metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m286-m287

{2,6-Bis[(2,6-di­phenyl­phosphan­yl)­­oxy]-4-fluoro­phenyl-κ3P,C1,P′}(6-methyl-2,2,4-trioxo-3,4-di­hydro-1,2,3-oxa­thia­zin-3-ido-κN)palladium(II)

aDepartment of Chemistry, University of South Alabama, Mobile AL 36688-0002, USA
*Correspondence e-mail: rsykora@jaguar1.usouthal.edu

(Received 20 December 2010; accepted 21 January 2011; online 29 January 2011)

The title acesulfamate complex, [Pd(C30H22FO2P2)(C4H4NO4S)], contains a four-coordinate Pd(II) ion with the expected, although relatively distorted, square-planar geometry where the four L—Pd—L angles range from 79.58 (8) to 102.47 (7)°. The acesulfamate ligand is N-bound to Pd [Pd—N = 2.127 (2) Å] with a dihedral angle of 76.35 (6)° relative to the square plane. Relatively long phen­yl–acesulfamate C—H⋯O and phen­yl–fluorine C—H⋯F inter­actions consolidate the crystal packing.

Related literature

For the low toxicity of acesulfamate, see: Lipinski (2003)[Lipinsky, G.-R. (2003). Ullman's Encyclopedia of Industrial Chemistry, 6th ed., Vol. 35, p. 407. Weinheim: Wiley-VCH.]. For examples of different modes of acesulfamate bonding to transition metals, see: Bulut et al. (2005[Bulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228-m230.]); Cavicchioli et al. (2010[Cavicchioli, M., Massabni, A. C., Heinrich, T. A., Costa-Neto, C. M., Abrao, E. P., Fonseca, B. A. L., Castellano, E. E., Corbi, P. P., Lustri, W. R. & Leite, C. Q. F. (2010). J. Inorg. Biochem. 104, 533-540.]); Şahin et al. (2009[Şahin, Z. S., İçbudak, H. & Işık, Ş. (2009). Acta Cryst. C65, m463-m465.], 2010[Şahin, Z. S., Sevindi, F., İçbudak, H. & Işık, Ş. (2010). Acta Cryst. C66, m314-m318.]); Dege et al. (2006[Dege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401-m403.], 2007[Dege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13-m15.]); Beck et al. (1985[Beck, W., Ambach, E. & Nagel, U. (1985). Chem. Ber. 118, 444-449.]); İçbudak et al. (2005[İçbudak, H., Bulut, A., Çetin, N. & Kazak, C. (2005). Acta Cryst. C61, m1-m3.]). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009[Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20-23, CRM-213.]); Kwan et al. (2007[Kwan, M.-L., Conry, K., Marshall, J., Schroder, P., Hoffman, N., Traylor, R., Wicker, B., Henderson, C., Sykora, R., Davis, J. Jr, Ozerov, O. & Lei, F. (2007). Abstracts, 39th Middle Atlantic Regional Meeting, American Chemical Society, Collegeville, PA, United States, May 16-18, MARM-059.]); Carter et al. (2004[Carter, E. B., Culver, S. L., Fox, P. A., Goode, R. D., Ntai, I., Tickell, M. D., Traylor, R. K., Hoffman, N. W., Davis, J. H. Jr. (2004). Chem. Commun. pp. 630-631.]); Wicker et al. (2007[Wicker, B., Traylor, R., Henderson, C., Hoffman, N., Sykora, R., Davis, J. H. Jr, Jordan, B., Abernethy, J., Ozerov, O., Fafard, C., Lei, F., Kwan, M.-L. & Poleski, K. (2007). Abstracts of Papers, 233rd National Meeting, American Chemical Society, Chicago, IL, United States, March 25-29, INOR-972.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C30H22FO2P2)(C4H4NO4S)]

  • Mr = 763.96

  • Triclinic, [P \overline 1]

  • a = 10.6088 (12) Å

  • b = 11.0069 (7) Å

  • c = 14.066 (2) Å

  • α = 89.175 (9)°

  • β = 88.524 (12)°

  • γ = 82.021 (7)°

  • V = 1625.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 290 K

  • 0.67 × 0.55 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.620, Tmax = 0.828

  • 6311 measured reflections

  • 5963 independent reflections

  • 5091 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.05

  • 5963 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O3i 0.93 2.42 3.284 (4) 155
C16—H16⋯O6ii 0.93 2.47 3.284 (4) 146
C10—H10⋯O4iii 0.93 2.50 3.305 (5) 145
C8—H8⋯F1iv 0.93 2.48 3.406 (5) 173
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x+1, -y, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: XCAD4-PC (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As thoroughly tested, apparently innocuous foodstuff additives (Lipinsky, 2003), the attraction of the acesulfamate and saccharinate anions as weakly binding ligands for organotransition-metal complexes and components of ionic liquids is obvious. The title complex, abbreviated as Ph{PdF}Ace hereafter, is readily prepared in high yield by a benchtop procedure from its chlorido analogue (Kwan et al., 2007; Hoffman et al., 2009) in an extension of Rh(I) Vaska chemistry (Carter et al., 2004). The presence of the pincer-ligand fluorine atom on the central aryl ring affords a convenient 19F-NMR reporter moiety (whose accuracy may also be corroborated by the two equivalent pendant-arm phosphinite donors by 31P-NMR) for monitoring ligand-substitution chemistry of the acesulfamate anion. A previous study of anion-metathesis equilibria using neutral Ph{PdF}X and N(PPh3)2+ salts has shown anion affinity for Ph{PdF}+ to follow X- = chloride > saccharinate > trifluoroacetate > acesulfamate > nitrate (Wicker et al., 2007). The acesulfamate complex displays a fascinating combination of 19F and 31P couplings to 13C nuclei in the pincer central fluoro-aryl ring, in which JF—C and JP—C correspond visually to their respective doublet and triplet coupling patterns.

A survey of crystal structures of transition-metal acesulfamate complexes shows three principal forms of metal–acesulfamate bonding: (i) monodentate metal to N bond, (ii) monodentate metal to carbonyl O bond (Şahin et al., 2010; Dege et al., 2007), and (iii) metal bonds to both N and carbonyl O in κ2-manner (Şahin et al., 2009; Dege et al., 2006; Bulut et al., 2005). When water is present in the crystal, extensive hydrogen bonding occurs. The title compound, a four-coordinate d8 complex, has the expected distorted square-planar geometry in which the acesulfamate is N-bound to Pd. The Pd—N distance is 2.127 (2) Å, significantly longer than the Pt—N distance (2.036 (3) Å) in another square-planar d8 complex, K2[trans-Pt(Ace)2Cl2] (Cavicchioli et al., 2010; Beck et al., 1985), but much shorter than those in divalent late-metal N-acesulfamates with octahedral Jahn-Teller distortion: 2.7175 (16) Å in trans-Cu(c—C6H10-1,2-(NH2)2)(Ace)2 (Şahin et al., 2010) and 2.3180 (19) Å in trans-Co(H2O)4(Ace)2 (İçbudak, 2005). The only directly comparable structure above, K2[trans-Pt(Ace)2Cl2], probably has a shorter Pt—N distance than that in Ph{PdF}Ace because the trans-effect of the fluoroaryl-Pd moiety is stronger than that of N-bound acesulfamate. The almost-planar acesulfamate ring (with the sulfur the only significantly nonplanar atom) in Ph{PdF}Ace is tilted 76.35 (6)° from the Pd(II) coordination plane, whereas the similarly nearly-planar acesulfamate ring in K2[trans-Pt(Ace)2Cl2] is nearly perpendicular to the Pt(II) coordination plane.

Related literature top

For the low toxicity of acesulfamate, see: Lipinski (2003). For examples of different modes of acesulfamate bonding to transition metals, see: Bulut et al. (2005); Cavicchioli et al. (2010); Şahin et al. (2009, 2010); Dege et al. (2006, 2007); Beck et al. (1985) İçbudak et al. (2005). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009); Kwan et al. (2007); Carter et al. (2004); Wicker et al. (2007).

Experimental top

Pd(C4H4NO4S)(C18H22FO2P2), abbreviated by Ph{PdF}Ace hereafter, was prepared by stirring Ph{PdF}Cl (25 mg, 0.040 mmol) with silver(I) acesulfamate (1.5 mol equiv.) in benzene (25 mL) at ambient temperature for 24 h. The AgCl precipitate was then removed by filtration, and the solvent was removed on a rotary evapaorator to afford a white microcrystalline solid (88% yield). Suitable single crystals were prepared by slow evaporation of solvent from a solution in fluorobenzene at 24 °C. The complex was characterized by NMR in CDCl3.

1H: (relative to internal TMS) δ 1.999 and δ 2.015 (3H, apparent doublet); δ 5.476 and δ 5.480 (1H, apparent doublet); δ 6.443 (2H, doublet, 3JH—F=9.7 Hz); δ 7.51 (8H, overlapping multiplets); δ 7.807 (12H, overlapping multiplets)

19F: (relative to internal C6F6 at δ -161.59) δ -111.29 (triplet of triplets,3JH—F=9.7 Hz, 5JP—F=1.9 Hz)

31P: (relative to external 85% aq. phosphoric acid) δ 148.79 (doublet, 5JP—F=1.9 Hz)

13C: (relative to internal TMS) Ace: δ 19.47(s), δ 103.34(s), carbonyl not observed with 6 K scans Ph2P: δ 128.69(t; 3JP—C=5.8 Hz), ? 132.35(s), δ 132.43(t; 1JP—C=53 Hz), δ 132.54(t; 2JP—C=8.2 Hz) Pincer Aryl: δ 95.69(d of t; 2JF—C=26 Hz), 3JP—C=8.6 Hz), δ 123.68(d of t; 3JF—C~2JP—C\sim 32 Hz, 3JP—C=8.6 Hz), δ 164.07(d of t; 3JF—C=15 Hz, 2JP—C=7.7 Hz), δ 163.93(d; 1JF—C=244 Hz)

Refinement top

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for all H atoms except for the methyl H atoms which were refined with Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD4-PC (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme. H atoms are shown as spheres of arbitrary size.
{2,6-Bis[(2,6-diphenylphosphanyl)oxy]-4-fluorophenyl- κ3P,C1,P'}(6-methyl-2,2,4-trioxo-3,4-dihydro- 1,2,3-oxathiazin-3-ido-κN)palladium(II) top
Crystal data top
[Pd(C30H22FO2P2)(C4H4NO4S)]Z = 2
Mr = 763.96F(000) = 772
Triclinic, P1Dx = 1.560 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6088 (12) ÅCell parameters from 25 reflections
b = 11.0069 (7) Åθ = 8.0–12.0°
c = 14.066 (2) ŵ = 0.79 mm1
α = 89.175 (9)°T = 290 K
β = 88.524 (12)°Prism, colorless
γ = 82.021 (7)°0.67 × 0.55 × 0.25 mm
V = 1625.9 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
5091 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.4°, θmin = 2.4°
θ/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.620, Tmax = 0.828l = 1616
6311 measured reflections3 standard reflections every 120 min
5963 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4794P]
where P = (Fo2 + 2Fc2)/3
5963 reflections(Δ/σ)max = 0.001
416 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Pd(C30H22FO2P2)(C4H4NO4S)]γ = 82.021 (7)°
Mr = 763.96V = 1625.9 (3) Å3
Triclinic, P1Z = 2
a = 10.6088 (12) ÅMo Kα radiation
b = 11.0069 (7) ŵ = 0.79 mm1
c = 14.066 (2) ÅT = 290 K
α = 89.175 (9)°0.67 × 0.55 × 0.25 mm
β = 88.524 (12)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5963 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
5091 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 0.828Rint = 0.020
6311 measured reflections3 standard reflections every 120 min
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
5963 reflectionsΔρmin = 0.41 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.319883 (17)0.194802 (18)0.257293 (13)0.03998 (7)
P10.40296 (7)0.34887 (7)0.17797 (5)0.04728 (17)
P20.29164 (7)0.00104 (6)0.30445 (5)0.04611 (16)
S10.04728 (7)0.36685 (7)0.28910 (5)0.05509 (19)
F10.73387 (18)0.1038 (2)0.01746 (14)0.0793 (6)
O10.5064 (2)0.27851 (19)0.10175 (14)0.0594 (5)
O20.4125 (2)0.08849 (18)0.25628 (15)0.0601 (5)
O30.0472 (3)0.4957 (2)0.29368 (18)0.0809 (7)
O40.0277 (2)0.3168 (2)0.20004 (16)0.0760 (7)
O50.07029 (18)0.3374 (2)0.35586 (15)0.0599 (5)
O60.2777 (2)0.2668 (2)0.47308 (15)0.0652 (6)
N10.1673 (2)0.2921 (2)0.33821 (16)0.0480 (5)
C10.4573 (2)0.0973 (2)0.18193 (18)0.0445 (6)
C20.5307 (3)0.1527 (3)0.11519 (19)0.0492 (6)
C30.6248 (3)0.0868 (3)0.0595 (2)0.0562 (7)
H30.67320.12530.01540.067*
C40.6432 (3)0.0378 (3)0.0727 (2)0.0590 (8)
C50.5753 (3)0.1000 (3)0.1369 (2)0.0584 (8)
H50.59050.18490.14360.070*
C60.4836 (3)0.0294 (3)0.19080 (19)0.0497 (6)
C70.3064 (3)0.4549 (3)0.1022 (2)0.0555 (7)
C80.2366 (3)0.4084 (4)0.0329 (2)0.0768 (10)
H80.24180.32410.02460.092*
C90.1581 (4)0.4901 (6)0.0243 (3)0.0938 (14)
H90.11320.45990.07240.113*
C100.1466 (4)0.6124 (6)0.0106 (3)0.1002 (16)
H100.09400.66560.04920.120*
C110.2112 (4)0.6571 (4)0.0587 (3)0.0974 (14)
H110.20080.74130.06890.117*
C120.2926 (4)0.5806 (3)0.1151 (3)0.0772 (10)
H120.33830.61320.16180.093*
C130.4943 (3)0.4430 (2)0.2440 (2)0.0485 (6)
C140.6042 (3)0.4790 (3)0.2059 (3)0.0725 (10)
H140.63610.44940.14720.087*
C150.6669 (4)0.5593 (4)0.2551 (3)0.0830 (11)
H150.74210.58230.22990.100*
C160.6199 (4)0.6049 (3)0.3398 (3)0.0718 (9)
H160.66130.66090.37150.086*
C170.5120 (4)0.5686 (4)0.3782 (3)0.0786 (10)
H170.48020.59960.43650.094*
C180.4494 (3)0.4861 (3)0.3315 (2)0.0668 (8)
H180.37720.45980.35910.080*
C190.1541 (3)0.0538 (3)0.2582 (2)0.0522 (7)
C200.0796 (4)0.0157 (3)0.1943 (3)0.0766 (10)
H200.09950.09230.17570.092*
C210.0252 (4)0.0270 (4)0.1573 (3)0.1013 (15)
H210.07570.02130.11420.122*
C220.0549 (4)0.1389 (4)0.1833 (3)0.0922 (13)
H220.12570.16720.15840.111*
C230.0189 (5)0.2090 (4)0.2457 (3)0.0961 (14)
H230.00080.28610.26320.115*
C240.1219 (4)0.1674 (3)0.2831 (3)0.0805 (11)
H240.17150.21650.32620.097*
C250.2974 (3)0.0480 (2)0.42676 (19)0.0458 (6)
C260.1920 (3)0.0163 (3)0.4854 (2)0.0591 (7)
H260.11760.02460.46020.071*
C270.1961 (3)0.0446 (3)0.5806 (2)0.0718 (9)
H270.12510.02160.61980.086*
C280.3057 (4)0.1074 (4)0.6181 (2)0.0733 (10)
H280.30820.12770.68250.088*
C290.4097 (3)0.1394 (3)0.5611 (2)0.0665 (9)
H290.48330.18180.58670.080*
C300.4077 (3)0.1095 (3)0.4651 (2)0.0543 (7)
H300.47980.13060.42670.065*
C310.1763 (3)0.2983 (2)0.43552 (19)0.0473 (6)
C320.0581 (3)0.3353 (2)0.4901 (2)0.0507 (6)
H320.06380.34950.55480.061*
C330.0556 (3)0.3498 (2)0.4529 (2)0.0508 (7)
C340.1806 (3)0.3777 (3)0.5027 (3)0.0680 (9)
H34A0.16800.38980.56900.102*
H34B0.22830.31040.49550.102*
H34C0.22680.45080.47590.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03722 (11)0.04267 (12)0.03896 (12)0.00192 (8)0.00034 (8)0.00073 (8)
P10.0490 (4)0.0496 (4)0.0438 (4)0.0100 (3)0.0060 (3)0.0018 (3)
P20.0459 (4)0.0421 (4)0.0485 (4)0.0003 (3)0.0018 (3)0.0037 (3)
S10.0510 (4)0.0561 (4)0.0535 (4)0.0074 (3)0.0034 (3)0.0106 (3)
F10.0624 (11)0.0990 (15)0.0679 (12)0.0194 (10)0.0124 (9)0.0230 (11)
O10.0628 (12)0.0598 (12)0.0561 (12)0.0139 (10)0.0193 (10)0.0079 (10)
O20.0623 (12)0.0488 (11)0.0633 (13)0.0112 (9)0.0086 (10)0.0036 (10)
O30.0935 (18)0.0538 (13)0.0895 (18)0.0051 (12)0.0168 (14)0.0220 (12)
O40.0704 (15)0.0988 (18)0.0523 (13)0.0119 (13)0.0092 (11)0.0079 (12)
O50.0412 (10)0.0740 (14)0.0623 (13)0.0011 (9)0.0014 (9)0.0057 (11)
O60.0520 (12)0.0866 (16)0.0544 (12)0.0023 (11)0.0091 (10)0.0136 (11)
N10.0442 (12)0.0517 (13)0.0448 (12)0.0043 (10)0.0022 (10)0.0004 (10)
C10.0389 (13)0.0518 (15)0.0410 (13)0.0010 (11)0.0035 (11)0.0053 (11)
C20.0437 (14)0.0609 (17)0.0432 (14)0.0064 (12)0.0008 (11)0.0105 (13)
C30.0425 (15)0.080 (2)0.0460 (15)0.0083 (14)0.0048 (12)0.0128 (14)
C40.0452 (15)0.079 (2)0.0478 (16)0.0112 (14)0.0015 (13)0.0181 (15)
C50.0551 (17)0.0610 (18)0.0542 (17)0.0122 (14)0.0091 (14)0.0082 (14)
C60.0439 (14)0.0570 (17)0.0457 (15)0.0029 (12)0.0043 (12)0.0018 (13)
C70.0491 (16)0.073 (2)0.0462 (16)0.0160 (14)0.0047 (12)0.0090 (14)
C80.070 (2)0.106 (3)0.055 (2)0.015 (2)0.0013 (17)0.0060 (19)
C90.062 (2)0.169 (5)0.050 (2)0.014 (3)0.0069 (17)0.000 (3)
C100.071 (3)0.146 (5)0.077 (3)0.002 (3)0.001 (2)0.045 (3)
C110.087 (3)0.091 (3)0.113 (4)0.013 (2)0.016 (3)0.046 (3)
C120.076 (2)0.067 (2)0.089 (3)0.0160 (18)0.015 (2)0.0237 (19)
C130.0485 (15)0.0468 (15)0.0496 (15)0.0048 (12)0.0025 (12)0.0000 (12)
C140.0609 (19)0.092 (3)0.069 (2)0.0257 (18)0.0137 (16)0.0235 (19)
C150.069 (2)0.099 (3)0.088 (3)0.037 (2)0.006 (2)0.021 (2)
C160.079 (2)0.068 (2)0.072 (2)0.0172 (18)0.0230 (19)0.0061 (17)
C170.101 (3)0.080 (2)0.058 (2)0.023 (2)0.0042 (19)0.0165 (18)
C180.072 (2)0.073 (2)0.0579 (19)0.0200 (17)0.0114 (16)0.0104 (16)
C190.0602 (17)0.0455 (15)0.0512 (16)0.0065 (13)0.0111 (13)0.0035 (12)
C200.082 (2)0.0583 (19)0.093 (3)0.0176 (17)0.037 (2)0.0232 (18)
C210.099 (3)0.082 (3)0.129 (4)0.025 (2)0.068 (3)0.034 (3)
C220.094 (3)0.083 (3)0.108 (3)0.034 (2)0.045 (3)0.013 (2)
C230.134 (4)0.066 (2)0.099 (3)0.047 (2)0.046 (3)0.021 (2)
C240.110 (3)0.0525 (18)0.084 (2)0.0237 (19)0.043 (2)0.0206 (17)
C250.0463 (14)0.0422 (14)0.0488 (15)0.0048 (11)0.0070 (12)0.0013 (11)
C260.0516 (17)0.0661 (19)0.0572 (18)0.0002 (14)0.0026 (14)0.0023 (15)
C270.070 (2)0.089 (3)0.0562 (19)0.0098 (18)0.0051 (16)0.0014 (17)
C280.080 (2)0.092 (3)0.0510 (18)0.023 (2)0.0165 (17)0.0097 (17)
C290.0622 (19)0.072 (2)0.067 (2)0.0127 (16)0.0270 (17)0.0109 (17)
C300.0464 (15)0.0555 (16)0.0611 (18)0.0056 (13)0.0092 (13)0.0043 (14)
C310.0492 (15)0.0430 (14)0.0492 (15)0.0042 (12)0.0003 (12)0.0079 (12)
C320.0571 (17)0.0472 (15)0.0470 (15)0.0056 (12)0.0076 (13)0.0053 (12)
C330.0521 (16)0.0416 (14)0.0572 (17)0.0041 (12)0.0105 (13)0.0028 (12)
C340.0542 (18)0.065 (2)0.082 (2)0.0041 (15)0.0226 (16)0.0038 (17)
Geometric parameters (Å, º) top
Pd1—C11.979 (3)C13—C141.376 (4)
Pd1—N12.127 (2)C14—C151.381 (5)
Pd1—P22.2814 (7)C14—H140.9300
Pd1—P12.2819 (8)C15—C161.355 (5)
P1—O11.637 (2)C15—H150.9300
P1—C131.797 (3)C16—C171.361 (5)
P1—C71.799 (3)C16—H160.9300
P2—O21.642 (2)C17—C181.379 (5)
P2—C191.795 (3)C17—H170.9300
P2—C251.796 (3)C18—H180.9300
S1—O41.408 (2)C19—C201.366 (4)
S1—O31.420 (2)C19—C241.378 (4)
S1—N11.585 (2)C20—C211.382 (5)
S1—O51.608 (2)C20—H200.9300
F1—C41.357 (3)C21—C221.356 (5)
O1—C21.384 (3)C21—H210.9300
O2—C61.387 (3)C22—C231.351 (5)
O5—C331.389 (4)C22—H220.9300
O6—C311.215 (3)C23—C241.363 (5)
N1—C311.378 (3)C23—H230.9300
C1—C61.389 (4)C24—H240.9300
C1—C21.392 (4)C25—C261.380 (4)
C2—C31.382 (4)C25—C301.386 (4)
C3—C41.369 (5)C26—C271.370 (4)
C3—H30.9300C26—H260.9300
C4—C51.375 (5)C27—C281.381 (5)
C5—C61.376 (4)C27—H270.9300
C5—H50.9300C28—C291.357 (5)
C7—C81.384 (5)C28—H280.9300
C7—C121.385 (5)C29—C301.384 (4)
C8—C91.399 (6)C29—H290.9300
C8—H80.9300C30—H300.9300
C9—C101.350 (7)C31—C321.465 (4)
C9—H90.9300C32—C331.316 (4)
C10—C111.343 (6)C32—H320.9300
C10—H100.9300C33—C341.479 (4)
C11—C121.378 (5)C34—H34A0.9600
C11—H110.9300C34—H34B0.9600
C12—H120.9300C34—H34C0.9600
C13—C181.375 (4)
C1—Pd1—N1177.21 (10)C14—C13—P1121.0 (2)
C1—Pd1—P279.58 (8)C13—C14—C15119.8 (3)
N1—Pd1—P297.94 (7)C13—C14—H14120.1
C1—Pd1—P179.99 (8)C15—C14—H14120.1
N1—Pd1—P1102.47 (7)C16—C15—C14120.6 (3)
P2—Pd1—P1159.56 (3)C16—C15—H15119.7
O1—P1—C13103.92 (12)C14—C15—H15119.7
O1—P1—C7101.87 (13)C15—C16—C17119.8 (3)
C13—P1—C7104.64 (14)C15—C16—H16120.1
O1—P1—Pd1104.63 (8)C17—C16—H16120.1
C13—P1—Pd1118.05 (10)C16—C17—C18120.6 (3)
C7—P1—Pd1121.20 (10)C16—C17—H17119.7
O2—P2—C19104.21 (13)C18—C17—H17119.7
O2—P2—C25102.21 (12)C13—C18—C17119.8 (3)
C19—P2—C25105.35 (13)C13—C18—H18120.1
O2—P2—Pd1104.98 (8)C17—C18—H18120.1
C19—P2—Pd1115.23 (9)C20—C19—C24117.9 (3)
C25—P2—Pd1122.61 (9)C20—C19—P2120.2 (2)
O4—S1—O3117.70 (16)C24—C19—P2121.9 (2)
O4—S1—N1110.61 (13)C19—C20—C21120.4 (3)
O3—S1—N1112.39 (15)C19—C20—H20119.8
O4—S1—O5105.38 (14)C21—C20—H20119.8
O3—S1—O5105.92 (13)C22—C21—C20120.4 (3)
N1—S1—O5103.46 (12)C22—C21—H21119.8
C2—O1—P1114.26 (17)C20—C21—H21119.8
C6—O2—P2113.99 (17)C23—C22—C21119.6 (4)
C33—O5—S1115.71 (18)C23—C22—H22120.2
C31—N1—S1118.54 (18)C21—C22—H22120.2
C31—N1—Pd1119.49 (17)C22—C23—C24120.4 (3)
S1—N1—Pd1121.80 (13)C22—C23—H23119.8
C6—C1—C2116.5 (2)C24—C23—H23119.8
C6—C1—Pd1122.2 (2)C23—C24—C19121.3 (3)
C2—C1—Pd1121.3 (2)C23—C24—H24119.4
C3—C2—O1118.3 (3)C19—C24—H24119.4
C3—C2—C1122.7 (3)C26—C25—C30119.2 (3)
O1—C2—C1118.9 (2)C26—C25—P2119.1 (2)
C4—C3—C2116.6 (3)C30—C25—P2121.6 (2)
C4—C3—H3121.7C27—C26—C25120.7 (3)
C2—C3—H3121.7C27—C26—H26119.7
F1—C4—C3117.3 (3)C25—C26—H26119.7
F1—C4—C5118.2 (3)C26—C27—C28119.9 (3)
C3—C4—C5124.5 (3)C26—C27—H27120.1
C4—C5—C6116.2 (3)C28—C27—H27120.1
C4—C5—H5121.9C29—C28—C27120.0 (3)
C6—C5—H5121.9C29—C28—H28120.0
C5—C6—O2118.1 (3)C27—C28—H28120.0
C5—C6—C1123.4 (3)C28—C29—C30120.7 (3)
O2—C6—C1118.4 (2)C28—C29—H29119.6
C8—C7—C12119.0 (3)C30—C29—H29119.6
C8—C7—P1118.6 (3)C29—C30—C25119.6 (3)
C12—C7—P1122.3 (3)C29—C30—H30120.2
C7—C8—C9118.9 (4)C25—C30—H30120.2
C7—C8—H8120.5O6—C31—N1120.1 (2)
C9—C8—H8120.5O6—C31—C32122.6 (3)
C10—C9—C8121.0 (4)N1—C31—C32117.1 (2)
C10—C9—H9119.5C33—C32—C31123.8 (3)
C8—C9—H9119.5C33—C32—H32118.1
C11—C10—C9120.0 (4)C31—C32—H32118.1
C11—C10—H10120.0C32—C33—O5121.0 (2)
C9—C10—H10120.0C32—C33—C34128.0 (3)
C10—C11—C12121.2 (5)O5—C33—C34111.0 (3)
C10—C11—H11119.4C33—C34—H34A109.5
C12—C11—H11119.4C33—C34—H34B109.5
C11—C12—C7119.8 (4)H34A—C34—H34B109.5
C11—C12—H12120.1C33—C34—H34C109.5
C7—C12—H12120.1H34A—C34—H34C109.5
C18—C13—C14119.4 (3)H34B—C34—H34C109.5
C18—C13—P1119.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O3i0.932.423.284 (4)155
C16—H16···O6ii0.932.473.284 (4)146
C10—H10···O4iii0.932.503.305 (5)145
C8—H8···F1iv0.932.483.406 (5)173
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C30H22FO2P2)(C4H4NO4S)]
Mr763.96
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)10.6088 (12), 11.0069 (7), 14.066 (2)
α, β, γ (°)89.175 (9), 88.524 (12), 82.021 (7)
V3)1625.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.67 × 0.55 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.620, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
6311, 5963, 5091
Rint0.020
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.05
No. of reflections5963
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.41

Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD4-PC (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O3i0.932.423.284 (4)155
C16—H16···O6ii0.932.473.284 (4)146
C10—H10···O4iii0.932.503.305 (5)145
C8—H8···F1iv0.932.483.406 (5)173
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

The chlorido analogue used to prepare Ph{PdF}Ace was provided by Dr Man-Lung Kwan of John Carroll University, University Heights, Ohio, USA. The authors gratefully acknowledge the Department of Chemistry and the Univeristy Committee for Undergraduate Research at the University of South Alabama for their generous support and the Department of Energy and Oak Ridge National Laboratory for the Nonius CAD-4 X-ray diffractometer used in these studies. They also acknowledge support from the National Science Foundation–grant #CHE-99–09502, REU Supplement with Professor Alan Marshall of Florida State University/National High Magnetic Field Laboratory, Tallahassee, Florida USA.

References

First citationBeck, W., Ambach, E. & Nagel, U. (1985). Chem. Ber. 118, 444–449.  CrossRef CAS Web of Science Google Scholar
First citationBulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228–m230.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCarter, E. B., Culver, S. L., Fox, P. A., Goode, R. D., Ntai, I., Tickell, M. D., Traylor, R. K., Hoffman, N. W., Davis, J. H. Jr. (2004). Chem. Commun. pp. 630–631.  Web of Science CrossRef Google Scholar
First citationCavicchioli, M., Massabni, A. C., Heinrich, T. A., Costa-Neto, C. M., Abrao, E. P., Fonseca, B. A. L., Castellano, E. E., Corbi, P. P., Lustri, W. R. & Leite, C. Q. F. (2010). J. Inorg. Biochem. 104, 533–540.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDege, N., Içbudak, H. & Adıyaman, E. (2006). Acta Cryst. C62, m401–m403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDege, N., Içbudak, H. & Adıyaman, E. (2007). Acta Cryst. C63, m13–m15.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, United States, May 20–23, CRM–213.  Google Scholar
First citationİçbudak, H., Bulut, A., Çetin, N. & Kazak, C. (2005). Acta Cryst. C61, m1–m3.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKwan, M.-L., Conry, K., Marshall, J., Schroder, P., Hoffman, N., Traylor, R., Wicker, B., Henderson, C., Sykora, R., Davis, J. Jr, Ozerov, O. & Lei, F. (2007). Abstracts, 39th Middle Atlantic Regional Meeting, American Chemical Society, Collegeville, PA, United States, May 16–18, MARM–059.  Google Scholar
First citationLipinsky, G.-R. (2003). Ullman's Encyclopedia of Industrial Chemistry, 6th ed., Vol. 35, p. 407. Weinheim: Wiley-VCH.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationŞahin, Z. S., İçbudak, H. & Işık, Ş. (2009). Acta Cryst. C65, m463–m465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Sevindi, F., İçbudak, H. & Işık, Ş. (2010). Acta Cryst. C66, m314–m318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWicker, B., Traylor, R., Henderson, C., Hoffman, N., Sykora, R., Davis, J. H. Jr, Jordan, B., Abernethy, J., Ozerov, O., Fafard, C., Lei, F., Kwan, M.-L. & Poleski, K. (2007). Abstracts of Papers, 233rd National Meeting, American Chemical Society, Chicago, IL, United States, March 25–29, INOR–972.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m286-m287
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds