organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­butyl-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Mangalore University, Mangalore, Karnataka, India, and cDepartment of Chemistry, St. Philomena's College, Puttur, Dakshina Kannada, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 December 2010; accepted 18 December 2010; online 8 January 2011)

In the title compound, C14H15N3S, the imidazo[2,1-b][1,3,4]thia­diazole fused-ring system is close to planar, with a maximum deviation of 0.042 (1) Å, and the dihedral angle between it and the phenyl ring is 24.21 (6)°. The isobutyl group is disordered over two sets of sites in a 0.899 (9):0.101 (9) ratio. In the crystal, weak aromatic ππ stacking inter­actions involving the imidazole and thia­diazole rings with a centroid–centroid distance of 3.8067 (7) Å occur.

Related literature

For applications of imidazo [2,1-b]-1,3,4-thia­diazole derivatives, see: Terzioglu & Gursoy (2003[Terzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Kolavi et al. (2006[Kolavi, G., Hegde, V., Khan, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069-3080.]); Gadad et al. (2000[Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853-857.]); Andotra et al. (1997[Andotra, C. S., Langer, T. & Kotha, A. (1997). J. Indian Chem. Soc. 74, 125-127.]); Khazi et al. (1996[Khazi, I. A. M., Mahajanshetti, C. S., Gadad, A. K., Tamalli, A. D. & Sultanpur, C. M. (1996). Arzneim. Forsch. Drug. Res. 46, 949-952.]); Andreani et al. (1982[Andreani, A., Bonazzi, D., Rambaldi, M., Fabbri, G. & Rainsford, K. D. (1982). Eur. J. Med. Chem. 17, 271-274.], 1987[Andreani, A., Rambaldi, M., Mascellani, G. & Rugarli, P. (1987). Eur. J. Med. Chem. 22, 19-22.], 1991[Andreani, A., Rambaldi, M., Locatelli, A. & Andreani, F. (1991). Collect. Czech. Chem. Commun. 56, 2436-2447.]); Eberle & Robert (1977[Eberle, M. K. & Robert, E. M. (1977). US Patent 4054665.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N3S

  • Mr = 257.35

  • Monoclinic, P 21 /n

  • a = 5.6921 (1) Å

  • b = 19.6453 (4) Å

  • c = 12.3610 (2) Å

  • β = 96.127 (1)°

  • V = 1374.35 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.65 × 0.48 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.870, Tmax = 0.947

  • 36499 measured reflections

  • 4038 independent reflections

  • 3378 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.03

  • 4038 reflections

  • 191 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imidazo [2,1-b]-1,3,4-thiadiazole derivatives are found to be biological active compounds possessing anticancer (Terzioglu & Gursoy, 2003), antitubercular (Kolavi et al., 2006), antibacterial (Gadad et al., 2000), antifungal (Andotra et al., 1997), anticonvulsant, analgesic (Khazi et al., 1996), anti-inflammatory (Andreani et al., 1982), diuretic (Andreani et al., 1991) and herbicidal activities (Andreani et al., 1991). Moreover 1,3,4-thiadiazoles have many interesting biological activities, for example, 2-amino-5-(trifluoromethylphenyl alkyl)-1,3,4 thidadiazoles were used in the treatment of insomnia and anxiety (Eberle & Robert, 1977).

The title compound is shown in Fig. 1. The imidazo[2,1-b] [1,3,4]thiadiazole (S1/N1–N3/C7–C10) ring is essentially planar, with a maximum deviation of 0.042 (1) Å for atom C7. The isobutyl group is disordered over two sets of positions, with a refined occupancy ratio of 0.899 (9):0.101 (9). The dihedral angle between the imidazo[2,1-b] [1,3,4]thiadiazole (S1/N1–N3/C7–C10) ring and the benzene ring (C1–C6) is 24.21 (6)°.

In the crystal structure (Fig. 2), there are no classical hydrogen bonds and stabilization is achieved by weak ππ stacking interactions between the thiadiazole (S1/N2–N3/C8–C9) ring and imidazole (N1–N2/C7–C8/C10) ring with centroid-to-centroid distance of 3.8067 (7) Å [symmetry code: 2-x, -y, 2-z].

Related literature top

For applications of imidazo [2,1-b]-1,3,4-thiadiazole derivatives, see: Terzioglu & Gursoy (2003); Kolavi et al. (2006); Gadad et al. (2000); Andotra et al. (1997); Khazi et al. (1996); Andreani et al. (1982, 1987, 1991); Eberle & Robert (1977).

Experimental top

5-isobutyl-1,3,4-thiadiazole-2-amine (1 molar equivalent) and phenacyl bromide (1 molar equivalent) are refluxed with ethanol for 4 hrs. The solvent was then distilled off and the reaction mass was poured into the crushed ice. The resulting solid, 2-isobutylimidazo[2,1-b][1,3,4]thiadiazole, that separated out was filtered and dried. The compound was recrystallized using ethanol and DMF mixture to form yellow blocks of the title compound. M.pt. 121–126°C.

Refinement top

All the H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). The isobutyl group is disordered over two sites with refined occupancies of 0.899 (9):0.101 (9).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Open bonds represent minor disorder components [H atoms are omitted for clarity].
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
2-Isobutyl-6-phenylimidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C14H15N3SF(000) = 544
Mr = 257.35Dx = 1.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9875 reflections
a = 5.6921 (1) Åθ = 2.7–30.3°
b = 19.6453 (4) ŵ = 0.22 mm1
c = 12.3610 (2) ÅT = 296 K
β = 96.127 (1)°Block, yellow
V = 1374.35 (4) Å30.65 × 0.48 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4038 independent reflections
Radiation source: fine-focus sealed tube3378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.870, Tmax = 0.947k = 2727
36499 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.2698P]
where P = (Fo2 + 2Fc2)/3
4038 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H15N3SV = 1374.35 (4) Å3
Mr = 257.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6921 (1) ŵ = 0.22 mm1
b = 19.6453 (4) ÅT = 296 K
c = 12.3610 (2) Å0.65 × 0.48 × 0.25 mm
β = 96.127 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4038 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3378 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.947Rint = 0.028
36499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
4038 reflectionsΔρmin = 0.30 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.10652 (5)0.001167 (15)0.83286 (3)0.04296 (11)
N10.09710 (16)0.12234 (5)0.96090 (8)0.0375 (2)
N20.23227 (16)0.07221 (5)0.91884 (8)0.0369 (2)
N30.34801 (18)0.02027 (5)0.87202 (9)0.0412 (2)
C10.1245 (2)0.25685 (7)1.06391 (14)0.0544 (3)
H1A0.24920.24501.01250.065*
C20.1425 (3)0.31387 (9)1.12942 (17)0.0724 (5)
H2A0.27920.34011.12130.087*
C30.0404 (3)0.33173 (9)1.20606 (16)0.0731 (5)
H3A0.02690.36971.24980.088*
C40.2424 (3)0.29331 (9)1.21764 (14)0.0688 (4)
H4A0.36640.30551.26910.083*
C50.2629 (3)0.23646 (8)1.15317 (12)0.0540 (3)
H5A0.40050.21061.16200.065*
C60.0797 (2)0.21756 (6)1.07525 (10)0.0395 (2)
C70.10261 (19)0.15721 (6)1.00717 (9)0.0361 (2)
C80.00847 (18)0.07150 (6)0.90932 (9)0.0346 (2)
C90.1913 (2)0.02035 (6)0.82471 (10)0.0387 (2)
C100.3078 (2)0.12707 (6)0.98180 (10)0.0406 (3)
H10A0.46250.14081.00260.049*
C110.2544 (2)0.08474 (6)0.77025 (11)0.0456 (3)
H11A0.19160.12290.80790.055*0.899 (9)
H11B0.42510.08910.77780.055*0.899 (9)
H11C0.18180.12110.80650.055*0.101 (9)
H11D0.42200.09030.78660.055*0.101 (9)
C120.1633 (7)0.08944 (18)0.6491 (3)0.0618 (9)0.899 (9)
H12A0.00660.07980.63990.074*0.899 (9)
C130.2898 (12)0.03784 (19)0.5858 (3)0.1205 (16)0.899 (9)
H13A0.25670.00710.61050.181*0.899 (9)
H13B0.23620.04180.50980.181*0.899 (9)
H13C0.45690.04600.59700.181*0.899 (9)
C140.2053 (8)0.16347 (16)0.6126 (3)0.0948 (11)0.899 (9)
H14A0.11000.19400.65000.142*0.899 (9)
H14B0.36900.17500.62950.142*0.899 (9)
H14C0.16290.16730.53550.142*0.899 (9)
C12A0.205 (7)0.0960 (19)0.666 (2)0.081 (12)0.101 (9)
H12B0.06500.12450.67080.097*0.101 (9)
C13A0.096 (9)0.0463 (17)0.583 (3)0.122 (14)0.101 (9)
H13D0.03130.07050.51960.182*0.101 (9)
H13E0.21540.01520.56410.182*0.101 (9)
H13F0.02660.02140.61310.182*0.101 (9)
C14A0.347 (8)0.147 (2)0.601 (2)0.119 (13)0.101 (9)
H14D0.28950.14450.52510.179*0.101 (9)
H14E0.32670.19230.62710.179*0.101 (9)
H14F0.51140.13500.61050.179*0.101 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03290 (16)0.04292 (18)0.0523 (2)0.00072 (10)0.00121 (12)0.00946 (12)
N10.0321 (4)0.0376 (5)0.0430 (5)0.0029 (4)0.0052 (4)0.0013 (4)
N20.0301 (4)0.0383 (5)0.0433 (5)0.0006 (3)0.0085 (3)0.0043 (4)
N30.0344 (5)0.0421 (5)0.0484 (6)0.0028 (4)0.0112 (4)0.0066 (4)
C10.0432 (7)0.0453 (7)0.0753 (9)0.0023 (5)0.0096 (6)0.0114 (6)
C20.0595 (9)0.0530 (8)0.1081 (14)0.0077 (7)0.0254 (9)0.0217 (9)
C30.0771 (11)0.0602 (9)0.0865 (12)0.0070 (8)0.0290 (9)0.0330 (9)
C40.0735 (11)0.0698 (10)0.0628 (9)0.0057 (8)0.0062 (8)0.0265 (8)
C50.0543 (8)0.0548 (8)0.0522 (7)0.0028 (6)0.0029 (6)0.0118 (6)
C60.0416 (6)0.0358 (5)0.0426 (6)0.0016 (4)0.0116 (5)0.0015 (4)
C70.0354 (5)0.0351 (5)0.0383 (5)0.0004 (4)0.0068 (4)0.0000 (4)
C80.0297 (5)0.0364 (5)0.0378 (5)0.0012 (4)0.0038 (4)0.0004 (4)
C90.0371 (5)0.0393 (5)0.0403 (6)0.0034 (4)0.0077 (4)0.0009 (4)
C100.0328 (5)0.0413 (6)0.0482 (6)0.0040 (4)0.0071 (4)0.0070 (5)
C110.0472 (6)0.0403 (6)0.0503 (7)0.0036 (5)0.0107 (5)0.0065 (5)
C120.0621 (18)0.0715 (19)0.0501 (12)0.0138 (12)0.0009 (11)0.0205 (13)
C130.182 (5)0.123 (3)0.0616 (15)0.005 (3)0.037 (2)0.0168 (16)
C140.104 (2)0.0893 (19)0.0898 (18)0.0083 (16)0.0063 (16)0.0506 (15)
C12A0.049 (13)0.082 (17)0.11 (3)0.033 (11)0.001 (12)0.044 (17)
C13A0.15 (4)0.12 (3)0.088 (19)0.01 (2)0.00 (2)0.037 (19)
C14A0.15 (3)0.14 (3)0.070 (14)0.02 (2)0.020 (18)0.055 (16)
Geometric parameters (Å, º) top
S1—C81.7324 (11)C11—C121.534 (3)
S1—C91.7605 (12)C11—H11A0.9700
N1—C81.3142 (14)C11—H11B0.9700
N1—C71.3963 (15)C11—H11C0.9600
N2—C81.3629 (14)C11—H11D0.9600
N2—C101.3714 (15)C12—C131.509 (5)
N2—N31.3753 (13)C12—C141.549 (4)
N3—C91.2895 (16)C12—H12A0.9800
C1—C61.3894 (18)C13—H13A0.9600
C1—C21.392 (2)C13—H13B0.9600
C1—H1A0.9300C13—H13C0.9600
C2—C31.376 (3)C14—H14A0.9600
C2—H2A0.9300C14—H14B0.9600
C3—C41.370 (3)C14—H14C0.9600
C3—H3A0.9300C12A—C13A1.501 (18)
C4—C51.384 (2)C12A—C14A1.563 (18)
C4—H4A0.9300C12A—H12B0.9800
C5—C61.3925 (19)C13A—H13D0.9600
C5—H5A0.9300C13A—H13E0.9600
C6—C71.4678 (16)C13A—H13F0.9600
C7—C101.3753 (15)C14A—H14D0.9600
C9—C111.4946 (16)C14A—H14E0.9600
C10—H10A0.9300C14A—H14F0.9600
C11—C12A1.30 (3)
C8—S1—C988.09 (5)C12A—C11—H11C106.0
C8—N1—C7103.51 (9)C9—C11—H11C106.5
C8—N2—C10107.97 (9)C12—C11—H11C107.0
C8—N2—N3118.59 (9)H11B—C11—H11C111.4
C10—N2—N3133.36 (10)C12A—C11—H11D107.0
C9—N3—N2108.10 (9)C9—C11—H11D106.5
C6—C1—C2120.06 (15)C12—C11—H11D115.0
C6—C1—H1A120.0H11A—C11—H11D102.7
C2—C1—H1A120.0H11C—C11—H11D106.5
C3—C2—C1120.55 (16)C13—C12—C11109.6 (3)
C3—C2—H2A119.7C13—C12—C14112.5 (3)
C1—C2—H2A119.7C11—C12—C14107.1 (3)
C4—C3—C2119.75 (15)C13—C12—H12A109.2
C4—C3—H3A120.1C11—C12—H12A109.2
C2—C3—H3A120.1C14—C12—H12A109.2
C3—C4—C5120.38 (16)C12—C13—H13A109.5
C3—C4—H4A119.8C12—C13—H13B109.5
C5—C4—H4A119.8H13A—C13—H13B109.5
C4—C5—C6120.69 (14)C12—C13—H13C109.5
C4—C5—H5A119.7H13A—C13—H13C109.5
C6—C5—H5A119.7H13B—C13—H13C109.5
C1—C6—C5118.57 (12)C12—C14—H14A109.5
C1—C6—C7121.03 (12)C12—C14—H14B109.5
C5—C6—C7120.40 (11)H14A—C14—H14B109.5
C10—C7—N1111.69 (10)C12—C14—H14C109.5
C10—C7—C6127.46 (11)H14A—C14—H14C109.5
N1—C7—C6120.84 (10)H14B—C14—H14C109.5
N1—C8—N2112.63 (10)C11—C12A—C13A126 (2)
N1—C8—S1138.83 (9)C11—C12A—C14A123 (2)
N2—C8—S1108.52 (8)C13A—C12A—C14A105 (2)
N3—C9—C11122.70 (11)C11—C12A—H12B97.6
N3—C9—S1116.69 (9)C13A—C12A—H12B97.6
C11—C9—S1120.53 (9)C14A—C12A—H12B97.6
N2—C10—C7104.19 (10)C12A—C13A—H13D109.5
N2—C10—H10A127.9C12A—C13A—H13E109.5
C7—C10—H10A127.9H13D—C13A—H13E109.5
C12A—C11—C9123.4 (13)C12A—C13A—H13F109.5
C9—C11—C12114.71 (15)H13D—C13A—H13F109.5
C12A—C11—H11A106.9H13E—C13A—H13F109.5
C9—C11—H11A108.6C12A—C14A—H14D109.5
C12—C11—H11A108.6C12A—C14A—H14E109.5
C12A—C11—H11B100.8H14D—C14A—H14E109.5
C9—C11—H11B108.6C12A—C14A—H14F109.5
C12—C11—H11B108.6H14D—C14A—H14F109.5
H11A—C11—H11B107.6H14E—C14A—H14F109.5
C8—N2—N3—C90.80 (15)C9—S1—C8—N1177.43 (13)
C10—N2—N3—C9177.01 (12)C9—S1—C8—N21.10 (9)
C6—C1—C2—C30.3 (3)N2—N3—C9—C11176.63 (11)
C1—C2—C3—C40.3 (3)N2—N3—C9—S10.17 (13)
C2—C3—C4—C50.4 (3)C8—S1—C9—N30.77 (10)
C3—C4—C5—C60.3 (3)C8—S1—C9—C11176.10 (10)
C2—C1—C6—C50.2 (2)C8—N2—C10—C70.12 (13)
C2—C1—C6—C7179.96 (14)N3—N2—C10—C7176.62 (12)
C4—C5—C6—C10.2 (2)N1—C7—C10—N20.26 (13)
C4—C5—C6—C7179.99 (13)C6—C7—C10—N2178.61 (11)
C8—N1—C7—C100.54 (13)N3—C9—C11—C12A117 (2)
C8—N1—C7—C6178.42 (10)S1—C9—C11—C12A66 (2)
C1—C6—C7—C10156.55 (13)N3—C9—C11—C12121.5 (2)
C5—C6—C7—C1023.69 (19)S1—C9—C11—C1261.8 (2)
C1—C6—C7—N124.67 (17)C12A—C11—C12—C1389 (14)
C5—C6—C7—N1155.09 (12)C9—C11—C12—C1367.7 (4)
C7—N1—C8—N20.62 (13)C12A—C11—C12—C1433 (13)
C7—N1—C8—S1177.88 (11)C9—C11—C12—C14170.0 (2)
C10—N2—C8—N10.49 (13)C9—C11—C12A—C13A5 (6)
N3—N2—C8—N1177.59 (10)C12—C11—C12A—C13A30 (10)
C10—N2—C8—S1178.47 (8)C9—C11—C12A—C14A155 (3)
N3—N2—C8—S11.36 (13)

Experimental details

Crystal data
Chemical formulaC14H15N3S
Mr257.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.6921 (1), 19.6453 (4), 12.3610 (2)
β (°) 96.127 (1)
V3)1374.35 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.65 × 0.48 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.870, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
36499, 4038, 3378
Rint0.028
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.03
No. of reflections4038
No. of parameters191
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAndotra, C. S., Langer, T. & Kotha, A. (1997). J. Indian Chem. Soc. 74, 125–127.  CAS Google Scholar
First citationAndreani, A., Bonazzi, D., Rambaldi, M., Fabbri, G. & Rainsford, K. D. (1982). Eur. J. Med. Chem. 17, 271–274.  CAS Google Scholar
First citationAndreani, A., Rambaldi, M., Locatelli, A. & Andreani, F. (1991). Collect. Czech. Chem. Commun. 56, 2436–2447.  CrossRef CAS Google Scholar
First citationAndreani, A., Rambaldi, M., Mascellani, G. & Rugarli, P. (1987). Eur. J. Med. Chem. 22, 19–22.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEberle, M. K. & Robert, E. M. (1977). US Patent 4054665.  Google Scholar
First citationGadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853–857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhazi, I. A. M., Mahajanshetti, C. S., Gadad, A. K., Tamalli, A. D. & Sultanpur, C. M. (1996). Arzneim. Forsch. Drug. Res. 46, 949–952.  CAS Google Scholar
First citationKolavi, G., Hegde, V., Khan, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069–3080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds