organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Butyl­amino)(phen­yl)meth­yl]naphthalen-2-ol

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: nihmseu@hotmail.com

(Received 29 June 2010; accepted 4 January 2011; online 12 January 2011)

In the title compound, C21H23NO, obtained via a one-pot synthesis, an intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation. The dihedral angle between the fused ring system and the phenyl ring is 78.27 (5)°. The crystal packing is characterized by helical chains of mol­ecules linked by C—H⋯O hydrogen bonds.

Related literature

For applications of Betti-type reactions, see: Zhao et al. (2004[Zhao, H., Li, Y. H., Wang, X. S., Qu, Z. R., Wang, L. Z., Xiong, R. G., Abrahams, B. F. & Xue, Z. L. (2004). Chem. Eur. J. 10, 2386-2390.]); Lu et al. (2002[Lu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367-8369.]); Xu et al. (2004[Xu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475-479.]); Wang et al. (2005[Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897-1900.])

[Scheme 1]

Experimental

Crystal data
  • C21H23NO

  • Mr = 305.40

  • Orthorhombic, P n a 21

  • a = 10.842 (7) Å

  • b = 16.651 (7) Å

  • c = 9.787 (6) Å

  • V = 1766.9 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.856, Tmax = 1.000

  • 14129 measured reflections

  • 3121 independent reflections

  • 1998 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.087

  • wR(F2) = 0.134

  • S = 1.02

  • 3121 reflections

  • 211 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.89 2.580 (5) 142

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base (Zhao & Li et al. 2004). Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu et al. 2002; Xu et al. 2004; Wang et al. 2005). Here we report the synthesis and crystal structure of the title compound (Fig. 1), obtained by a three-component condensation reaction of 2-naphthol, benzaldehyde and butan-1-amine under solvent-free condition.

Molecules of the title compound have normal geometric parameters. The bond lengths and angles are within their normal ranges. The rings A (C1–C10) and B (C12–C17) are, of course, planar and the dihedral angle between them is A/B = 78.27 (5). As can be seen from the packing diagram (Fig. 2), the intramolecular O—H···N hydrogen bond seems to be effective in the stabilization of the crystal structure. Dipole–dipole and van der Waals interactions are effective in the molecular packing.

Related literature top

For applications of Betti-type reactions, see: Zhao et al. (2004); Lu et al. (2002); Xu et al. (2004); Wang et al. (2005)

Experimental top

benzaldehyde (1.59 g, 0.015 mol) and butan-1-amine (1.095 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 h. The system was treated with 20 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (Petroleum ether: ethyl acetate-2:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of ethyl acetate solution.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.82 Å, and with Uiso(H) = 1.368Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.3–1.6Ueq(C). The structure does not contain a strong anomalous scatterer, therefore MERG 3 have been applied. 1459 Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing the two-dimensionnal hydrogen bondings network.
1-[(Butylamino)(phenyl)methyl]naphthalen-2-ol top
Crystal data top
C21H23NOF(000) = 656
Mr = 305.40Dx = 1.148 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2229 reflections
a = 10.842 (7) Åθ = 2.4–27.4°
b = 16.651 (7) ŵ = 0.07 mm1
c = 9.787 (6) ÅT = 293 K
V = 1766.9 (17) Å3Prism, colorless
Z = 40.30 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury2
diffractometer
3121 independent reflections
Radiation source: fine-focus sealed tube1998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 2.4°
CCD_Profile_fitting scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.856, Tmax = 1.000l = 1111
14129 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.087H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0007P)2 + 1.9999P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3121 reflectionsΔρmax = 0.25 e Å3
211 parametersΔρmin = 0.13 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (9)
Crystal data top
C21H23NOV = 1766.9 (17) Å3
Mr = 305.40Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.842 (7) ŵ = 0.07 mm1
b = 16.651 (7) ÅT = 293 K
c = 9.787 (6) Å0.30 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury2
diffractometer
3121 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1998 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.078
14129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0872 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
3121 reflectionsΔρmin = 0.13 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2175 (3)0.0230 (2)0.4209 (4)0.0825 (11)
H1A0.27860.04830.39660.124*
N10.4017 (4)0.1176 (2)0.4649 (5)0.0718 (12)
H1D0.45720.15350.42010.086*
C10.1998 (4)0.1346 (3)0.5773 (5)0.0551 (12)
C20.1594 (4)0.0636 (3)0.5250 (5)0.0657 (14)
C30.0511 (5)0.0240 (3)0.5748 (5)0.0717 (16)
H3A0.02600.02450.53680.086*
C40.0136 (5)0.0574 (4)0.6767 (6)0.0748 (16)
H4A0.08320.03110.70970.090*
C50.0463 (5)0.1666 (4)0.8420 (6)0.0822 (18)
H5A0.11450.13970.87690.099*
C60.0147 (6)0.2386 (5)0.8958 (6)0.093 (2)
H6A0.06100.26090.96620.111*
C70.0874 (6)0.2788 (4)0.8448 (6)0.0899 (19)
H7A0.10900.32820.88220.108*
C80.1585 (5)0.2473 (4)0.7391 (5)0.0739 (16)
H8A0.22570.27580.70550.089*
C90.1277 (4)0.1714 (3)0.6832 (5)0.0601 (13)
C100.0212 (4)0.1313 (3)0.7350 (5)0.0646 (14)
C110.3145 (4)0.1767 (3)0.5238 (5)0.0566 (12)
H11A0.35520.20320.60090.068*
C120.2873 (4)0.2400 (3)0.4156 (5)0.0603 (12)
C130.1947 (6)0.2301 (4)0.3193 (6)0.094 (2)
H13A0.14430.18490.32310.113*
C140.1761 (6)0.2872 (5)0.2161 (7)0.113 (2)
H14A0.11280.28070.15300.136*
C150.2523 (6)0.3530 (4)0.2093 (7)0.098 (2)
H15A0.24250.39010.13900.118*
C160.3415 (6)0.3644 (4)0.3043 (6)0.097 (2)
H16A0.39080.41000.30150.116*
C170.3588 (5)0.3071 (3)0.4058 (6)0.0789 (16)
H17A0.42150.31480.46940.095*
C180.4708 (5)0.0719 (4)0.5698 (7)0.0921 (19)
H18A0.41450.04010.62480.111*
H18B0.51530.10830.62940.111*
C190.5652 (6)0.0146 (5)0.4899 (8)0.127 (3)
H19A0.51870.02180.43210.152*
H19B0.61690.04720.43120.152*
C200.6390 (7)0.0296 (5)0.5756 (10)0.162 (4)
H20A0.58810.06540.62970.194*
H20B0.68160.00640.63770.194*
C210.7336 (6)0.0788 (5)0.4962 (9)0.153 (4)
H21A0.78330.10900.55890.230*
H21B0.78540.04340.44410.230*
H21C0.69160.11490.43550.230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.079 (2)0.084 (2)0.085 (3)0.017 (2)0.006 (2)0.019 (2)
N10.053 (2)0.076 (3)0.086 (3)0.001 (2)0.009 (2)0.003 (3)
C10.045 (3)0.070 (3)0.050 (3)0.004 (2)0.003 (2)0.003 (3)
C20.057 (3)0.075 (4)0.065 (4)0.001 (3)0.002 (3)0.001 (3)
C30.060 (3)0.075 (4)0.080 (4)0.010 (3)0.002 (3)0.009 (3)
C40.053 (3)0.091 (4)0.080 (4)0.007 (3)0.000 (3)0.028 (3)
C50.065 (4)0.110 (5)0.072 (4)0.021 (4)0.002 (3)0.022 (4)
C60.075 (4)0.128 (6)0.075 (5)0.031 (4)0.010 (4)0.002 (4)
C70.100 (5)0.095 (5)0.074 (4)0.024 (4)0.016 (4)0.013 (4)
C80.073 (4)0.090 (4)0.058 (4)0.008 (3)0.014 (3)0.002 (3)
C90.050 (3)0.074 (4)0.057 (3)0.001 (3)0.014 (2)0.013 (3)
C100.053 (3)0.087 (4)0.054 (3)0.016 (3)0.004 (3)0.006 (3)
C110.047 (3)0.064 (3)0.059 (3)0.003 (2)0.004 (2)0.010 (3)
C120.059 (3)0.067 (3)0.055 (3)0.008 (3)0.002 (3)0.013 (3)
C130.108 (5)0.103 (5)0.072 (4)0.042 (4)0.023 (4)0.017 (4)
C140.109 (5)0.146 (7)0.085 (5)0.022 (5)0.038 (4)0.034 (5)
C150.125 (6)0.104 (5)0.066 (4)0.002 (5)0.003 (4)0.028 (4)
C160.119 (6)0.084 (5)0.088 (5)0.025 (4)0.000 (4)0.008 (4)
C170.080 (4)0.075 (4)0.082 (4)0.021 (3)0.012 (3)0.010 (4)
C180.076 (4)0.086 (4)0.115 (5)0.009 (3)0.012 (4)0.005 (4)
C190.077 (5)0.151 (7)0.152 (8)0.026 (4)0.008 (5)0.026 (6)
C200.136 (8)0.188 (10)0.161 (9)0.033 (7)0.001 (7)0.012 (8)
C210.105 (6)0.109 (6)0.245 (11)0.032 (5)0.032 (6)0.047 (6)
Geometric parameters (Å, º) top
O1—C21.375 (6)C11—H11A0.9800
O1—H1A0.8200C12—C171.363 (6)
N1—C181.481 (6)C12—C131.387 (6)
N1—C111.483 (5)C13—C141.402 (8)
N1—H1D0.9548C13—H13A0.9300
C1—C21.362 (6)C14—C151.374 (8)
C1—C91.435 (7)C14—H14A0.9300
C1—C111.520 (6)C15—C161.355 (8)
C2—C31.431 (6)C15—H15A0.9300
C3—C41.340 (7)C16—C171.390 (8)
C3—H3A0.9300C16—H16A0.9300
C4—C101.409 (7)C17—H17A0.9300
C4—H4A0.9300C18—C191.603 (8)
C5—C61.353 (8)C18—H18A0.9700
C5—C101.406 (8)C18—H18B0.9700
C5—H5A0.9300C19—C201.373 (9)
C6—C71.386 (8)C19—H19A0.9700
C6—H6A0.9300C19—H19B0.9700
C7—C81.393 (7)C20—C211.526 (9)
C7—H7A0.9300C20—H20A0.9700
C8—C91.417 (7)C20—H20B0.9700
C8—H8A0.9300C21—H21A0.9600
C9—C101.427 (6)C21—H21B0.9600
C11—C121.523 (6)C21—H21C0.9600
C2—O1—H1A109.5C17—C12—C11120.4 (5)
C18—N1—C11113.2 (4)C13—C12—C11122.0 (5)
C18—N1—H1D108.8C12—C13—C14120.8 (6)
C11—N1—H1D99.4C12—C13—H13A119.6
C2—C1—C9117.8 (5)C14—C13—H13A119.6
C2—C1—C11122.3 (4)C15—C14—C13119.4 (6)
C9—C1—C11119.8 (4)C15—C14—H14A120.3
C1—C2—O1123.9 (5)C13—C14—H14A120.3
C1—C2—C3122.4 (5)C16—C15—C14120.4 (6)
O1—C2—C3113.7 (5)C16—C15—H15A119.8
C4—C3—C2119.5 (5)C14—C15—H15A119.8
C4—C3—H3A120.2C15—C16—C17119.4 (6)
C2—C3—H3A120.2C15—C16—H16A120.3
C3—C4—C10121.6 (5)C17—C16—H16A120.3
C3—C4—H4A119.2C12—C17—C16122.3 (6)
C10—C4—H4A119.2C12—C17—H17A118.8
C6—C5—C10121.9 (6)C16—C17—H17A118.8
C6—C5—H5A119.1N1—C18—C19106.9 (5)
C10—C5—H5A119.1N1—C18—H18A110.3
C5—C6—C7119.3 (6)C19—C18—H18A110.3
C5—C6—H6A120.3N1—C18—H18B110.3
C7—C6—H6A120.3C19—C18—H18B110.3
C6—C7—C8121.8 (6)H18A—C18—H18B108.6
C6—C7—H7A119.1C20—C19—C18113.2 (7)
C8—C7—H7A119.1C20—C19—H19A108.9
C7—C8—C9119.5 (6)C18—C19—H19A108.9
C7—C8—H8A120.2C20—C19—H19B108.9
C9—C8—H8A120.2C18—C19—H19B108.9
C8—C9—C10118.0 (5)H19A—C19—H19B107.8
C8—C9—C1122.1 (5)C19—C20—C21111.6 (8)
C10—C9—C1119.9 (5)C19—C20—H20A109.3
C5—C10—C4121.9 (6)C21—C20—H20A109.3
C5—C10—C9119.4 (6)C19—C20—H20B109.3
C4—C10—C9118.8 (5)C21—C20—H20B109.3
N1—C11—C1110.4 (4)H20A—C20—H20B108.0
N1—C11—C12108.2 (4)C20—C21—H21A109.5
C1—C11—C12113.6 (4)C20—C21—H21B109.5
N1—C11—H11A108.1H21A—C21—H21B109.5
C1—C11—H11A108.1C20—C21—H21C109.5
C12—C11—H11A108.1H21A—C21—H21C109.5
C17—C12—C13117.5 (5)H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.580 (5)142

Experimental details

Crystal data
Chemical formulaC21H23NO
Mr305.40
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)10.842 (7), 16.651 (7), 9.787 (6)
V3)1766.9 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14129, 3121, 1998
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.134, 1.02
No. of reflections3121
No. of parameters211
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.13

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.580 (5)142
 

Acknowledgements

This work was supported by a start-up grant to the author.

References

First citationLu, J., Xu, X. N., Wang, C. D., He, J. G., Hu, Y. F. & Hu, H. W. (2002). Tetrahedron Lett. 43, 8367–8369.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. 70, 1897–1900.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, X. N., Lu, J., Dong, Y. M., Li, R., Ge, Z. M. & Hu, Y. F. (2004). Tetrahedron Asymmetry, 15, 475–479.  Web of Science CrossRef CSD CAS Google Scholar
First citationZhao, H., Li, Y. H., Wang, X. S., Qu, Z. R., Wang, L. Z., Xiong, R. G., Abrahams, B. F. & Xue, Z. L. (2004). Chem. Eur. J. 10, 2386–2390.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds