metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m168-m169

Tetra­kis(μ2-2-methyl-3,5-di­nitro­benzoato-κ2O1:O1′)bis­­[aqua­copper(II)] tetra­hydrate

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 January 2011; accepted 5 January 2011; online 15 January 2011)

The title compound, [Cu2(C8H5N2O6)4(H2O)2]·4H2O, forms a centrosymmetric paddle-wheel-type dimer with an intra­molecular Cu⋯Cu distance of 2.6540 (4) Å. The CuII atom is in a square-pyramidal coordination environment formed by four O atoms of four carboxyl­ate groups and one water mol­ecule, which is located in the apical position. The carboxyl­ate groups are twisted relative to the benzene rings by 11.09 (16) and 45.55 (19)°. The nitro groups are not coplanar with the parent aromatic rings [dihedral angles = 16.2 (3)–51.45 (14)°]. O—H⋯O hydrogen bonds between the coordinated water mol­ecules and one of the nitro groups, as well as ππ stacking inter­actions [centroid–centroid distance = 3.5764 (12) Å] between the benzene rings, assemble the complex mol­ecules into a one-dimensional polymeric structure which is further extended into a three-dimensional polymeric network via O—H⋯O hydrogen bonds involving the water molecules of crystallization.

Related literature

For related crystal structures, see: Chen et al. (2007[Chen, P.-G., Gao, S. & Ng, S. W. (2007). Acta Cryst. E63, m2617.]); Danish et al. (2010[Danish, M., Saleem, I., Tahir, M. N., Ahmad, N. & Raza, A. R. (2010). Acta Cryst. E66, m528.]); Moncol et al. (2006[Moncol, J., Kavalírová, J., Lis, T. & Valigura, D. (2006). Acta Cryst. E62, m3217-m3219.]); Stachova et al. (2004[Stachova, P., Valigura, D., Koman, M., Melnik, M., Korabik, M., Mrozinski, J. & Glowiak, T. (2004). Polyhedron, 23, 1303-1308.]); Viossat et al. (2005[Viossat, B., Greenaway, F. T., Morgant, G., Daran, J.-C., Dung, N.-H. & Sorenson, J. R. J. (2005). J. Inorg. Biochem. 99, 355-367.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H5N2O6)4(H2O)2]·4H2O

  • Mr = 1135.76

  • Monoclinic, P 21 /n

  • a = 8.9757 (3) Å

  • b = 22.5582 (8) Å

  • c = 11.2698 (3) Å

  • β = 104.443 (1)°

  • V = 2209.75 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 296 K

  • 0.30 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 0.782

  • 21133 measured reflections

  • 5449 independent reflections

  • 4344 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.02

  • 5449 reflections

  • 345 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9616 (16)
Cu1—O7 1.9749 (16)
Cu1—O8 1.9637 (15)
Cu1—O13 2.0914 (19)
Cu1—O2i 1.9595 (16)
Symmetry code: (i) -x, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O14ii 0.80 (3) 1.84 (3) 2.641 (3) 175 (3)
O13—H13B⋯O10iii 0.77 (2) 2.22 (2) 2.838 (2) 138 (3)
O14—H14A⋯O15iv 0.81 (3) 1.95 (3) 2.758 (4) 172 (3)
O14—H14B⋯O7 0.80 (3) 2.51 (4) 3.182 (3) 143 (4)
O15—H15A⋯O12v 0.83 (4) 2.16 (4) 2.953 (4) 161 (4)
O15—H15B⋯O5vi 0.84 (3) 2.17 (2) 2.996 (4) 168 (4)
O15—H15B⋯O6vi 0.84 (3) 2.60 (4) 3.273 (4) 138 (4)
Symmetry codes: (ii) -x+1, -y, -z+2; (iii) x, y, z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x+1, y, z; (vi) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Recently we have reported the synthesis and crystal structure of tetrakis(µ-2-methylbenzoato-κ2O:O')bis[(methanol-O)copper(II)]. In continuation to our interest with the metal carboxylate chemistry, the title compound (I), (Fig. 1) is being reported here.

The crystal structure of (II) i.e., diaqua-tetrakis(µ2-2,3,5-tri-iodobenzoato-k2O:O')-di-copper(ii) bis(methanol-κO)-tetrakis(µ2-2,3,5-tri-iodobenzoato- κ2O:O')-di-copper(ii) methanol solvate (Chen et al., 2007), (III) i.e., tetrakis(µ2-2-nitrobenzoato-O,O')-bis(aqua-copper(ii)) ethanol solvate (Moncol et al., 2006), (IV) i.e., tetrakis(µ2-2-(3-trifluoromethylphenyl)aminonicotinato)-diaqua-di-copper(ii) N,N-dimethylformamide solvate (Viossat et al., 2005) and (V) i.e., diaqua-tetrakis(2-nitrobenzoato-O,O')-di-copper(ii) dihydrate (Stachova et al., 2004) have been published which are related to the title compound (I) due to the coordination around copper.

The structure of (I) is centrosymmetric with a square pyramidal coordination around the Cu-atoms. Four oxygen atoms (O1/O2i/O7/O8; i = -x, -y, -z + 2) from four carboxylate groups are in plane [r. m.s deviation of 0.0014 Å] and coordinated to copper(II) with bond distance of 1.9593 (15) – 1.9749 (15) Å. The Cu—O [2.0909 (17) Å] bond of water molecule is longer as compared to Cu—O bonds of carboxylate groups. The Cu atom is at a distance of 0.2189 (8) Å from the mean square plane of carboxylate O-atoms. The separation of Cu—Cu is 2.6540 (4) Å. These values are in agreement with the reported structures [Table 1]. The toluene groups A (C2—C8) and B (C10—C16) are almost planar with r. m.s deviation of 0.0524 Å and 0.0363 Å and are nearly perpendicular to each other. The dihedral angle between A/B is 89.33 (6)°. The carboxylate moiety C (O1/C1/O2), nitro groups D (O3/N1/O4) and E (O5/N2/O6) are oriented at dihedral angles of 11.09 (16), 51.45 (14) and 45.30 (33)°, respectively with the parent toluene (A) moiety. In the other ligand, the carboxylate moiety F (O7/C9/O8i), nitro groups G (O9/N3/O10) and H (O11/N4/O12) are oriented at dihedral angles of 45.55 (19), 40.43 (23) and 16.20 (34)°, respectively with the parent toluene (B) moiety. The molecules are stabilized in the form of three-dimensional polymeric network due to strong H-bonding (Table 2, Fig. 2, Fig. 3). There also exists a π···π interaction between the benzene rings (C10—C15) with centroid-to- centroid distance of 3.5764 (12) Å.

Related literature top

For related and crystal structures, see: Chen et al. (2007); Danish et al. (2010); Moncol et al. (2006); Stachova et al. (2004); Viossat et al. (2005).

Experimental top

Aqueous solutions of sodium salt of 3,5-dinitro- o-toluic acid (0.496 g, 2.0 mol) and copper chloride dihydrate (0.170 g, 1.0 mmol) were prepared separately. Both solutions were mixed in 100 ml round-bottom flask at room temperature. On mixing dirty green precipitate was formed at the begining and it disappeared on continuous stirring of the reaction mixture for 4 h. The reaction mixture was filtered and the filtrate was concentrated by heating for few minutes. The concentrated solution was kept at room temperature for 72 h to afford greenish blue prisms of of the title compound.

Refinement top

The coordinates of H-atoms of water molecules were refined with the distance restraints imposed on the O-H distances and with Uiso(H) = 1.2 Ueq(O),. The C-bound H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows the H-bonding mode with neighbouring molecules through dotted lines except which are present in coordination sphere.
[Figure 3] Fig. 3. The partial packing (PLATON; Spek, 2009) which shows that molecules form three-dimensional polymeric network due to strong intermolecular H-bondings.
Tetrakis(µ2-2-methyl-3,5-dinitrobenzoato- κ2O1:O1')bis[aquacopper(II)] tetrahydrate top
Crystal data top
[Cu2(C8H5N2O6)4(H2O)2]·4H2OF(000) = 1156
Mr = 1135.76Dx = 1.707 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4344 reflections
a = 8.9757 (3) Åθ = 2.1–28.3°
b = 22.5582 (8) ŵ = 1.08 mm1
c = 11.2698 (3) ÅT = 296 K
β = 104.443 (1)°Prism, blue
V = 2209.75 (12) Å30.30 × 0.24 × 0.22 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5449 independent reflections
Radiation source: fine-focus sealed tube4344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 3030
Tmin = 0.743, Tmax = 0.782l = 159
21133 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.8547P]
where P = (Fo2 + 2Fc2)/3
5449 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu2(C8H5N2O6)4(H2O)2]·4H2OV = 2209.75 (12) Å3
Mr = 1135.76Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.9757 (3) ŵ = 1.08 mm1
b = 22.5582 (8) ÅT = 296 K
c = 11.2698 (3) Å0.30 × 0.24 × 0.22 mm
β = 104.443 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5449 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4344 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.782Rint = 0.035
21133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.33 e Å3
5449 reflectionsΔρmin = 0.28 e Å3
345 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.14133 (3)0.01627 (1)1.05844 (2)0.0264 (1)
O10.17167 (19)0.06719 (7)1.10736 (17)0.0528 (6)
O20.06417 (19)0.09368 (7)1.00866 (15)0.0474 (5)
O30.1238 (3)0.32675 (9)0.9849 (2)0.0826 (9)
O40.0417 (3)0.36016 (8)1.1678 (2)0.0701 (8)
O50.5065 (2)0.29719 (9)1.30010 (18)0.0624 (7)
O60.5609 (2)0.20680 (10)1.2665 (3)0.0901 (9)
O70.19256 (18)0.00393 (8)0.90275 (14)0.0461 (5)
O80.04616 (18)0.02830 (8)1.19572 (13)0.0445 (5)
O90.2910 (2)0.08610 (9)0.45982 (19)0.0680 (8)
O100.3870 (2)0.01075 (10)0.38692 (16)0.0623 (7)
O110.0204 (3)0.15433 (11)0.34615 (17)0.0807 (9)
O120.0072 (3)0.18886 (9)0.51609 (19)0.0792 (9)
O130.3664 (2)0.04335 (10)1.14010 (15)0.0592 (7)
N10.0457 (3)0.32313 (9)1.0898 (2)0.0496 (7)
N20.4706 (2)0.24745 (10)1.2591 (2)0.0518 (7)
N30.3119 (2)0.03328 (11)0.45226 (17)0.0472 (7)
N40.0329 (3)0.15041 (10)0.45558 (18)0.0510 (7)
C10.0668 (2)0.10469 (9)1.07283 (18)0.0321 (6)
C20.1073 (2)0.16812 (8)1.10974 (17)0.0309 (6)
C30.0028 (3)0.21412 (9)1.08940 (18)0.0347 (6)
C40.0571 (3)0.27102 (9)1.1212 (2)0.0373 (6)
C50.2074 (3)0.28347 (10)1.1774 (2)0.0400 (7)
C60.3078 (3)0.23623 (10)1.19871 (19)0.0377 (7)
C70.2606 (3)0.17952 (9)1.16425 (18)0.0350 (6)
C80.1731 (3)0.20411 (11)1.0466 (3)0.0523 (8)
C90.0935 (2)0.02030 (8)0.81066 (18)0.0308 (6)
C100.1378 (2)0.03256 (9)0.69218 (17)0.0303 (6)
C110.2268 (2)0.00702 (9)0.64135 (18)0.0333 (6)
C120.2367 (2)0.00750 (10)0.52214 (19)0.0353 (6)
C130.1764 (2)0.05764 (10)0.45945 (18)0.0379 (7)
C140.0982 (2)0.09566 (10)0.51708 (18)0.0355 (6)
C150.0760 (2)0.08360 (9)0.63150 (18)0.0341 (6)
C160.3062 (3)0.05950 (12)0.7111 (2)0.0517 (8)
O140.4622 (3)0.09823 (11)0.9851 (3)0.0827 (10)
O150.8508 (3)0.29497 (14)0.3805 (4)0.1215 (14)
H50.240010.321881.200130.0480*
H70.331710.148721.177550.0421*
H8A0.201370.199490.959200.0784*
H8B0.226540.237501.069030.0784*
H8C0.200280.168931.084350.0784*
H130.188030.065490.381260.0455*
H13A0.419 (3)0.0616 (13)1.105 (2)0.0711*
H13B0.389 (4)0.0520 (14)1.2082 (17)0.0711*
H150.019800.109600.667510.0409*
H16A0.342510.049330.796170.0776*
H16B0.391790.070800.679240.0776*
H16C0.235230.091980.702650.0776*
H14A0.428 (5)0.1281 (12)0.948 (3)0.0993*
H14B0.410 (4)0.0722 (14)1.000 (4)0.0993*
H15A0.910 (5)0.2681 (17)0.414 (4)0.1457*
H15B0.755 (2)0.291 (2)0.352 (4)0.1457*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0288 (1)0.0251 (1)0.0263 (1)0.0023 (1)0.0088 (1)0.0015 (1)
O10.0498 (9)0.0261 (8)0.0741 (12)0.0047 (7)0.0001 (8)0.0090 (8)
O20.0451 (9)0.0282 (8)0.0629 (10)0.0005 (7)0.0023 (8)0.0085 (7)
O30.0964 (17)0.0585 (13)0.0761 (14)0.0322 (12)0.0102 (12)0.0002 (11)
O40.0857 (15)0.0430 (11)0.0871 (14)0.0112 (10)0.0318 (12)0.0168 (10)
O50.0623 (12)0.0517 (11)0.0660 (12)0.0168 (9)0.0024 (9)0.0118 (9)
O60.0472 (12)0.0617 (14)0.147 (2)0.0052 (10)0.0027 (13)0.0153 (14)
O70.0371 (8)0.0709 (11)0.0326 (8)0.0032 (8)0.0129 (7)0.0138 (8)
O80.0399 (9)0.0664 (11)0.0310 (8)0.0109 (8)0.0160 (6)0.0103 (7)
O90.0780 (14)0.0575 (13)0.0740 (13)0.0053 (11)0.0294 (11)0.0234 (10)
O100.0497 (10)0.1042 (16)0.0394 (9)0.0029 (10)0.0233 (8)0.0130 (10)
O110.1012 (17)0.1012 (18)0.0450 (10)0.0273 (14)0.0284 (11)0.0341 (11)
O120.126 (2)0.0554 (12)0.0644 (13)0.0282 (13)0.0394 (13)0.0195 (10)
O130.0469 (10)0.0925 (15)0.0348 (9)0.0330 (10)0.0037 (8)0.0047 (10)
N10.0556 (13)0.0312 (10)0.0638 (14)0.0042 (9)0.0181 (11)0.0027 (10)
N20.0475 (12)0.0485 (12)0.0554 (13)0.0071 (10)0.0054 (10)0.0010 (10)
N30.0392 (10)0.0671 (15)0.0365 (10)0.0007 (10)0.0116 (8)0.0167 (10)
N40.0581 (13)0.0568 (13)0.0418 (11)0.0040 (10)0.0192 (10)0.0180 (10)
C10.0438 (12)0.0261 (10)0.0300 (10)0.0011 (8)0.0162 (9)0.0007 (8)
C20.0423 (11)0.0244 (9)0.0288 (9)0.0011 (8)0.0144 (8)0.0003 (8)
C30.0439 (12)0.0298 (10)0.0324 (10)0.0012 (9)0.0134 (9)0.0002 (8)
C40.0473 (12)0.0274 (10)0.0387 (11)0.0048 (9)0.0133 (10)0.0005 (9)
C50.0531 (13)0.0263 (10)0.0408 (12)0.0050 (9)0.0123 (10)0.0014 (9)
C60.0409 (12)0.0357 (11)0.0357 (11)0.0043 (9)0.0081 (9)0.0010 (9)
C70.0417 (12)0.0291 (10)0.0361 (11)0.0041 (9)0.0131 (9)0.0011 (9)
C80.0424 (13)0.0396 (13)0.0738 (17)0.0033 (10)0.0125 (12)0.0054 (12)
C90.0393 (11)0.0265 (10)0.0292 (10)0.0038 (8)0.0137 (8)0.0023 (8)
C100.0339 (10)0.0323 (10)0.0264 (9)0.0059 (8)0.0109 (8)0.0009 (8)
C110.0328 (10)0.0353 (11)0.0337 (10)0.0048 (8)0.0121 (8)0.0043 (9)
C120.0330 (10)0.0435 (12)0.0319 (10)0.0068 (9)0.0130 (8)0.0106 (9)
C130.0374 (11)0.0503 (13)0.0278 (10)0.0104 (10)0.0115 (8)0.0022 (9)
C140.0378 (11)0.0396 (12)0.0297 (10)0.0058 (9)0.0096 (8)0.0041 (9)
C150.0378 (11)0.0350 (11)0.0318 (10)0.0043 (9)0.0130 (9)0.0016 (9)
C160.0622 (16)0.0480 (14)0.0484 (14)0.0116 (12)0.0202 (12)0.0036 (12)
O140.0699 (16)0.0818 (18)0.111 (2)0.0008 (13)0.0501 (14)0.0127 (15)
O150.0781 (19)0.086 (2)0.186 (3)0.0088 (16)0.006 (2)0.035 (2)
Geometric parameters (Å, º) top
Cu1—O11.9616 (16)C1—C21.509 (3)
Cu1—O71.9749 (16)C2—C31.412 (3)
Cu1—O81.9637 (15)C2—C71.384 (3)
Cu1—O132.0914 (19)C3—C41.403 (3)
Cu1—O2i1.9595 (16)C3—C81.501 (4)
O1—C11.253 (3)C4—C51.369 (4)
O2—C11.242 (3)C5—C61.378 (3)
O3—N11.218 (3)C6—C71.373 (3)
O4—N11.207 (3)C9—C101.511 (3)
O5—N21.226 (3)C10—C151.383 (3)
O6—N21.213 (3)C10—C111.411 (3)
O7—C91.243 (2)C11—C121.407 (3)
O8—C9i1.251 (2)C11—C161.499 (3)
O9—N31.213 (3)C12—C131.371 (3)
O10—N31.226 (3)C13—C141.370 (3)
O11—N41.213 (3)C14—C151.380 (3)
O12—N41.212 (3)C5—H50.9300
O13—H13B0.77 (2)C7—H70.9300
O13—H13A0.80 (3)C8—H8A0.9600
O14—H14A0.81 (3)C8—H8B0.9600
O14—H14B0.80 (3)C8—H8C0.9600
O15—H15A0.83 (4)C13—H130.9300
O15—H15B0.84 (3)C15—H150.9300
N1—C41.482 (3)C16—H16B0.9600
N2—C61.472 (3)C16—H16C0.9600
N3—C121.479 (3)C16—H16A0.9600
N4—C141.465 (3)
O1—Cu1—O788.94 (7)C4—C5—C6116.6 (2)
O1—Cu1—O888.19 (7)C5—C6—C7122.0 (2)
O1—Cu1—O1396.06 (8)N2—C6—C7119.5 (2)
O1—Cu1—O2i167.09 (7)N2—C6—C5118.6 (2)
O7—Cu1—O8167.24 (7)C2—C7—C6120.1 (2)
O7—Cu1—O1392.58 (7)O8i—C9—C10113.81 (17)
O2i—Cu1—O790.06 (7)O7—C9—C10120.09 (17)
O8—Cu1—O13100.09 (7)O7—C9—O8i126.09 (19)
O2i—Cu1—O889.98 (7)C11—C10—C15121.60 (18)
O2i—Cu1—O1396.84 (8)C9—C10—C15115.34 (17)
Cu1—O1—C1121.32 (15)C9—C10—C11122.91 (17)
Cu1i—O2—C1126.52 (14)C10—C11—C16122.00 (18)
Cu1—O7—C9122.28 (14)C10—C11—C12114.66 (18)
Cu1—O8—C9i124.16 (13)C12—C11—C16123.33 (19)
Cu1—O13—H13A123.8 (17)N3—C12—C13114.37 (18)
Cu1—O13—H13B120 (3)C11—C12—C13124.97 (19)
H13A—O13—H13B109 (3)N3—C12—C11120.64 (19)
H14A—O14—H14B124 (4)C12—C13—C14117.07 (19)
H15A—O15—H15B125 (4)C13—C14—C15122.0 (2)
O3—N1—O4124.5 (2)N4—C14—C13119.68 (19)
O4—N1—C4118.1 (2)N4—C14—C15118.31 (19)
O3—N1—C4117.3 (2)C10—C15—C14119.52 (18)
O5—N2—C6118.0 (2)C6—C5—H5122.00
O6—N2—C6118.1 (2)C4—C5—H5122.00
O5—N2—O6123.9 (2)C2—C7—H7120.00
O9—N3—O10124.6 (2)C6—C7—H7120.00
O10—N3—C12117.0 (2)C3—C8—H8A109.00
O9—N3—C12118.34 (19)H8A—C8—H8B110.00
O12—N4—C14118.49 (19)H8A—C8—H8C109.00
O11—N4—O12123.7 (2)H8B—C8—H8C109.00
O11—N4—C14117.8 (2)C3—C8—H8B109.00
O1—C1—C2116.35 (17)C3—C8—H8C109.00
O1—C1—O2125.1 (2)C12—C13—H13121.00
O2—C1—C2118.56 (18)C14—C13—H13121.00
C1—C2—C7116.30 (17)C10—C15—H15120.00
C3—C2—C7120.91 (18)C14—C15—H15120.00
C1—C2—C3122.78 (17)C11—C16—H16B109.00
C4—C3—C8121.0 (2)C11—C16—H16C109.00
C2—C3—C8123.86 (19)H16A—C16—H16C109.00
C2—C3—C4115.0 (2)H16B—C16—H16C109.00
N1—C4—C3119.3 (2)H16A—C16—H16B109.00
N1—C4—C5115.5 (2)C11—C16—H16A109.00
C3—C4—C5125.2 (2)
O7—Cu1—O1—C183.36 (17)O2—C1—C2—C39.2 (3)
O8—Cu1—O1—C184.20 (17)O2—C1—C2—C7170.12 (19)
O13—Cu1—O1—C1175.84 (17)C1—C2—C3—C4175.44 (18)
O1—Cu1—O7—C988.62 (17)C1—C2—C3—C89.3 (3)
O13—Cu1—O7—C9175.36 (17)C7—C2—C3—C43.8 (3)
O2i—Cu1—O7—C978.51 (17)C7—C2—C3—C8171.5 (2)
O1—Cu1—O8—C9i87.39 (18)C1—C2—C7—C6178.87 (19)
O13—Cu1—O8—C9i176.78 (17)C3—C2—C7—C60.4 (3)
O2i—Cu1—O8—C9i79.83 (17)C2—C3—C4—N1172.73 (19)
O7—Cu1—O2i—C1i84.61 (18)C2—C3—C4—C55.4 (3)
O8—Cu1—O2i—C1i82.62 (18)C8—C3—C4—N111.8 (3)
O13—Cu1—O2i—C1i177.22 (17)C8—C3—C4—C5170.1 (2)
Cu1—O1—C1—O21.7 (3)N1—C4—C5—C6175.0 (2)
Cu1—O1—C1—C2176.21 (13)C3—C4—C5—C63.2 (4)
Cu1i—O2—C1—O11.3 (3)C4—C5—C6—N2179.9 (2)
Cu1i—O2—C1—C2176.49 (13)C4—C5—C6—C70.8 (3)
Cu1—O7—C9—C10177.24 (13)N2—C6—C7—C2178.63 (19)
Cu1—O7—C9—O8i2.8 (3)C5—C6—C7—C22.0 (3)
Cu1—O8—C9i—O7i0.1 (3)O7—C9—C10—C1148.5 (3)
Cu1—O8—C9i—C10i179.93 (13)O7—C9—C10—C15135.9 (2)
O3—N1—C4—C349.7 (3)O8i—C9—C10—C11131.5 (2)
O3—N1—C4—C5128.6 (3)O8i—C9—C10—C1544.1 (2)
O4—N1—C4—C3133.4 (3)C9—C10—C11—C12170.77 (18)
O4—N1—C4—C548.3 (3)C9—C10—C11—C1610.4 (3)
O5—N2—C6—C58.0 (3)C15—C10—C11—C124.6 (3)
O5—N2—C6—C7172.6 (2)C15—C10—C11—C16174.3 (2)
O6—N2—C6—C5172.8 (3)C9—C10—C15—C14174.02 (17)
O6—N2—C6—C76.6 (3)C11—C10—C15—C141.7 (3)
O9—N3—C12—C1139.4 (3)C10—C11—C12—N3173.40 (18)
O9—N3—C12—C13138.8 (2)C10—C11—C12—C134.5 (3)
O10—N3—C12—C11143.2 (2)C16—C11—C12—N37.7 (3)
O10—N3—C12—C1338.7 (3)C16—C11—C12—C13174.4 (2)
O11—N4—C14—C1315.9 (4)N3—C12—C13—C14176.69 (18)
O11—N4—C14—C15162.9 (2)C11—C12—C13—C141.3 (3)
O12—N4—C14—C13165.0 (2)C12—C13—C14—N4179.2 (2)
O12—N4—C14—C1516.2 (3)C12—C13—C14—C152.1 (3)
O1—C1—C2—C3172.83 (19)N4—C14—C15—C10179.30 (19)
O1—C1—C2—C77.9 (3)C13—C14—C15—C101.9 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O14ii0.80 (3)1.84 (3)2.641 (3)175 (3)
O13—H13B···O10iii0.77 (2)2.22 (2)2.838 (2)138 (3)
O14—H14A···O15iv0.81 (3)1.95 (3)2.758 (4)172 (3)
O14—H14B···O70.80 (3)2.51 (4)3.182 (3)143 (4)
O15—H15A···O12v0.83 (4)2.16 (4)2.953 (4)161 (4)
O15—H15B···O5vi0.84 (3)2.17 (2)2.996 (4)168 (4)
O15—H15B···O6vi0.84 (3)2.60 (4)3.273 (4)138 (4)
C15—H15···O5vii0.932.603.438 (3)150
Symmetry codes: (ii) x+1, y, z+2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x, y, z1; (vii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C8H5N2O6)4(H2O)2]·4H2O
Mr1135.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.9757 (3), 22.5582 (8), 11.2698 (3)
β (°) 104.443 (1)
V3)2209.75 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.743, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
21133, 5449, 4344
Rint0.035
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.02
No. of reflections5449
No. of parameters345
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O11.9616 (16)Cu1—O132.0914 (19)
Cu1—O71.9749 (16)Cu1—O2i1.9595 (16)
Cu1—O81.9637 (15)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O14ii0.80 (3)1.84 (3)2.641 (3)175 (3)
O13—H13B···O10iii0.77 (2)2.22 (2)2.838 (2)138 (3)
O14—H14A···O15iv0.81 (3)1.95 (3)2.758 (4)172 (3)
O14—H14B···O70.80 (3)2.51 (4)3.182 (3)143 (4)
O15—H15A···O12v0.83 (4)2.16 (4)2.953 (4)161 (4)
O15—H15B···O5vi0.84 (3)2.17 (2)2.996 (4)168 (4)
O15—H15B···O6vi0.84 (3)2.60 (4)3.273 (4)138 (4)
Symmetry codes: (ii) x+1, y, z+2; (iii) x, y, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x, y, z1.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, P.-G., Gao, S. & Ng, S. W. (2007). Acta Cryst. E63, m2617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDanish, M., Saleem, I., Tahir, M. N., Ahmad, N. & Raza, A. R. (2010). Acta Cryst. E66, m528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoncol, J., Kavalírová, J., Lis, T. & Valigura, D. (2006). Acta Cryst. E62, m3217–m3219.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStachova, P., Valigura, D., Koman, M., Melnik, M., Korabik, M., Mrozinski, J. & Glowiak, T. (2004). Polyhedron, 23, 1303–1308.  CAS Google Scholar
First citationViossat, B., Greenaway, F. T., Morgant, G., Daran, J.-C., Dung, N.-H. & Sorenson, J. R. J. (2005). J. Inorg. Biochem. 99, 355–367.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m168-m169
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds