 (3)0.07966 (14)0.0959 (10)
H1A0.17790.51480.04030.144*
H1B0.14750.65150.07320.144*
H1C0.05900.51960.09920.144*
C20.3834 (5)0.5374 (2)0.12083 (11)0.0668 (7)
H2B0.49780.57530.10060.080*
H2C0.41040.44230.12590.080*
C30.3882 (4)0.6008 (2)0.18464 (11)0.0547 (6)
H3A0.53320.59590.20670.066*
H3B0.35020.69450.17950.066*
C40.2373 (3)0.5346 (2)0.22330 (10)0.0445 (5)
C50.0507 (3)0.59311 (17)0.28740 (9)0.0398 (5)
C60.1165 (3)0.46492 (18)0.29964 (10)0.0442 (5)
H6A0.04970.39140.28440.053*
C70.2832 (3)0.44685 (19)0.33483 (9)0.0444 (5)
C80.3858 (3)0.55602 (19)0.35889 (9)0.0425 (5)
C90.3162 (3)0.6842 (2)0.34437 (9)0.0453 (5)
H9A0.38300.75850.35890.054*
C100.1537 (3)0.70308 (19)0.30956 (9)0.0442 (5)
H10A0.11160.78920.30060.053*
C110.5560 (3)0.5341 (2)0.39762 (10)0.0490 (5)
C120.6540 (3)0.6497 (2)0.42757 (10)0.0534 (6)
H12A0.71220.71190.39530.064*
H12B0.54170.69570.45470.064*
C130.8299 (4)0.6116 (3)0.46512 (10)0.0580 (6)
H13A0.77280.54840.49710.070*
H13B0.94400.56730.43800.070*
C140.9232 (5)0.7300 (3)0.49570 (12)0.0794 (8)
H14A1.03250.69960.51920.119*
H14B0.98460.79160.46420.119*
H14C0.81150.77380.52310.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0468 (10)0.0330 (9)0.0537 (10)0.0018 (7)0.0090 (8)0.0002 (7)
O10.0714 (11)0.0388 (9)0.0915 (13)0.0046 (7)0.0315 (10)0.0037 (8)
O20.0734 (11)0.0376 (9)0.0804 (11)0.0086 (7)0.0251 (9)0.0033 (7)
O30.0702 (11)0.0529 (10)0.0876 (12)0.0110 (8)0.0286 (10)0.0042 (8)
C10.125 (3)0.087 (2)0.0665 (18)0.0120 (19)0.0203 (18)0.0066 (15)
C20.0887 (18)0.0555 (14)0.0596 (15)0.0114 (13)0.0224 (14)0.0024 (12)
C30.0519 (13)0.0520 (13)0.0619 (14)0.0067 (10)0.0140 (11)0.0059 (11)
C40.0425 (11)0.0398 (12)0.0503 (12)0.0007 (9)0.0038 (9)0.0037 (9)
C50.0397 (11)0.0354 (10)0.0423 (11)0.0005 (8)0.0019 (9)0.0007 (8)
C60.0471 (11)0.0334 (11)0.0517 (12)0.0029 (9)0.0053 (10)0.0021 (9)
C70.0499 (12)0.0332 (10)0.0482 (12)0.0042 (9)0.0006 (9)0.0016 (9)
C80.0412 (11)0.0404 (11)0.0439 (11)0.0033 (9)0.0004 (9)0.0013 (9)
C90.0477 (12)0.0390 (11)0.0496 (12)0.0025 (9)0.0073 (10)0.0038 (9)
C100.0498 (12)0.0309 (10)0.0520 (12)0.0022 (9)0.0070 (10)0.0006 (9)
C110.0460 (12)0.0486 (13)0.0505 (12)0.0040 (10)0.0008 (10)0.0028 (9)
C120.0493 (12)0.0573 (14)0.0540 (13)0.0039 (10)0.0087 (10)0.0011 (11)
C130.0551 (13)0.0691 (15)0.0512 (13)0.0006 (11)0.0119 (11)0.0037 (11)
C140.089 (2)0.084 (2)0.0723 (17)0.0043 (15)0.0356 (16)0.0064 (14)
Geometric parameters (Å, º) top
N1—C41.357 (3)C6—C71.390 (3)
N1—C51.403 (2)C6—H6A0.9300
N1—H1N0.8600C7—C81.406 (3)
O1—C41.221 (2)C8—C91.405 (3)
O2—C71.348 (2)C8—C111.466 (3)
O2—H2A0.8200C9—C101.365 (3)
O3—C111.239 (3)C9—H9A0.9300
C1—C21.504 (4)C10—H10A0.9300
C1—H1A0.9600C11—C121.500 (3)
C1—H1B0.9600C12—C131.510 (3)
C1—H1C0.9600C12—H12A0.9700
C2—C31.519 (3)C12—H12B0.9700
C2—H2B0.9700C13—C141.515 (3)
C2—H2C0.9700C13—H13A0.9700
C3—C41.504 (3)C13—H13B0.9700
C3—H3A0.9700C14—H14A0.9600
C3—H3B0.9700C14—H14B0.9600
C5—C61.385 (2)C14—H14C0.9600
C5—C101.396 (3)
C4—N1—C5129.76 (17)O2—C7—C8121.95 (19)
C4—N1—H1N115.1C6—C7—C8121.46 (18)
C5—N1—H1N115.1C9—C8—C7116.97 (18)
C7—O2—H2A109.5C9—C8—C11122.65 (18)
C2—C1—H1A109.5C7—C8—C11120.38 (18)
C2—C1—H1B109.5C10—C9—C8122.01 (18)
H1A—C1—H1B109.5C10—C9—H9A119.0
C2—C1—H1C109.5C8—C9—H9A119.0
H1A—C1—H1C109.5C9—C10—C5120.00 (18)
H1B—C1—H1C109.5C9—C10—H10A120.0
C1—C2—C3112.9 (2)C5—C10—H10A120.0
C1—C2—H2B109.0O3—C11—C8120.2 (2)
C3—C2—H2B109.0O3—C11—C12119.15 (19)
C1—C2—H2C109.0C8—C11—C12120.61 (18)
C3—C2—H2C109.0C11—C12—C13114.48 (19)
H2B—C2—H2C107.8C11—C12—H12A108.6
C4—C3—C2112.88 (19)C13—C12—H12A108.6
C4—C3—H3A109.0C11—C12—H12B108.6
C2—C3—H3A109.0C13—C12—H12B108.6
C4—C3—H3B109.0H12A—C12—H12B107.6
C2—C3—H3B109.0C12—C13—C14113.3 (2)
H3A—C3—H3B107.8C12—C13—H13A108.9
O1—C4—N1123.21 (19)C14—C13—H13A108.9
O1—C4—C3122.04 (19)C12—C13—H13B108.9
N1—C4—C3114.76 (18)C14—C13—H13B108.9
C6—C5—C10119.95 (18)H13A—C13—H13B107.7
C6—C5—N1123.20 (17)C13—C14—H14A109.5
C10—C5—N1116.84 (16)C13—C14—H14B109.5
C5—C6—C7119.58 (18)H14A—C14—H14B109.5
C5—C6—H6A120.2C13—C14—H14C109.5
C7—C6—H6A120.2H14A—C14—H14C109.5
O2—C7—C6116.59 (17)H14B—C14—H14C109.5
C1—C2—C3—C467.0 (3)C6—C7—C8—C11177.91 (18)
C5—N1—C4—O15.1 (3)C7—C8—C9—C101.3 (3)
C5—N1—C4—C3174.86 (19)C11—C8—C9—C10178.29 (19)
C2—C3—C4—O146.3 (3)C8—C9—C10—C50.2 (3)
C2—C3—C4—N1133.7 (2)C6—C5—C10—C91.4 (3)
C4—N1—C5—C61.0 (3)N1—C5—C10—C9179.87 (17)
C4—N1—C5—C10177.72 (19)C9—C8—C11—O3177.71 (19)
C10—C5—C6—C71.0 (3)C7—C8—C11—O32.7 (3)
N1—C5—C6—C7179.65 (17)C9—C8—C11—C124.4 (3)
C5—C6—C7—O2179.43 (17)C7—C8—C11—C12175.14 (18)
C5—C6—C7—C80.6 (3)O3—C11—C12—C133.1 (3)
O2—C7—C8—C9178.34 (17)C8—C11—C12—C13179.01 (18)
C6—C7—C8—C91.7 (3)C11—C12—C13—C14179.02 (19)
O2—C7—C8—C112.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.293.109 (2)160
O2—H2A···O30.821.832.552 (3)146
C6—H6A···O10.932.272.875 (3)122
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H19NO3
Mr249.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2870 (13), 10.008 (2), 21.680 (4)
β (°) 97.96 (3)
V3)1351.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
2684, 2448, 1732
Rint0.035
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.160, 1.00
No. of reflections2448
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.293.109 (2)160
O2—H2A···O30.821.832.552 (3)146
C6—H6A···O10.932.272.875 (3)122
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Z., Zhang, S. J., Dai, L. Y. & Chen, Y. Q. (2006). CN Patent No. 173303.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds