metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m253-m254

Bis[μ-4-(1H-imidazol-3-ium-1-yl)benzoato-κ2O:O′]bis­­[(methanol)tris­­(nitrato-κ2O,O′)terbium(III)]

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 28 December 2010; accepted 18 January 2011; online 22 January 2011)

In the centrosymmetric dinuclear title complex, [Tb2(NO3)6(C10H8N2O2)2(CH3OH)2], the Tb atoms are bridged by the carboxyl­ate groups of the two 4-(1H-imidazol-3-ium-1-yl)benzoate (iba) ligands. The iba ligand adopts a zwitterionic form with a protonated imidazole group. The Tb atom adopts a distorted tricapped trigonal–prismatic coordination geometry and is coordinated by six O atoms of three chelating nitrate ions, one O atom of the methanol mol­ecule and two O atoms of two iba ligands. The intra­molecular Tb⋯Tb separation is 5.1419 (3) Å. O—H⋯O and N—H⋯O hydrogen bonds connect complex mol­ecules into a two-dimensional network.

Related literature

For the preparation of 4-(1H-imidazol-1-yl)benzoic acid (iba), see: Zhang et al. (2007a[Zhang, J. Z., Cao, W. R., Pan, J. X. & Chen, Q. W. (2007a). Inorg. Chem. Commun. 10, 1360-1364.]). To the best of our knowledge, the title compound is the first f-block complex of the iba ligand. For d-block coordination compounds of the iba ligand, see: Aijaz et al. (2009[Aijaz, A., Barea, E. & Bharadwaj, P. K. (2009). Cryst. Growth Des. 9, 4480-4486.]); Bai et al. (2009[Bai, Z. S., Chen, S. S., Zhang, Z. H., Chen, M. S., Liu, G. X. & Sun, W. Y. (2009). Sci. China Ser. B Chem. 52, 459-464.]); Gao et al. (2008[Gao, J., Wei, K. J., Ni, J. & Zhang, J. Z. (2008). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 38, 562-566.], 2009[Gao, J., Wei, K. J., Ni, J. & Zhang, J. Z. (2009). J. Coord. Chem. 62, 257-265.]); Niu et al. (2009[Niu, H. L., Chen, J. T., Zhang, J. Z., Cao, W. R. & Chen, Q. W. (2009). Open Crystallogr. J. 2, 15-18.]); Zhang et al. (2007a[Zhang, J. Z., Cao, W. R., Pan, J. X. & Chen, Q. W. (2007a). Inorg. Chem. Commun. 10, 1360-1364.],b[Zhang, J.-Z., Pan, J.-X., Cao, W.-R. & Chen, Q.-W. (2007b). Acta Cryst. E63, m1042-m1043.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb2(NO3)6(C10H8N2O2)2(CH4O)2]

  • Mr = 1130.35

  • Triclinic, [P \overline 1]

  • a = 8.2966 (3) Å

  • b = 9.6107 (3) Å

  • c = 11.6780 (4) Å

  • α = 95.328 (2)°

  • β = 101.271 (2)°

  • γ = 100.166 (2)°

  • V = 891.01 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.05 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.358, Tmax = 0.498

  • 14627 measured reflections

  • 4356 independent reflections

  • 3924 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.04

  • 4356 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Tb1—O2i 2.245 (2)
Tb1—O1 2.275 (2)
Tb1—O12 2.385 (3)
Tb1—O3 2.441 (3)
Tb1—O6 2.461 (2)
Tb1—O4 2.464 (3)
Tb1—O10 2.509 (3)
Tb1—O7 2.529 (3)
Tb1—O9 2.553 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H1O⋯O10ii 0.81 2.15 2.960 (4) 173
N2—H2N⋯O6iii 0.80 (5) 2.00 (5) 2.779 (4) 167 (5)
Symmetry codes: (ii) -x+1, -y+2, -z+2; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-(1H-Imidazol-1-yl)benzoic acid (iba) is a potential bridging ligand possessing two coordinating groups: a carboxylate group and an imidazole group. This ligand was originally prepared by Chen's group (Zhang et al., 2007a). The iba ligand was recently employed to prepare a couple of discrete complexes of d-block metals such as Mn (Gao et al., 2008) and Ni (Zhang et al., 2007b). It was also utilized for the preparation of coordination polymers of d-block metals such as Co (Zhang et al., 2007a), Cu (Niu, et al., 2009), Zn (Bai et al., 2009), and Cd (Aijaz et al., 2009; Bai et al., 2009; Gao et al., 2009). By contrast, the corresponding f-block complexes, discrete or polymeric, are not known at present. In this context, we attempted to prepare f-block coordination polymers by using the iba ligand. Inconsistent with our expectation, however, a discrete molecular species (the title complex) was produced. We herein report the preparation and structure of a terbium complex, the first f-block complex of the iba ligand.

The local coordination environment of the TbIII ion in the title complex is presented in Fig. 1, which shows two iba ligands linking two 9-coordinate TbIII ions. The asymmetric unit consists of only half the formula unit, and the other half is generated by crystallographic inversion center. All atoms occupy general positions, and the inversion point is located at the center of the title complex. The imidazole nitrogen (N2) in the iba ligand remains uncoordinated and is protonated. As a result, the iba ligand has a net charge of zero and acts as a zwitterion in which a positive charge is on the imidazole N atom and a negative charge is on the carboxylate group. It would be meaningful to notice that the imidazole N atom is coordinated to the metals in all known d-block metal complexes and coordination polymers. Additional coordination of the iba carboxylate group to the metals led to the formation of 2-D or 3-D coordination polymers (Zhang et al., 2007a; Niu, et al., 2009; Bai et al., 2009; Aijaz et al., 2009; Bai et al., 2009; Gao et al., 2009). The fact that the N2 atom is not bonded to the TbIII ion in the title complex can probably be explained on the basis of the hard–soft acid–base concept. The hard TbIII ion is expected to have a preference to coordinating to the harder oxygen atom (in the carboxylate group) over the softer nitrogen atom (in the imidazole group).

Each TbIII ion is coordinated to six O atoms from three NO3-, one O atom from CH3OH, and two O atoms from two bis(monodentate) iba ligands. The [TbO9] core forms a distorted tricapped trigonal prism. Two TbIII ions and two carboxylate groups form a central eight-membered ring. All nitrate ligands act as bidentate ligands. The Tb···Tb separation is 5.1419 (3) Å, which is much longer than the sum (4.0 Å) of van der Waals radii of the two TbIII ions and therefore rules out direct interaction between the two metal ions. The N–H of the imidazole group and O–H of the coordinated methanol molecule participate in the intermolecular hydrogen bonds, which connect the molecules of the title complexe into a two-dimensional network (Fig. 2).

Related literature top

For the preparation of 4-(1H-imidazol-1-yl)benzoic acid (iba), see: Zhang et al. (2007a). To the best of our knowledge, the title compound is the first f-block complex of the iba ligand. For d-block coordination compounds of the iba ligand, see: Aijaz et al. (2009); Bai et al. (2009); Gao et al. (2008, 2009); Niu et al. (2009); Zhang et al. (2007a,b).

Experimental top

A mixture of Tb(NO3)3.5H2O (87 mg, 0.2 mmol), 4-(1H-imidazol-1-yl)benzoic acid (37 mg, 0.2 mmol), and CH3OH (6 ml) was heated at 343 K for 24 h in a 23 ml Teflon-lined stainless-steel autoclave and then cooled slowly to room temperature for 24 h. The resulting colorless crystals were collected by filtration, washed by ethanol (5 ml × 3) and dichloromethane (5 ml × 3), and then air-dried to give the title complex (82 mg, 0.072 mmol, 37%). mp: 542–544 K. IR (KBr, cm-1): 3889 (w), 3826 (w), 3751 (w), 2912 (m), 2628 (m), 2364 (m), 2069 (m), 1792 (m), 1591 (m), 943 (m).

Refinement top

The H atom of the methanol OH group was generated in the idealized position [O-H = 0.81Å, Uiso(H) = 1.5Ueq(O)] and refined in a riding model approximation. The NH hydrogen atom was located in difference Fourier maps and freely refined. The remaining H atoms were generated in idealized positions (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing 50% probability displacement ellipsoids. Symmetry code for the atoms with A in their labels: -x + 1, -y + 1, -z + 2.
[Figure 2] Fig. 2. A two dimensional network formed by N—H···O and O—H···O hydrogen bonds.
Bis[µ-4-(1H-imidazol-3-ium-1-yl)benzoato- κ2O:O']bis[(methanol)tris(nitrato- κ2O,O')terbium(III)] top
Crystal data top
[Tb2(NO3)6(C10H8N2O2)2(CH4O)2]Z = 1
Mr = 1130.35F(000) = 548
Triclinic, P1Dx = 2.107 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2966 (3) ÅCell parameters from 9939 reflections
b = 9.6107 (3) Åθ = 2.7–28.5°
c = 11.6780 (4) ŵ = 4.05 mm1
α = 95.328 (2)°T = 296 K
β = 101.271 (2)°Block, colourless
γ = 100.166 (2)°0.32 × 0.24 × 0.20 mm
V = 891.01 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4356 independent reflections
Radiation source: sealed tube3924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.358, Tmax = 0.498k = 1212
14627 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
4356 reflections(Δ/σ)max = 0.002
266 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Tb2(NO3)6(C10H8N2O2)2(CH4O)2]γ = 100.166 (2)°
Mr = 1130.35V = 891.01 (5) Å3
Triclinic, P1Z = 1
a = 8.2966 (3) ÅMo Kα radiation
b = 9.6107 (3) ŵ = 4.05 mm1
c = 11.6780 (4) ÅT = 296 K
α = 95.328 (2)°0.32 × 0.24 × 0.20 mm
β = 101.271 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4356 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3924 reflections with I > 2σ(I)
Tmin = 0.358, Tmax = 0.498Rint = 0.037
14627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.01 e Å3
4356 reflectionsΔρmin = 0.49 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.457118 (19)0.675119 (14)0.848450 (11)0.03284 (6)
O10.2845 (3)0.4704 (2)0.8671 (2)0.0460 (6)
O20.3792 (4)0.3116 (3)0.9719 (2)0.0512 (6)
O30.7282 (4)0.6892 (3)0.7935 (3)0.0581 (7)
O40.5994 (4)0.4789 (3)0.8034 (3)0.0553 (7)
O50.8288 (6)0.5102 (5)0.7405 (4)0.1010 (14)
O60.3662 (4)0.5789 (3)0.6383 (2)0.0515 (6)
O70.1885 (4)0.6835 (3)0.7055 (3)0.0592 (7)
O80.1450 (6)0.6100 (4)0.5188 (3)0.1017 (15)
O90.4888 (5)0.8709 (3)0.7163 (2)0.0649 (8)
O100.5819 (4)0.9363 (3)0.9002 (2)0.0550 (7)
O110.6051 (5)1.0899 (3)0.7783 (3)0.0784 (10)
O120.2864 (4)0.7787 (3)0.9605 (2)0.0573 (7)
H1O0.33050.85590.99890.086*
N10.1852 (3)0.0986 (3)0.5742 (2)0.0356 (5)
N20.3091 (5)0.3070 (3)0.4848 (3)0.0497 (8)
N30.7211 (5)0.5573 (4)0.7785 (3)0.0555 (8)
N40.2299 (5)0.6250 (3)0.6183 (3)0.0523 (8)
N50.5595 (4)0.9700 (3)0.7973 (3)0.0472 (7)
C10.2827 (4)0.3458 (3)0.8879 (3)0.0344 (6)
C20.1576 (4)0.2281 (3)0.8068 (3)0.0326 (6)
C30.1500 (5)0.0880 (4)0.8264 (3)0.0488 (9)
H30.22130.06620.89120.059*
C40.0369 (6)0.0201 (4)0.7502 (3)0.0538 (10)
H40.03280.11450.76320.065*
C50.0694 (4)0.0123 (3)0.6554 (3)0.0332 (6)
C60.0660 (5)0.1519 (4)0.6361 (3)0.0446 (8)
H60.13960.17350.57240.054*
C70.0478 (4)0.2594 (3)0.7121 (3)0.0409 (7)
H70.05060.35380.69950.049*
C80.3167 (5)0.0831 (4)0.4857 (3)0.0526 (9)
H80.34670.00220.46700.063*
C90.3922 (5)0.2143 (5)0.4321 (3)0.0554 (10)
H90.48520.23700.36980.066*
C100.1834 (5)0.2376 (4)0.5700 (3)0.0434 (7)
H100.10700.27840.61860.052*
C110.1366 (7)0.7167 (6)0.9925 (5)0.0750 (14)
H11A0.09940.78791.03840.113*
H11B0.15690.64101.03810.113*
H11C0.05180.67920.92270.113*
H2N0.325 (6)0.389 (6)0.460 (4)0.064 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.03738 (9)0.02521 (8)0.03241 (8)0.00405 (6)0.00267 (5)0.00046 (5)
O10.0431 (14)0.0275 (11)0.0608 (14)0.0002 (10)0.0031 (11)0.0038 (10)
O20.0586 (17)0.0418 (13)0.0407 (12)0.0013 (12)0.0077 (11)0.0037 (10)
O30.0486 (16)0.0517 (16)0.0746 (18)0.0049 (13)0.0199 (13)0.0076 (13)
O40.0537 (17)0.0403 (14)0.0748 (17)0.0140 (13)0.0172 (13)0.0072 (12)
O50.093 (3)0.098 (3)0.148 (4)0.056 (3)0.072 (3)0.029 (3)
O60.0658 (18)0.0396 (13)0.0424 (12)0.0117 (12)0.0008 (11)0.0071 (10)
O70.0545 (17)0.0576 (17)0.0631 (17)0.0208 (14)0.0009 (13)0.0064 (13)
O80.128 (4)0.090 (3)0.0587 (19)0.019 (3)0.045 (2)0.0059 (18)
O90.096 (2)0.0408 (14)0.0464 (14)0.0011 (15)0.0020 (14)0.0055 (11)
O100.082 (2)0.0377 (13)0.0405 (12)0.0010 (13)0.0129 (12)0.0018 (10)
O110.105 (3)0.0331 (14)0.088 (2)0.0013 (16)0.007 (2)0.0200 (14)
O120.0515 (16)0.0553 (16)0.0598 (15)0.0053 (13)0.0147 (12)0.0152 (12)
N10.0358 (14)0.0319 (13)0.0357 (12)0.0046 (11)0.0036 (10)0.0007 (10)
N20.058 (2)0.0338 (15)0.0493 (16)0.0016 (14)0.0080 (14)0.0071 (12)
N30.049 (2)0.062 (2)0.0601 (19)0.0181 (17)0.0164 (15)0.0073 (16)
N40.063 (2)0.0357 (15)0.0472 (16)0.0061 (15)0.0106 (15)0.0071 (12)
N50.0543 (19)0.0322 (14)0.0536 (17)0.0057 (13)0.0103 (14)0.0056 (12)
C10.0349 (16)0.0320 (15)0.0330 (14)0.0000 (12)0.0068 (12)0.0010 (11)
C20.0350 (16)0.0283 (14)0.0334 (13)0.0037 (12)0.0073 (11)0.0033 (10)
C30.059 (2)0.0328 (16)0.0434 (17)0.0047 (16)0.0126 (15)0.0060 (13)
C40.068 (3)0.0260 (15)0.056 (2)0.0059 (16)0.0117 (18)0.0060 (14)
C50.0344 (16)0.0284 (14)0.0346 (14)0.0049 (12)0.0053 (11)0.0003 (11)
C60.046 (2)0.0334 (16)0.0474 (17)0.0078 (15)0.0082 (14)0.0083 (13)
C70.0440 (19)0.0258 (14)0.0479 (17)0.0042 (13)0.0005 (14)0.0078 (12)
C80.054 (2)0.0432 (19)0.0512 (19)0.0102 (17)0.0090 (16)0.0002 (15)
C90.051 (2)0.055 (2)0.0496 (19)0.0078 (19)0.0028 (16)0.0081 (16)
C100.048 (2)0.0325 (16)0.0457 (17)0.0038 (14)0.0073 (14)0.0013 (13)
C110.064 (3)0.089 (4)0.078 (3)0.014 (3)0.034 (2)0.004 (3)
Geometric parameters (Å, º) top
Tb1—O2i2.245 (2)N1—C101.335 (4)
Tb1—O12.275 (2)N1—C81.388 (5)
Tb1—O122.385 (3)N1—C51.433 (4)
Tb1—O32.441 (3)N2—C101.323 (5)
Tb1—O62.461 (2)N2—C91.342 (6)
Tb1—O42.464 (3)N2—H2N0.80 (5)
Tb1—O102.509 (3)C1—C21.502 (4)
Tb1—O72.529 (3)C2—C31.379 (5)
Tb1—O92.553 (3)C2—C71.380 (4)
Tb1—N32.855 (3)C3—C41.382 (5)
Tb1—N42.910 (3)C3—H30.9300
O1—C11.242 (4)C4—C51.371 (5)
O2—C11.248 (4)C4—H40.9300
O2—Tb1i2.245 (2)C5—C61.378 (5)
O3—N31.253 (5)C6—C71.380 (4)
O4—N31.248 (4)C6—H60.9300
O5—N31.209 (5)C7—H70.9300
O6—N41.274 (5)C8—C91.340 (5)
O7—N41.252 (5)C8—H80.9300
O8—N41.216 (4)C9—H90.9300
O9—N51.251 (4)C10—H100.9300
O10—N51.261 (4)C11—H11A0.9600
O11—N51.203 (4)C11—H11B0.9600
O12—C111.415 (6)C11—H11C0.9600
O12—H1O0.8147
O2i—Tb1—O193.66 (9)N5—O10—Tb198.07 (18)
O2i—Tb1—O1281.77 (11)C11—O12—Tb1130.4 (3)
O1—Tb1—O1281.94 (10)C11—O12—H1O112.9
O2i—Tb1—O380.85 (11)Tb1—O12—H1O115.1
O1—Tb1—O3125.28 (10)C10—N1—C8107.5 (3)
O12—Tb1—O3148.43 (10)C10—N1—C5125.2 (3)
O2i—Tb1—O6152.13 (11)C8—N1—C5127.3 (3)
O1—Tb1—O681.95 (9)C10—N2—C9109.9 (3)
O12—Tb1—O6124.33 (10)C10—N2—H2N126 (4)
O3—Tb1—O679.46 (10)C9—N2—H2N123 (3)
O2i—Tb1—O482.58 (10)O5—N3—O4122.5 (4)
O1—Tb1—O473.61 (10)O5—N3—O3120.1 (4)
O12—Tb1—O4149.92 (11)O4—N3—O3117.4 (3)
O3—Tb1—O451.67 (10)O5—N3—Tb1175.0 (3)
O6—Tb1—O469.74 (9)O4—N3—Tb159.30 (18)
O2i—Tb1—O1076.79 (9)O3—N3—Tb158.31 (19)
O1—Tb1—O10153.55 (10)O8—N4—O7122.8 (4)
O12—Tb1—O1072.39 (10)O8—N4—O6120.4 (4)
O3—Tb1—O1078.08 (10)O7—N4—O6116.8 (3)
O6—Tb1—O10117.71 (8)O8—N4—Tb1174.9 (4)
O4—Tb1—O10128.09 (10)O7—N4—Tb160.03 (17)
O2i—Tb1—O7154.61 (11)O6—N4—Tb157.02 (15)
O1—Tb1—O777.57 (10)O11—N5—O9122.2 (3)
O12—Tb1—O773.48 (10)O11—N5—O10121.9 (3)
O3—Tb1—O7123.72 (10)O9—N5—O10115.9 (3)
O6—Tb1—O751.06 (10)O1—C1—O2124.1 (3)
O4—Tb1—O7116.66 (10)O1—C1—C2118.3 (3)
O10—Tb1—O7100.48 (10)O2—C1—C2117.6 (3)
O2i—Tb1—O9123.29 (9)C3—C2—C7119.3 (3)
O1—Tb1—O9142.55 (9)C3—C2—C1120.5 (3)
O12—Tb1—O996.38 (12)C7—C2—C1120.2 (3)
O3—Tb1—O971.99 (11)C2—C3—C4120.3 (3)
O6—Tb1—O968.14 (9)C2—C3—H3119.9
O4—Tb1—O9113.68 (11)C4—C3—H3119.9
O10—Tb1—O949.74 (8)C5—C4—C3119.8 (3)
O7—Tb1—O966.28 (11)C5—C4—H4120.1
O2i—Tb1—N382.04 (11)C3—C4—H4120.1
O1—Tb1—N399.40 (10)C4—C5—C6120.6 (3)
O12—Tb1—N3163.80 (11)C4—C5—N1120.6 (3)
O3—Tb1—N325.90 (10)C6—C5—N1118.8 (3)
O6—Tb1—N371.67 (10)C5—C6—C7119.3 (3)
O4—Tb1—N325.83 (10)C5—C6—H6120.4
O10—Tb1—N3103.51 (11)C7—C6—H6120.4
O7—Tb1—N3122.65 (10)C6—C7—C2120.7 (3)
O9—Tb1—N392.25 (12)C6—C7—H7119.7
O2i—Tb1—N4173.59 (9)C2—C7—H7119.7
O1—Tb1—N480.14 (9)C9—C8—N1107.0 (3)
O12—Tb1—N498.87 (11)C9—C8—H8126.5
O3—Tb1—N4101.31 (11)N1—C8—H8126.5
O6—Tb1—N425.75 (10)C8—C9—N2107.6 (3)
O4—Tb1—N494.00 (10)C8—C9—H9126.2
O10—Tb1—N4109.53 (8)N2—C9—H9126.2
O7—Tb1—N425.40 (10)N2—C10—N1108.0 (3)
O9—Tb1—N463.06 (9)N2—C10—H10126.0
N3—Tb1—N497.26 (11)N1—C10—H10126.0
C1—O1—Tb1143.1 (2)O12—C11—H11A109.5
C1—O2—Tb1i159.8 (2)O12—C11—H11B109.5
N3—O3—Tb195.8 (2)H11A—C11—H11B109.5
N3—O4—Tb194.9 (2)O12—C11—H11C109.5
N4—O6—Tb197.2 (2)H11A—C11—H11C109.5
N4—O7—Tb194.6 (2)H11B—C11—H11C109.5
N5—O9—Tb196.2 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H1O···O10ii0.812.152.960 (4)173
N2—H2N···O6iii0.80 (5)2.00 (5)2.779 (4)167 (5)
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Tb2(NO3)6(C10H8N2O2)2(CH4O)2]
Mr1130.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2966 (3), 9.6107 (3), 11.6780 (4)
α, β, γ (°)95.328 (2), 101.271 (2), 100.166 (2)
V3)891.01 (5)
Z1
Radiation typeMo Kα
µ (mm1)4.05
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.358, 0.498
No. of measured, independent and
observed [I > 2σ(I)] reflections
14627, 4356, 3924
Rint0.037
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.04
No. of reflections4356
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.01, 0.49

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Tb1—O2i2.245 (2)Tb1—O42.464 (3)
Tb1—O12.275 (2)Tb1—O102.509 (3)
Tb1—O122.385 (3)Tb1—O72.529 (3)
Tb1—O32.441 (3)Tb1—O92.553 (3)
Tb1—O62.461 (2)
C10—N2—C9109.9 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H1O···O10ii0.812.152.960 (4)173
N2—H2N···O6iii0.80 (5)2.00 (5)2.779 (4)167 (5)
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2009–0079916).

References

First citationAijaz, A., Barea, E. & Bharadwaj, P. K. (2009). Cryst. Growth Des. 9, 4480–4486.  Web of Science CSD CrossRef CAS Google Scholar
First citationBai, Z. S., Chen, S. S., Zhang, Z. H., Chen, M. S., Liu, G. X. & Sun, W. Y. (2009). Sci. China Ser. B Chem. 52, 459–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, J., Wei, K. J., Ni, J. & Zhang, J. Z. (2008). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 38, 562–566.  CAS Google Scholar
First citationGao, J., Wei, K. J., Ni, J. & Zhang, J. Z. (2009). J. Coord. Chem. 62, 257–265.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, H. L., Chen, J. T., Zhang, J. Z., Cao, W. R. & Chen, Q. W. (2009). Open Crystallogr. J. 2, 15–18.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J. Z., Cao, W. R., Pan, J. X. & Chen, Q. W. (2007a). Inorg. Chem. Commun. 10, 1360–1364.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J.-Z., Pan, J.-X., Cao, W.-R. & Chen, Q.-W. (2007b). Acta Cryst. E63, m1042–m1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m253-m254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds