organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-3-(2-meth­­oxy­anilino)propan-1-one

aLaboratorio 223, Departamento de Química, Universidad Simon Bolivar (USB), Apartado 47206, Caracas 1080-A, Venezuela, bDepartment of Chemistry, Center for Photochemical Sciences, Bowling Green State University (BGSU), Bowling Green, OH 43-403, USA, and cCentro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas 1020-A, Venezuela
*Correspondence e-mail: tegonzal@ivic.gob.ve, tegonzal1969@gmail.com

(Received 16 December 2010; accepted 27 December 2010; online 12 January 2011)

In the title compound, C16H16ClNO2, the mol­ecule adopts a bowed conformation, with a dihedral angle of 39.9 (2)° between the aromatic rings. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating C(6) chains propagating in [010]. Very weak aromatic ππ stacking is also observed [centroid–centroid distance = 4.040 (2) Å].

Related literature

For the synthesis of quinoline derivatives, see: Peifer et al. (2007[Peifer, C., Kinkel, K., Abadleh, M., Schollmeyer, D. & Laufer, S. (2007). J. Med. Chem. 50, 1213-1221.]). For background to the anti­microbial activity of quinolines, see: Yamashkin & Oreshkina (2006[Yamashkin, S. A. & Oreshkina, E. A. (2006). Chem. Heterocycl. Compd, 42, 701-718.]). For further synthetic details, see: Dienys et al. (1977[Dienys, G., Gureviciene, J., Cekuoliene, L. & Steponavicius, J. (1977). Lietuvus TSR Mokslu akademijos darbai Ser. B, 1, 33-38.]); Volkov et al. (2007[Volkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). Chem. Heterocycl. Compd, 43, 445-453.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16ClNO2

  • Mr = 289.75

  • Orthorhombic, P b c a

  • a = 7.1690 (6) Å

  • b = 14.4303 (11) Å

  • c = 28.667 (3) Å

  • V = 2965.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.48 × 0.36 × 0.20 mm

Data collection
  • Rigaku AFC-7S Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan]) Tmin = 0.927, Tmax = 0.950

  • 31012 measured reflections

  • 3035 independent reflections

  • 2016 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.198

  • S = 1.14

  • 3035 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.93 2.49 3.414 (4) 171
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku/MSC, 2005)[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.] and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared as an intermediate for the synthesis of 4-aryl-8-methoxy-quinoline under acid conditions (Dienys et al., 1977). The synthesis of the title compound might be obtained through decyclization of piperidol and transamination of the decyclization products (Volkov et al., 2007). These compounds exhibit a broad range of antimicrobial activity and particular, antitubercular activity, antimalarial activity and are also present in antiallergic and antiasthmatic agents (Yamashkin & Oreshkina, 2006). In addition, these compounds could act as drug targets of a large numbers of protein-inhibitor complexes, for example the mitogen-activated protein kinase (Peifer et al., 2007).

The X-ray structure determination showed that compound (I) contains only one organic molecule per asymmetric unit (Fig. 1). The molecule adopts a slightly angular conformation, where the dihedral angle defined by aromatic rings is 39.9 (2)°. respectively. The crystal packing (Fig. 2) of this structure consists of infinite chains which are interconnected through hydrogen bonding interactions of the kind C—H···O (3.415 Å) along the bc plane. The final array (Fig. 3) is sustained by weak interactions of the kind π···π between aromatics rings with distance between centroid to centroid, Cg2···Cg2: 4.040 (2) Å. Where Cg2 is defined by C11/C12/C13/C14/C15/C16 atoms.

Related literature top

For the synthesis of quinoline derivatives, see: Peifer et al. (2007). For background to the antimicrobial activity of quinolines, see: Yamashkin & Oreshkina (2006). For further synthetic details, see: Dienys et al. (1977); Volkov et al. (2007).

Experimental top

A solution of 3-(4-chlorophenyl)-N,N-dimethyl-3-oxopropan-1-aminium chloride (0.01 mol) in distilled water (5 ml) was stirred at room temperature in a round bottom flask. After 5 minutes, a solution of 2-methoxy-phenylamine (0.01 mol) and concentrated hydrochloric acid (0.5 ml) in ethanol (10 ml) was added dropwise and the mixture was stirred at room temperature for 12 h to yield yellow blocks of (I). Yield: 79%. M.p. 83–84°C; 1H NMR (400 MHz, CDCl3, δ (p.p.m.), J= Hz): 3.27 (t, 2H, J= 6.4), 3.64 (t, 2H, J= 6.4), 3.81 (s, 3H), 4.57 (s, 1H), 6.68 (m, 2H), 6.76 (dd, 1H, J= 8.4, 1.5), 6.88 (td, 1H, J= 7.6, 1.1), 7.42 (d, 2H, J= 8.4), 7.87 (d, 2H, J= 8.4). 13C NMR (100 MHz, CDCl3, δ (p.p.m.)): 38.0 (C9), 38.4 (C8), 55.5 (C7), 109.7 (C3), 109.9 (C6), 116.9 (C4), 121.3 (C5), 129.0 (C13 and C15), 129.5 (C12 and C16), 135.2 (C1), 137.6 (C11), 139.8 (C14), 147.2 (C7), 200.0 (C10). IR (KBr, cm-1): 3413, 3085, 3061, 2961, 1685, 1074, 792. EI—MS (m/z): 290.37 [M+•], 292.37 [M+• +2], 136.07 [M+• – (4-ClPhCOCH2)].

Refinement top

The N-bound H atoms were located in difference maps and refined as riding in their as found relative positions with Uiso(H) = 1.5Ueq(N). The C-bound H atoms were placed in idealized positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: CrystalStructure (Rigaku/MSC, 2005) and SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement elipsoids drawn at the 35% probability level and H atoms shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. View of infinite chains interconnected through hydrogen bonding interactions of the kind C—H···O along the bc plane. Dashed lines indicate the donor···acceptor interactions for hydrogen bonds.
[Figure 3] Fig. 3. View of the weak interactions of the kind π···π in the structure
1-(4-Chlorophenyl)-3-(2-methoxyanilino)propan-1-one top
Crystal data top
C16H16ClNO2F(000) = 1216
Mr = 289.75Dx = 1.298 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 13752 reflections
a = 7.1690 (6) Åθ = 2.8–56.1°
b = 14.4303 (11) ŵ = 0.26 mm1
c = 28.667 (3) ÅT = 293 K
V = 2965.6 (4) Å3Block, yellow
Z = 80.48 × 0.36 × 0.20 mm
Data collection top
Rigaku AFC-7S Mercury
diffractometer
3035 independent reflections
Radiation source: fine-focus sealed tube2016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 28.0°, θmin = 2.8°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.927, Tmax = 0.950k = 1713
31012 measured reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.0693P)2 + 1.923P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3035 reflectionsΔρmax = 0.16 e Å3
182 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (11)
Crystal data top
C16H16ClNO2V = 2965.6 (4) Å3
Mr = 289.75Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.1690 (6) ŵ = 0.26 mm1
b = 14.4303 (11) ÅT = 293 K
c = 28.667 (3) Å0.48 × 0.36 × 0.20 mm
Data collection top
Rigaku AFC-7S Mercury
diffractometer
3035 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2016 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.950Rint = 0.057
31012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.14Δρmax = 0.16 e Å3
3035 reflectionsΔρmin = 0.26 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69107 (15)0.62967 (7)0.61228 (4)0.0854 (4)
O10.4661 (4)0.2337 (2)0.30790 (9)0.0883 (9)
O20.9890 (4)0.25566 (16)0.49786 (9)0.0727 (7)
N10.7477 (5)0.2272 (2)0.36535 (10)0.0684 (8)
H10.67490.28520.36090.103*
C10.7033 (5)0.1459 (2)0.34171 (11)0.0623 (9)
C20.5513 (6)0.1488 (3)0.31054 (12)0.0690 (10)
C30.5005 (7)0.0718 (3)0.28559 (14)0.0866 (13)
H3A0.40100.07460.26480.104*
C40.5979 (9)0.0100 (3)0.29143 (16)0.1005 (16)
H4A0.56280.06260.27480.121*
C50.7461 (9)0.0141 (3)0.32167 (16)0.0958 (15)
H5A0.81090.06950.32540.115*
C60.8003 (6)0.0638 (3)0.34675 (13)0.0783 (11)
H6A0.90180.06070.36690.094*
C70.3001 (8)0.2415 (4)0.28063 (18)0.123 (2)
H7A0.25790.30460.28090.185*
H7B0.20510.20230.29350.185*
H7C0.32570.22290.24910.185*
C80.8471 (5)0.2253 (2)0.40935 (12)0.0654 (9)
H8A0.97910.21530.40380.078*
H8B0.80100.17480.42850.078*
C90.8179 (5)0.3165 (2)0.43408 (11)0.0573 (8)
H9A0.87930.36510.41640.069*
H9B0.68550.33040.43460.069*
C100.8898 (5)0.3180 (2)0.48287 (11)0.0554 (8)
C110.8363 (4)0.3968 (2)0.51434 (11)0.0541 (8)
C120.8721 (5)0.3894 (2)0.56181 (12)0.0667 (10)
H12A0.92760.33600.57350.080*
C130.8258 (5)0.4607 (3)0.59179 (12)0.0697 (10)
H13A0.84880.45510.62360.084*
C140.7456 (5)0.5401 (2)0.57432 (12)0.0605 (9)
C150.7108 (5)0.5491 (2)0.52753 (13)0.0621 (9)
H15A0.65760.60320.51590.074*
C160.7554 (5)0.4773 (2)0.49781 (12)0.0580 (8)
H16A0.73060.48310.46610.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0803 (8)0.0852 (7)0.0905 (8)0.0111 (5)0.0050 (5)0.0216 (5)
O10.093 (2)0.092 (2)0.0794 (19)0.0084 (16)0.0267 (15)0.0150 (14)
O20.0761 (17)0.0629 (15)0.0790 (16)0.0129 (12)0.0181 (13)0.0009 (12)
N10.086 (2)0.0609 (17)0.0581 (17)0.0038 (15)0.0151 (16)0.0005 (13)
C10.076 (2)0.062 (2)0.0493 (19)0.0098 (18)0.0071 (17)0.0004 (15)
C20.085 (3)0.071 (2)0.051 (2)0.013 (2)0.0041 (19)0.0045 (17)
C30.104 (3)0.089 (3)0.067 (3)0.026 (3)0.005 (2)0.011 (2)
C40.148 (5)0.080 (3)0.074 (3)0.035 (3)0.017 (3)0.016 (2)
C50.148 (5)0.058 (2)0.081 (3)0.001 (3)0.024 (3)0.002 (2)
C60.100 (3)0.065 (2)0.070 (2)0.001 (2)0.008 (2)0.0031 (19)
C70.114 (4)0.147 (5)0.109 (4)0.022 (3)0.050 (3)0.021 (3)
C80.065 (2)0.066 (2)0.064 (2)0.0021 (17)0.0099 (18)0.0009 (16)
C90.0517 (19)0.061 (2)0.059 (2)0.0049 (15)0.0056 (15)0.0038 (15)
C100.0472 (18)0.0536 (19)0.065 (2)0.0073 (15)0.0069 (15)0.0057 (15)
C110.0432 (17)0.0570 (19)0.062 (2)0.0058 (14)0.0074 (15)0.0039 (15)
C120.073 (2)0.062 (2)0.065 (2)0.0093 (17)0.0146 (18)0.0044 (16)
C130.077 (2)0.078 (2)0.054 (2)0.0080 (19)0.0122 (18)0.0015 (18)
C140.0523 (19)0.061 (2)0.068 (2)0.0029 (16)0.0025 (17)0.0043 (16)
C150.056 (2)0.0540 (19)0.076 (2)0.0010 (15)0.0092 (17)0.0093 (17)
C160.0564 (19)0.058 (2)0.060 (2)0.0017 (15)0.0091 (16)0.0050 (15)
Geometric parameters (Å, º) top
Cl1—C141.734 (3)C7—H7C0.9600
O1—C21.371 (4)C8—C91.510 (4)
O1—C71.428 (5)C8—H8A0.9700
O2—C101.224 (4)C8—H8B0.9700
N1—C11.392 (4)C9—C101.491 (4)
N1—C81.449 (4)C9—H9A0.9700
N1—H10.9952C9—H9B0.9700
C1—C61.381 (5)C10—C111.501 (5)
C1—C21.410 (5)C11—C161.382 (4)
C2—C31.370 (5)C11—C121.389 (5)
C3—C41.382 (7)C12—C131.381 (5)
C3—H3A0.9300C12—H12A0.9300
C4—C51.373 (7)C13—C141.377 (5)
C4—H4A0.9300C13—H13A0.9300
C5—C61.390 (6)C14—C151.371 (5)
C5—H5A0.9300C15—C161.379 (5)
C6—H6A0.9300C15—H15A0.9300
C7—H7A0.9600C16—H16A0.9300
C7—H7B0.9600
C2—O1—C7118.2 (3)N1—C8—H8B109.9
C1—N1—C8121.3 (3)C9—C8—H8B109.9
C1—N1—H1121.8H8A—C8—H8B108.3
C8—N1—H1112.7C10—C9—C8113.9 (3)
C6—C1—N1123.8 (3)C10—C9—H9A108.8
C6—C1—C2118.8 (3)C8—C9—H9A108.8
N1—C1—C2117.4 (3)C10—C9—H9B108.8
C3—C2—O1125.3 (4)C8—C9—H9B108.8
C3—C2—C1120.8 (4)H9A—C9—H9B107.7
O1—C2—C1113.9 (3)O2—C10—C9121.3 (3)
C2—C3—C4119.7 (4)O2—C10—C11119.6 (3)
C2—C3—H3A120.1C9—C10—C11119.1 (3)
C4—C3—H3A120.1C16—C11—C12118.6 (3)
C5—C4—C3120.3 (4)C16—C11—C10122.5 (3)
C5—C4—H4A119.9C12—C11—C10118.9 (3)
C3—C4—H4A119.9C13—C12—C11120.5 (3)
C4—C5—C6120.6 (4)C13—C12—H12A119.7
C4—C5—H5A119.7C11—C12—H12A119.7
C6—C5—H5A119.7C14—C13—C12119.6 (3)
C1—C6—C5119.9 (4)C14—C13—H13A120.2
C1—C6—H6A120.0C12—C13—H13A120.2
C5—C6—H6A120.0C15—C14—C13120.8 (3)
O1—C7—H7A109.5C15—C14—Cl1120.1 (3)
O1—C7—H7B109.5C13—C14—Cl1119.1 (3)
H7A—C7—H7B109.5C14—C15—C16119.4 (3)
O1—C7—H7C109.5C14—C15—H15A120.3
H7A—C7—H7C109.5C16—C15—H15A120.3
H7B—C7—H7C109.5C15—C16—C11121.1 (3)
N1—C8—C9108.9 (3)C15—C16—H16A119.4
N1—C8—H8A109.9C11—C16—H16A119.4
C9—C8—H8A109.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.932.493.414 (4)171
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H16ClNO2
Mr289.75
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.1690 (6), 14.4303 (11), 28.667 (3)
V3)2965.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.48 × 0.36 × 0.20
Data collection
DiffractometerRigaku AFC-7S Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.927, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
31012, 3035, 2016
Rint0.057
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.198, 1.14
No. of reflections3035
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.932.493.414 (4)171
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

The authors thank the Decanato de Investigación y Desarrollo (DID-USB, Caracas) and the FONACIT–MCT (project LAB-97000821) for financial support. LL thanks the Decanato de Estudios de Postgrado (USB, Caracas) for a travel-training fellowship.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDienys, G., Gureviciene, J., Cekuoliene, L. & Steponavicius, J. (1977). Lietuvus TSR Mokslu akademijos darbai Ser. B, 1, 33–38.  Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationPeifer, C., Kinkel, K., Abadleh, M., Schollmeyer, D. & Laufer, S. (2007). J. Med. Chem. 50, 1213–1221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). Chem. Heterocycl. Compd, 43, 445–453.  CrossRef CAS Google Scholar
First citationYamashkin, S. A. & Oreshkina, E. A. (2006). Chem. Heterocycl. Compd, 42, 701–718.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds