organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy­ethyl 4-hy­dr­oxy­benzoate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Chemistry, Presidency College, Chennai 600 005, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 17 December 2010; accepted 28 December 2010; online 22 January 2011)

In the title compound, C9H10O4, the dihedral angle between the benzene ring and the –CO2 unit is 11.93 (8)° and the conformation of the 2-hy­droxy­ethyl side chain is gauche [O—C—C—O = −71.91 (17)°]. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the properties of esters of 4-hy­droxy­benzoic acid, see: Kadokawa et al. (2002[Kadokawa, J., Suzuki, T., Iwasaki, Y. & Tagaya, H. (2002). Eur. Polym. J. 39, 985-989.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10O4

  • Mr = 182.17

  • Triclinic, P 1

  • a = 4.4235 (10) Å

  • b = 5.6850 (17) Å

  • c = 8.7050 (17) Å

  • α = 80.819 (13)°

  • β = 79.943 (14)°

  • γ = 81.804 (14)°

  • V = 211.30 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 3761 measured reflections

  • 1767 independent reflections

  • 1609 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.06

  • 1767 reflections

  • 126 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.86 (3) 1.87 (3) 2.7204 (19) 169 (2)
O4—H4A⋯O2ii 0.75 (3) 2.15 (3) 2.8970 (18) 170 (3)
C9—H9A⋯O2iii 0.97 2.51 3.322 (2) 141
Symmetry codes: (i) x-1, y+1, z-1; (ii) x, y-1, z; (iii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The ORTEP diagram of the title compound, (I), shown in Fig.1 indicates that the aromatic ring is in a plane and the ester group attached to it maintains near planarity with it which is defined by the torsion angles C5—C6—C7—O2 (166.91°), C5—C6—C7—O3 (-12.81°).

Though the C6—C7 is a single bond (1.468 Å) and the possibility of free rotation is high at that connectivity, the planarity exerted by the ester group may be purely because of crystal packing.

The torsion angle O3—C8—C9—O4 is -71.09° which makes the ethyl hydroxy O4 to assume the syn-clinal conformation with respect to the carboxy O3. Such a conformation instead of anti conformation may be due to crystal packing of the molecules which makes them compactly stacked to one another.

The crystal packing (Fig.2) shows the presence of inter-molecular hydrogen bonding. The phenolic oxygen (O1) forms a strong intermolecular hydrogen bond (O1—H1A···O4) with the D···A distance of 2.720 Å and the D—H···A angle of 169°. The ethanolic O4 donates the hydrogen to symmetrically related carbonyl O2 to form intermolecular hydrogen bond (O4—H4A···O2) with the D···A distance of 2.897 Å and the D—H···A angle of 170°. The carbon (C9) atom forms a weak intermolecular hydrogen bond (C9—H9A···O2) with the D···A distance of 3.392 Å and the D—H···A angle is 140.8°. All these three hydrogen bonds are exisiting between a given molecule and three different symmetry related molecules (x - 1, +y + 1, +z - 1 x, +y - 1, +z and x + 1, +y - 1, +z respectively). This multiple hydrogen bonding network makes the well defined crystal packing.

Related literature top

For background to the properties of esters of 4-hydroxybenzoic acid, see: Kadokawa et al. (2002).

Experimental top

An ethanolic solution of 3-methyl-1-phenyl-4-acetylpyrazolin-5-ol (0.432 g, 2 mmol) and 2-aminoethanol (0.122 g, 2mmoL) were taken in a round bottom flask and refluxed for 4 h. The solid product was filtered and washed with cold ethanol. The product obtained was pure by TLC and NMR spectroscopy. However, the product was further purified by re-crystallization from ethanol and dried under vacuum. The compound was crystallized by slow evaporation technique using methanol as solvent at room temperature to yield colourless blocks of (I).

Refinement top

Anomalous dispersion was negliglble and the absolute sturcture of (I) could not be determined in the present analysis.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing diagram. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-Hydroxyethyl 4-hydroxybenzoate top
Crystal data top
C9H10O4Z = 1
Mr = 182.17F(000) = 96
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4235 (10) ÅCell parameters from 1767 reflections
b = 5.6850 (17) Åθ = 2.4–28.3°
c = 8.7050 (17) ŵ = 0.11 mm1
α = 80.819 (13)°T = 293 K
β = 79.943 (14)°Block, colourless
γ = 81.804 (14)°0.20 × 0.20 × 0.20 mm
V = 211.30 (9) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
1767 independent reflections
Radiation source: fine-focus sealed tube1609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 55
Tmin = 0.978, Tmax = 0.982k = 77
3761 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.0112P]
where P = (Fo2 + 2Fc2)/3
1767 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.21 e Å3
3 restraintsΔρmin = 0.14 e Å3
Crystal data top
C9H10O4γ = 81.804 (14)°
Mr = 182.17V = 211.30 (9) Å3
Triclinic, P1Z = 1
a = 4.4235 (10) ÅMo Kα radiation
b = 5.6850 (17) ŵ = 0.11 mm1
c = 8.7050 (17) ÅT = 293 K
α = 80.819 (13)°0.20 × 0.20 × 0.20 mm
β = 79.943 (14)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1767 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1609 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.018
3761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0313 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
1767 reflectionsΔρmin = 0.14 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5796 (3)0.5763 (2)0.61019 (14)0.0532 (3)
O21.0292 (3)0.7852 (2)1.22266 (15)0.0481 (3)
O31.1612 (2)0.38911 (18)1.22823 (13)0.0413 (3)
O41.2540 (3)0.0314 (2)1.46819 (18)0.0527 (3)
C10.7231 (4)0.7899 (3)0.96121 (18)0.0389 (4)
H10.67760.92511.01260.047*
C20.6084 (4)0.7891 (3)0.82391 (19)0.0416 (4)
H20.48350.92230.78360.050*
C30.6800 (3)0.5888 (2)0.74610 (16)0.0383 (4)
C40.8620 (4)0.3879 (3)0.80814 (19)0.0441 (4)
H40.90920.25330.75620.053*
C50.9712 (4)0.3888 (3)0.94576 (17)0.0406 (4)
H51.09000.25340.98780.049*
C60.9064 (3)0.5905 (2)1.02359 (17)0.0346 (3)
C71.0346 (3)0.6029 (3)1.16625 (17)0.0342 (3)
C81.3041 (4)0.3878 (3)1.36534 (18)0.0385 (3)
H8A1.14880.42921.45320.046*
H8B1.45220.50401.34360.046*
C91.4636 (4)0.1408 (3)1.4041 (2)0.0447 (4)
H9A1.58960.09121.30920.054*
H9B1.60040.14431.47930.054*
H1A0.471 (6)0.706 (5)0.577 (3)0.058 (6)*
H4A1.190 (5)0.062 (4)1.401 (3)0.056 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0782 (9)0.0440 (7)0.0442 (7)0.0023 (6)0.0365 (6)0.0051 (5)
O20.0672 (8)0.0375 (6)0.0458 (6)0.0033 (5)0.0264 (5)0.0130 (4)
O30.0587 (7)0.0341 (5)0.0368 (6)0.0018 (4)0.0256 (5)0.0055 (4)
O40.0742 (8)0.0404 (6)0.0511 (8)0.0043 (5)0.0365 (6)0.0024 (5)
C10.0488 (9)0.0333 (8)0.0360 (8)0.0007 (6)0.0148 (6)0.0057 (6)
C20.0505 (9)0.0336 (7)0.0414 (8)0.0019 (6)0.0188 (7)0.0010 (6)
C30.0498 (9)0.0376 (8)0.0306 (8)0.0064 (6)0.0173 (7)0.0003 (6)
C40.0631 (10)0.0324 (7)0.0415 (9)0.0008 (7)0.0219 (7)0.0081 (6)
C50.0553 (9)0.0320 (8)0.0375 (9)0.0018 (6)0.0223 (7)0.0034 (6)
C60.0410 (8)0.0324 (7)0.0323 (8)0.0061 (6)0.0106 (6)0.0035 (6)
C70.0381 (8)0.0357 (8)0.0305 (7)0.0026 (6)0.0116 (6)0.0041 (6)
C80.0488 (9)0.0385 (8)0.0330 (7)0.0008 (6)0.0209 (6)0.0075 (6)
C90.0508 (9)0.0426 (8)0.0443 (9)0.0060 (6)0.0247 (7)0.0080 (6)
Geometric parameters (Å, º) top
O1—C31.3494 (19)C3—C41.392 (2)
O1—H1A0.86 (3)C4—C51.369 (2)
O2—C71.211 (2)C4—H40.9300
O3—C71.3357 (17)C5—C61.394 (2)
O3—C81.4436 (18)C5—H50.9300
O4—C91.426 (2)C6—C71.468 (2)
O4—H4A0.75 (3)C8—C91.494 (2)
C1—C21.379 (2)C8—H8A0.9700
C1—C61.390 (2)C8—H8B0.9700
C1—H10.9300C9—H9A0.9700
C2—C31.387 (2)C9—H9B0.9700
C2—H20.9300
C3—O1—H1A112.3 (16)C1—C6—C5119.03 (13)
C7—O3—C8115.86 (12)C1—C6—C7118.75 (13)
C9—O4—H4A107.0 (19)C5—C6—C7122.18 (12)
C2—C1—C6120.59 (14)O2—C7—O3123.00 (14)
C2—C1—H1119.7O2—C7—C6124.52 (13)
C6—C1—H1119.7O3—C7—C6112.48 (12)
C1—C2—C3119.71 (14)O3—C8—C9107.48 (12)
C1—C2—H2120.1O3—C8—H8A110.2
C3—C2—H2120.1C9—C8—H8A110.2
O1—C3—C2123.02 (14)O3—C8—H8B110.2
O1—C3—C4116.90 (13)C9—C8—H8B110.2
C2—C3—C4120.08 (13)H8A—C8—H8B108.5
C5—C4—C3119.84 (14)O4—C9—C8113.01 (14)
C5—C4—H4120.1O4—C9—H9A109.0
C3—C4—H4120.1C8—C9—H9A109.0
C4—C5—C6120.74 (13)O4—C9—H9B109.0
C4—C5—H5119.6C8—C9—H9B109.0
C6—C5—H5119.6H9A—C9—H9B107.8
C6—C1—C2—C30.9 (2)C4—C5—C6—C7176.35 (15)
C1—C2—C3—O1179.07 (13)C8—O3—C7—O22.2 (2)
C1—C2—C3—C41.2 (2)C8—O3—C7—C6177.51 (12)
O1—C3—C4—C5179.98 (15)C1—C6—C7—O210.8 (2)
C2—C3—C4—C50.3 (2)C5—C6—C7—O2166.91 (15)
C3—C4—C5—C61.0 (3)C1—C6—C7—O3169.50 (13)
C2—C1—C6—C50.4 (2)C5—C6—C7—O312.81 (18)
C2—C1—C6—C7177.41 (14)C7—O3—C8—C9173.21 (12)
C4—C5—C6—C11.3 (2)O3—C8—C9—O471.91 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.86 (3)1.87 (3)2.7204 (19)169 (2)
O4—H4A···O2ii0.75 (3)2.15 (3)2.8970 (18)170 (3)
C9—H9A···O2iii0.972.513.322 (2)141
Symmetry codes: (i) x1, y+1, z1; (ii) x, y1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC9H10O4
Mr182.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.4235 (10), 5.6850 (17), 8.7050 (17)
α, β, γ (°)80.819 (13), 79.943 (14), 81.804 (14)
V3)211.30 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3761, 1767, 1609
Rint0.018
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.06
No. of reflections1767
No. of parameters126
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.86 (3)1.87 (3)2.7204 (19)169 (2)
O4—H4A···O2ii0.75 (3)2.15 (3)2.8970 (18)170 (3)
C9—H9A···O2iii0.972.513.322 (2)141
Symmetry codes: (i) x1, y+1, z1; (ii) x, y1, z; (iii) x+1, y1, z.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBruker (2008). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKadokawa, J., Suzuki, T., Iwasaki, Y. & Tagaya, H. (2002). Eur. Polym. J. 39, 985–989.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds