organic compounds
(E)-3-(4-Chlorophenyl)-1-(2,3,4-trichlorophenyl)prop-2-en-1-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Mangalore, Karnataka, India
*Correspondence e-mail: hkfun@usm.my
In the title chalcone derivative, C15H8Cl4O, the C=C double bond exists in an E configuration and the dihedral angle between the two benzene rings is 48.13 (11)°. In the crystal, molecules are arranged into columns and stacked down the a axis featuring possible weak aromatic π–π stacking interactions [centroid–centroid separation = 3.888 (2) Å].
Related literature
For general background to and applications of chalcone derivatives, see: Geiger & Conn (1945); Misra et al. (1971); Cole & Julian (1954); Aries (1972); Levine et al. (1979); Vranasi et al. (1996).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810053213/hb5777sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810053213/hb5777Isup2.hkl
2,3,4-Trichloroacetophenone (10 mmol) was dissolved in ethanol. Sodium hydroxide (5 ml, 30%) solution and 4-chlorobeldehyde (10 mmol) were then added to the resulting solution with continuous stirring. The stirring was continued for 4 h and was allowed to stand overnight. The reaction mass was then poured onto the crushed ice. The resulting solid was separated, filtered and dried. The compound was re-crystallized using ethanol and DMF mixture to yield yellow blocks. M.P.: 162–165 °C
All hydrogen atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). A total of 1324 Friedel pairs were use to determine the absolute structure.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C15H8Cl4O | Z = 1 |
Mr = 346.01 | F(000) = 174 |
Triclinic, P1 | Dx = 1.614 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8879 (2) Å | Cell parameters from 5499 reflections |
b = 6.7510 (3) Å | θ = 3.0–30.0° |
c = 13.7788 (5) Å | µ = 0.82 mm−1 |
α = 97.620 (2)° | T = 296 K |
β = 96.177 (2)° | Block, yellow |
γ = 92.017 (2)° | 0.76 × 0.33 × 0.22 mm |
V = 355.93 (3) Å3 |
Bruker SMART APEXII CCD diffractometer | 3395 independent reflections |
Radiation source: fine-focus sealed tube | 3183 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 30.0°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
Tmin = 0.574, Tmax = 0.837 | k = −8→9 |
7510 measured reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0435P)2 + 0.0513P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3395 reflections | Δρmax = 0.33 e Å−3 |
181 parameters | Δρmin = −0.18 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 1324 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (5) |
C15H8Cl4O | γ = 92.017 (2)° |
Mr = 346.01 | V = 355.93 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 3.8879 (2) Å | Mo Kα radiation |
b = 6.7510 (3) Å | µ = 0.82 mm−1 |
c = 13.7788 (5) Å | T = 296 K |
α = 97.620 (2)° | 0.76 × 0.33 × 0.22 mm |
β = 96.177 (2)° |
Bruker SMART APEXII CCD diffractometer | 3395 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3183 reflections with I > 2σ(I) |
Tmin = 0.574, Tmax = 0.837 | Rint = 0.024 |
7510 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.082 | Δρmax = 0.33 e Å−3 |
S = 1.06 | Δρmin = −0.18 e Å−3 |
3395 reflections | Absolute structure: Flack (1983), 1324 Friedel pairs |
181 parameters | Absolute structure parameter: −0.02 (5) |
3 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.18842 (18) | 1.21292 (10) | −0.08423 (5) | 0.05987 (19) | |
Cl2 | 1.09977 (14) | 0.85687 (8) | 0.46292 (4) | 0.04498 (14) | |
Cl3 | 0.99789 (19) | 0.85943 (10) | 0.68403 (5) | 0.05664 (17) | |
Cl4 | 0.67317 (19) | 0.47391 (11) | 0.75284 (5) | 0.0645 (2) | |
O1 | 0.9846 (5) | 0.3188 (3) | 0.28530 (12) | 0.0512 (4) | |
C1 | 0.5993 (6) | 0.7313 (4) | 0.00979 (16) | 0.0407 (5) | |
H1A | 0.6920 | 0.6148 | −0.0180 | 0.049* | |
C2 | 0.4793 (7) | 0.8687 (4) | −0.05019 (16) | 0.0445 (5) | |
H2A | 0.4894 | 0.8451 | −0.1178 | 0.053* | |
C3 | 0.3445 (6) | 1.0413 (4) | −0.00805 (17) | 0.0399 (5) | |
C4 | 0.3247 (6) | 1.0802 (4) | 0.09119 (18) | 0.0428 (5) | |
H4A | 0.2311 | 1.1973 | 0.1179 | 0.051* | |
C5 | 0.4465 (6) | 0.9424 (3) | 0.15142 (15) | 0.0386 (5) | |
H5A | 0.4366 | 0.9685 | 0.2190 | 0.046* | |
C6 | 0.5836 (5) | 0.7650 (3) | 0.11160 (14) | 0.0336 (4) | |
C7 | 0.7206 (6) | 0.6183 (3) | 0.17296 (15) | 0.0369 (4) | |
H7A | 0.8342 | 0.5133 | 0.1418 | 0.044* | |
C8 | 0.6995 (6) | 0.6198 (3) | 0.26870 (15) | 0.0372 (4) | |
H8A | 0.5872 | 0.7226 | 0.3021 | 0.045* | |
C9 | 0.8480 (6) | 0.4641 (3) | 0.32376 (14) | 0.0348 (4) | |
C10 | 0.8101 (5) | 0.4806 (3) | 0.43238 (14) | 0.0319 (4) | |
C11 | 0.9116 (5) | 0.6485 (3) | 0.50096 (15) | 0.0309 (4) | |
C12 | 0.8730 (6) | 0.6515 (3) | 0.60100 (16) | 0.0357 (4) | |
C13 | 0.7287 (6) | 0.4796 (4) | 0.63117 (16) | 0.0384 (5) | |
C14 | 0.6308 (6) | 0.3128 (3) | 0.56447 (18) | 0.0432 (5) | |
H14A | 0.5364 | 0.1997 | 0.5856 | 0.052* | |
C15 | 0.6713 (6) | 0.3117 (3) | 0.46607 (16) | 0.0384 (4) | |
H15A | 0.6054 | 0.1972 | 0.4216 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0665 (4) | 0.0563 (4) | 0.0629 (4) | 0.0105 (3) | 0.0037 (3) | 0.0313 (3) |
Cl2 | 0.0504 (3) | 0.0319 (2) | 0.0539 (3) | −0.0034 (2) | 0.0081 (2) | 0.0100 (2) |
Cl3 | 0.0731 (4) | 0.0484 (3) | 0.0425 (3) | 0.0058 (3) | −0.0047 (3) | −0.0069 (2) |
Cl4 | 0.0849 (5) | 0.0797 (5) | 0.0369 (3) | 0.0232 (4) | 0.0178 (3) | 0.0231 (3) |
O1 | 0.0688 (12) | 0.0460 (9) | 0.0405 (8) | 0.0188 (9) | 0.0118 (8) | 0.0036 (7) |
C1 | 0.0496 (13) | 0.0391 (11) | 0.0343 (10) | 0.0064 (10) | 0.0069 (9) | 0.0059 (8) |
C2 | 0.0545 (13) | 0.0489 (12) | 0.0309 (9) | 0.0041 (11) | 0.0054 (9) | 0.0072 (9) |
C3 | 0.0393 (11) | 0.0390 (11) | 0.0440 (11) | 0.0012 (9) | 0.0028 (9) | 0.0170 (9) |
C4 | 0.0469 (12) | 0.0331 (10) | 0.0504 (12) | 0.0074 (9) | 0.0096 (10) | 0.0078 (9) |
C5 | 0.0468 (12) | 0.0374 (11) | 0.0314 (9) | 0.0025 (9) | 0.0056 (9) | 0.0027 (8) |
C6 | 0.0355 (9) | 0.0342 (9) | 0.0323 (9) | 0.0014 (8) | 0.0054 (8) | 0.0074 (7) |
C7 | 0.0376 (10) | 0.0379 (11) | 0.0367 (10) | 0.0050 (9) | 0.0061 (8) | 0.0085 (8) |
C8 | 0.0388 (11) | 0.0399 (11) | 0.0348 (10) | 0.0067 (9) | 0.0057 (8) | 0.0095 (8) |
C9 | 0.0379 (10) | 0.0357 (10) | 0.0317 (9) | 0.0035 (8) | 0.0044 (8) | 0.0073 (7) |
C10 | 0.0347 (10) | 0.0293 (9) | 0.0334 (9) | 0.0074 (8) | 0.0047 (8) | 0.0086 (7) |
C11 | 0.0307 (9) | 0.0281 (9) | 0.0348 (9) | 0.0051 (7) | 0.0024 (7) | 0.0079 (7) |
C12 | 0.0372 (10) | 0.0364 (10) | 0.0332 (9) | 0.0105 (8) | −0.0003 (8) | 0.0045 (7) |
C13 | 0.0409 (11) | 0.0460 (12) | 0.0318 (9) | 0.0127 (9) | 0.0046 (8) | 0.0146 (8) |
C14 | 0.0462 (12) | 0.0397 (12) | 0.0483 (12) | 0.0046 (10) | 0.0075 (10) | 0.0203 (10) |
C15 | 0.0469 (12) | 0.0286 (10) | 0.0388 (10) | −0.0008 (8) | 0.0000 (9) | 0.0063 (8) |
Cl1—C3 | 1.745 (2) | C6—C7 | 1.463 (3) |
Cl2—C11 | 1.730 (2) | C7—C8 | 1.329 (3) |
Cl3—C12 | 1.709 (2) | C7—H7A | 0.9300 |
Cl4—C13 | 1.718 (2) | C8—C9 | 1.474 (3) |
O1—C9 | 1.218 (3) | C8—H8A | 0.9300 |
C1—C2 | 1.383 (3) | C9—C10 | 1.509 (3) |
C1—C6 | 1.399 (3) | C10—C11 | 1.392 (3) |
C1—H1A | 0.9300 | C10—C15 | 1.399 (3) |
C2—C3 | 1.378 (3) | C11—C12 | 1.400 (3) |
C2—H2A | 0.9300 | C12—C13 | 1.403 (3) |
C3—C4 | 1.369 (3) | C13—C14 | 1.370 (4) |
C4—C5 | 1.389 (3) | C14—C15 | 1.381 (3) |
C4—H4A | 0.9300 | C14—H14A | 0.9300 |
C5—C6 | 1.398 (3) | C15—H15A | 0.9300 |
C5—H5A | 0.9300 | ||
C2—C1—C6 | 121.0 (2) | C9—C8—H8A | 118.8 |
C2—C1—H1A | 119.5 | O1—C9—C8 | 123.42 (18) |
C6—C1—H1A | 119.5 | O1—C9—C10 | 118.57 (18) |
C3—C2—C1 | 118.9 (2) | C8—C9—C10 | 117.92 (17) |
C3—C2—H2A | 120.6 | C11—C10—C15 | 118.23 (18) |
C1—C2—H2A | 120.6 | C11—C10—C9 | 124.79 (18) |
C4—C3—C2 | 122.0 (2) | C15—C10—C9 | 116.95 (19) |
C4—C3—Cl1 | 119.28 (18) | C10—C11—C12 | 121.51 (18) |
C2—C3—Cl1 | 118.73 (17) | C10—C11—Cl2 | 119.60 (14) |
C3—C4—C5 | 119.1 (2) | C12—C11—Cl2 | 118.87 (16) |
C3—C4—H4A | 120.5 | C11—C12—C13 | 118.2 (2) |
C5—C4—H4A | 120.5 | C11—C12—Cl3 | 120.83 (17) |
C4—C5—C6 | 120.77 (19) | C13—C12—Cl3 | 120.94 (16) |
C4—C5—H5A | 119.6 | C14—C13—C12 | 120.76 (19) |
C6—C5—H5A | 119.6 | C14—C13—Cl4 | 118.73 (17) |
C5—C6—C1 | 118.25 (19) | C12—C13—Cl4 | 120.51 (18) |
C5—C6—C7 | 122.28 (18) | C13—C14—C15 | 120.4 (2) |
C1—C6—C7 | 119.43 (18) | C13—C14—H14A | 119.8 |
C8—C7—C6 | 126.72 (19) | C15—C14—H14A | 119.8 |
C8—C7—H7A | 116.6 | C14—C15—C10 | 120.9 (2) |
C6—C7—H7A | 116.6 | C14—C15—H15A | 119.6 |
C7—C8—C9 | 122.32 (19) | C10—C15—H15A | 119.6 |
C7—C8—H8A | 118.8 | ||
C6—C1—C2—C3 | 0.4 (4) | C8—C9—C10—C15 | 127.9 (2) |
C1—C2—C3—C4 | −0.3 (4) | C15—C10—C11—C12 | −0.9 (3) |
C1—C2—C3—Cl1 | −179.2 (2) | C9—C10—C11—C12 | −178.96 (19) |
C2—C3—C4—C5 | 0.5 (4) | C15—C10—C11—Cl2 | 177.53 (17) |
Cl1—C3—C4—C5 | 179.44 (19) | C9—C10—C11—Cl2 | −0.6 (3) |
C3—C4—C5—C6 | −0.8 (4) | C10—C11—C12—C13 | 0.1 (3) |
C4—C5—C6—C1 | 0.9 (3) | Cl2—C11—C12—C13 | −178.29 (16) |
C4—C5—C6—C7 | 178.7 (2) | C10—C11—C12—Cl3 | −179.78 (17) |
C2—C1—C6—C5 | −0.7 (3) | Cl2—C11—C12—Cl3 | 1.8 (2) |
C2—C1—C6—C7 | −178.6 (2) | C11—C12—C13—C14 | 0.5 (3) |
C5—C6—C7—C8 | 8.2 (4) | Cl3—C12—C13—C14 | −179.62 (19) |
C1—C6—C7—C8 | −174.0 (2) | C11—C12—C13—Cl4 | −179.80 (16) |
C6—C7—C8—C9 | −179.9 (2) | Cl3—C12—C13—Cl4 | 0.1 (3) |
C7—C8—C9—O1 | −3.7 (4) | C12—C13—C14—C15 | −0.3 (3) |
C7—C8—C9—C10 | 179.8 (2) | Cl4—C13—C14—C15 | 179.98 (19) |
O1—C9—C10—C11 | 129.4 (2) | C13—C14—C15—C10 | −0.5 (4) |
C8—C9—C10—C11 | −53.9 (3) | C11—C10—C15—C14 | 1.1 (3) |
O1—C9—C10—C15 | −48.7 (3) | C9—C10—C15—C14 | 179.3 (2) |
Experimental details
Crystal data | |
Chemical formula | C15H8Cl4O |
Mr | 346.01 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 3.8879 (2), 6.7510 (3), 13.7788 (5) |
α, β, γ (°) | 97.620 (2), 96.177 (2), 92.017 (2) |
V (Å3) | 355.93 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.76 × 0.33 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.574, 0.837 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7510, 3395, 3183 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.082, 1.06 |
No. of reflections | 3395 |
No. of parameters | 181 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.18 |
Absolute structure | Flack (1983), 1324 Friedel pairs |
Absolute structure parameter | −0.02 (5) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
HKF and CSY thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160.
References
Aries, R. (1972). French Patent 2 192 811. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cole, W. & Julian, P. L. (1954). J. Org. Chem. 19, 131–138. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Geiger, W. B. & Conn, J. E. (1945). J. Am. Chem. Soc. 67, 112–116. CrossRef CAS Web of Science Google Scholar
Levine, B. F., Bethea, C. G., Thurmond, C. D., Lynch, R. T. & Bernstein, J. L. (1979). J. Appl. Phys. 50, 2523–2527. CrossRef CAS Web of Science Google Scholar
Misra, S. S., Tewari, R. S. & Nath, B. (1971). Indian J. Appl. Chem. 34, 260–264. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vranasi, P. R., Jen, A. K. Y., Chandrashekar, J., Namboothiri, I. N. N. & Ratna, A. (1996). J. Am. Chem. Soc. 118, 12443–12448. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones are natural biocides (Geiger & Conn, 1945) and also well known as intermediates in the synthesis of heterocyclic compounds which exhibit various biological activities (Misra et al., 1971). The presence of enone functional group in the chalcone molecule confers antibiotic activity upon it (Cole & Julian, 1954). This property is enhanced when substitution is made at the α-(nitro and bromo) and (bromo and hydroxylic-) positions (Aries, 1972). Chalcones are also reported to possess trypanocidal (Levine et al., 1979), anti-inflammatory and anticancer properties (Vranasi et al., 1996).
The C7=C8 double bond of the title compound (I) exists in an E-configuration (Fig. 1). The dihedral angle between the two benzene rings being 48.13 (11)°. In the crystal structure, the molecules are arranged into columns and stacked down a axis (Fig. 2).