organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(4-Methylbenzyl­idene)hydrazinecarboxamide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 December 2010; accepted 16 December 2010; online 8 January 2011)

The title compound, C9H11N3O, was synthesized by the reaction of 4-methyl­benzaldehyde with semicarbazide. The mol­ecule adopts an E configuration about the central C=N double bond and the dihedral angle between the mean planes of the benzene ring and the carboxamide groups is 17.05 (9)°. The hydrazine N atoms are twisted slightly out of the plane of the carboxamide group [C—C—N—N torsion angle = 178.39 (14)°] and an intra­molecular N—H⋯N bond generates an S(5) ring. In the crystal, adjacent mol­ecules are connected via a pair of N—H⋯O hydrogen bonds, generating R22(8) loops, resulting in supra­molecular [001] ribbons.

Related literature

For applications of Schiff bases, see: Dhar et al. (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Przybylski et al. (2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]); Bringmann et al. (2004[Bringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D. & Jaroszewski, J. W. (2004). J. Nat. Prod. 67, 743-748.]); De Souza et al. (2007[De Souza, A. O., Galetti, F. C. S., Silva, C. L., Bicalho, B. & Fonseca, S. F. (2007). Quim. Nova, 30, 1563-1566.]); Guo et al. (2007[Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X. & Wang, L. (2007). Carbohydr. Res. 342, 1329-1332.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O

  • Mr = 177.21

  • Monoclinic, P 21 /c

  • a = 17.2186 (13) Å

  • b = 4.5304 (3) Å

  • c = 11.9846 (9) Å

  • β = 93.348 (3)°

  • V = 933.29 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.76 × 0.23 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.996

  • 6322 measured reflections

  • 1833 independent reflections

  • 1285 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.149

  • S = 1.09

  • 1833 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.928 (18) 1.998 (18) 2.9260 (19) 177.7 (17)
N3—H2N3⋯N1 0.93 (2) 2.22 (2) 2.667 (2) 108.6 (16)
N3—H1N3⋯O1ii 0.97 (2) 1.97 (2) 2.9106 (19) 163.5 (17)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are formed from the reaction of a primary amine with aldehydes or ketones. They exhibit interesting biological activities, such as antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral and antipyretic properties (Dhar et al., 1982; Przybylski et al., 2009). The Imine functional group present in these compounds is responsible for their vast biological activities. In addition, Schiff bases are also employed as intermediates in the total synthesis of bioactive natural products (Bringmann et al., 2004; De Souza et al., 2007; Guo et al., 2007).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule adopts an E configuration about the central CN double bond. The dihedral angle between the mean planes of the benzene (C1–C6) ring and carboxamide (N1–N3/O1/C8) group is 17.05 (9)°. The hydrazine N atoms are twisted slightly out of the plane of the carboxamide group [C6-C7-N1-N2 torsion angle = 178.39 (14)°].

In the crystal packing (Fig. 2), the adjacent molecules are connected via pair of N—H···O hydrogen bonds, generating an R22(8) ring motifs, resulting in supramolecular ribbons along the c-axis.

Related literature top

For applications of Schiff bases, see: Dhar et al. (1982); Przybylski et al. (2009); Bringmann et al. (2004); De Souza et al. (2007); Guo et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-methylbenzaldehyde (0.1 g, 0.83 mmol) and semicarbazide (0.062 g, 0.83 mmol) was dissolved in ethanol (5.0 ml) and water (1.0 ml) which was then refluxed in the presence of sodium hydroxide (0.25M) for 3-4 hours. After completion of the reaction (through TLC monitoring), the mixture was poured into ice. The precipitate which was formed was filtered and washed with water. The pure solid was then recrystallised from ethanol to afford the title compound as colourless plates.

Refinement top

Atoms H1N2 and H1N3 were located from a difference Fourier map and refined freely [N–H = 0.93 (2)–0.97 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A supramolecular ribbon generated by N—H···O hydrogen bonds.
(E)-2-(4-Methylbenzylidene)hydrazinecarboxamide top
Crystal data top
C9H11N3OF(000) = 376
Mr = 177.21Dx = 1.261 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1533 reflections
a = 17.2186 (13) Åθ = 3.4–22.6°
b = 4.5304 (3) ŵ = 0.09 mm1
c = 11.9846 (9) ÅT = 296 K
β = 93.348 (3)°Plate, colourless
V = 933.29 (12) Å30.76 × 0.23 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
1833 independent reflections
Radiation source: fine-focus sealed tube1285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2120
Tmin = 0.937, Tmax = 0.996k = 55
6322 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.0212P]
where P = (Fo2 + 2Fc2)/3
1833 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H11N3OV = 933.29 (12) Å3
Mr = 177.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.2186 (13) ŵ = 0.09 mm1
b = 4.5304 (3) ÅT = 296 K
c = 11.9846 (9) Å0.76 × 0.23 × 0.05 mm
β = 93.348 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1833 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1285 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.996Rint = 0.025
6322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.18 e Å3
1833 reflectionsΔρmin = 0.18 e Å3
131 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50913 (6)0.2012 (3)0.63337 (10)0.0540 (4)
N10.34815 (7)0.3857 (3)0.45522 (11)0.0487 (4)
N20.41216 (8)0.2357 (3)0.49998 (12)0.0505 (4)
H1N20.4366 (10)0.093 (4)0.4589 (16)0.067 (6)*
N30.42019 (9)0.5689 (3)0.64575 (12)0.0530 (4)
H2N30.3792 (10)0.660 (5)0.6044 (18)0.076 (6)*
H1N30.4490 (10)0.643 (4)0.7121 (19)0.072 (6)*
C10.20643 (10)0.6318 (5)0.35353 (17)0.0676 (6)
H1A0.21790.68350.42780.081*
C20.14128 (11)0.7477 (5)0.2966 (2)0.0769 (7)
H2A0.10930.87550.33370.092*
C30.12229 (11)0.6785 (5)0.18552 (18)0.0663 (6)
C40.17074 (11)0.4889 (5)0.13342 (15)0.0671 (6)
H4A0.15950.43940.05890.081*
C50.23599 (10)0.3697 (5)0.18930 (15)0.0647 (6)
H5A0.26770.24170.15190.078*
C60.25475 (9)0.4387 (4)0.30032 (13)0.0520 (5)
C70.32332 (10)0.3054 (4)0.35755 (14)0.0531 (5)
H7A0.34970.15740.32160.064*
C80.44997 (9)0.3340 (4)0.59601 (13)0.0443 (4)
C90.05146 (12)0.8111 (6)0.1244 (2)0.0941 (8)
H9A0.02150.65740.08730.141*
H9B0.06760.95080.07020.141*
H9C0.02020.90920.17690.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0579 (7)0.0596 (8)0.0426 (7)0.0045 (6)0.0143 (6)0.0028 (5)
N10.0481 (8)0.0571 (9)0.0396 (8)0.0016 (6)0.0072 (6)0.0002 (6)
N20.0525 (8)0.0584 (9)0.0388 (8)0.0084 (7)0.0125 (6)0.0024 (7)
N30.0623 (9)0.0541 (9)0.0410 (8)0.0013 (7)0.0105 (7)0.0040 (7)
C10.0656 (11)0.0847 (14)0.0503 (11)0.0149 (10)0.0135 (9)0.0105 (10)
C20.0643 (12)0.0895 (15)0.0749 (15)0.0209 (11)0.0122 (11)0.0104 (12)
C30.0569 (11)0.0752 (13)0.0642 (12)0.0046 (10)0.0192 (10)0.0128 (10)
C40.0674 (11)0.0875 (14)0.0443 (10)0.0055 (11)0.0160 (9)0.0042 (10)
C50.0612 (11)0.0872 (14)0.0445 (10)0.0076 (10)0.0080 (8)0.0041 (10)
C60.0497 (9)0.0642 (11)0.0412 (9)0.0002 (8)0.0056 (7)0.0008 (8)
C70.0523 (9)0.0656 (11)0.0405 (9)0.0088 (8)0.0050 (8)0.0040 (8)
C80.0491 (9)0.0485 (10)0.0343 (8)0.0080 (7)0.0058 (7)0.0078 (7)
C90.0724 (14)0.1056 (18)0.100 (2)0.0093 (13)0.0354 (13)0.0148 (15)
Geometric parameters (Å, º) top
O1—C81.2436 (18)C2—H2A0.9300
N1—C71.275 (2)C3—C41.373 (3)
N1—N21.3766 (18)C3—C91.510 (2)
N2—C81.363 (2)C4—C51.384 (2)
N2—H1N20.93 (2)C4—H4A0.9300
N3—C81.337 (2)C5—C61.386 (2)
N3—H2N30.935 (19)C5—H5A0.9300
N3—H1N30.97 (2)C6—C71.461 (2)
C1—C21.382 (2)C7—H7A0.9300
C1—C61.388 (3)C9—H9A0.9600
C1—H1A0.9300C9—H9B0.9600
C2—C31.388 (3)C9—H9C0.9600
C7—N1—N2115.78 (15)C4—C5—C6120.91 (19)
C8—N2—N1119.98 (15)C4—C5—H5A119.5
C8—N2—H1N2117.8 (11)C6—C5—H5A119.5
N1—N2—H1N2120.9 (11)C5—C6—C1118.08 (16)
C8—N3—H2N3114.4 (13)C5—C6—C7119.61 (17)
C8—N3—H1N3116.6 (11)C1—C6—C7122.30 (15)
H2N3—N3—H1N3127.9 (19)N1—C7—C6122.12 (16)
C2—C1—C6120.24 (18)N1—C7—H7A118.9
C2—C1—H1A119.9C6—C7—H7A118.9
C6—C1—H1A119.9O1—C8—N3123.50 (15)
C1—C2—C3121.8 (2)O1—C8—N2119.12 (16)
C1—C2—H2A119.1N3—C8—N2117.37 (15)
C3—C2—H2A119.1C3—C9—H9A109.5
C4—C3—C2117.53 (17)C3—C9—H9B109.5
C4—C3—C9121.5 (2)H9A—C9—H9B109.5
C2—C3—C9120.9 (2)C3—C9—H9C109.5
C3—C4—C5121.45 (18)H9A—C9—H9C109.5
C3—C4—H4A119.3H9B—C9—H9C109.5
C5—C4—H4A119.3
C7—N1—N2—C8170.10 (15)C4—C5—C6—C7178.99 (16)
C6—C1—C2—C30.6 (3)C2—C1—C6—C50.7 (3)
C1—C2—C3—C40.1 (3)C2—C1—C6—C7178.66 (19)
C1—C2—C3—C9179.11 (19)N2—N1—C7—C6178.39 (14)
C2—C3—C4—C50.2 (3)C5—C6—C7—N1171.99 (17)
C9—C3—C4—C5179.42 (19)C1—C6—C7—N18.7 (3)
C3—C4—C5—C60.1 (3)N1—N2—C8—O1177.76 (13)
C4—C5—C6—C10.4 (3)N1—N2—C8—N33.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.928 (18)1.998 (18)2.9260 (19)177.7 (17)
N3—H2N3···N10.93 (2)2.22 (2)2.667 (2)108.6 (16)
N3—H1N3···O1ii0.97 (2)1.97 (2)2.9106 (19)163.5 (17)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H11N3O
Mr177.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.2186 (13), 4.5304 (3), 11.9846 (9)
β (°) 93.348 (3)
V3)933.29 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.76 × 0.23 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.937, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
6322, 1833, 1285
Rint0.025
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.149, 1.09
No. of reflections1833
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.928 (18)1.998 (18)2.9260 (19)177.7 (17)
N3—H2N3···N10.93 (2)2.22 (2)2.667 (2)108.6 (16)
N3—H1N3···O1ii0.97 (2)1.97 (2)2.9106 (19)163.5 (17)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

YK, HO and VM thank the Malaysian Government and Universiti Sains Malaysia for the research University grant No. 1001/PKIMIA/811133. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D. & Jaroszewski, J. W. (2004). J. Nat. Prod. 67, 743–748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Souza, A. O., Galetti, F. C. S., Silva, C. L., Bicalho, B. & Fonseca, S. F. (2007). Quim. Nova, 30, 1563–1566.  Web of Science CrossRef CAS Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationGuo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X. & Wang, L. (2007). Carbohydr. Res. 342, 1329–1332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds