metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium bis­­{4-[(5-bromo-2-hy­dr­oxy­benzyl­­idene)amino]­benzene­sulfonate} dihydrate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 20 December 2010; accepted 21 December 2010; online 8 January 2011)

In the title hydrated mol­ecular salt, [Mg(H2O)6](C13H9BrNO4S)2·2H2O, the Mg2+ ion (site symmetry [\overline{1}]) adopts a near regular MgO6 octa­hedral coordination geometry. In the anion, the dihedral angle between the aromatic rings is 2.5 (2)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, the components are linked by O—H⋯O and O—H⋯Br hydrogen bonds.

Related literature

For background to Schiff bases as ligands, see: Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C13H9BrNO4S)2·2H2O

  • Mr = 878.80

  • Monoclinic, P 21 /c

  • a = 18.7737 (14) Å

  • b = 6.2837 (5) Å

  • c = 15.7591 (12) Å

  • β = 108.668 (1)°

  • V = 1761.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.51 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.48, Tmax = 0.55

  • 9144 measured reflections

  • 3446 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.131

  • S = 1.03

  • 3446 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Mg1—O12 2.031 (3)
Mg1—O11 2.065 (3)
Mg1—O13 2.077 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.96 1.73 2.570 (5) 144
O5—H5D⋯O3i 0.85 2.00 2.854 (4) 180
O5—H5A⋯O4ii 0.85 2.08 2.892 (4) 160
O11—H11A⋯Br1iii 0.96 2.60 3.539 (3) 166
O11—H11C⋯O3ii 0.96 1.94 2.710 (4) 136
O12—H12A⋯O2iv 0.96 2.04 2.747 (4) 129
O12—H12B⋯O5 0.96 1.90 2.729 (4) 143
O13—H13C⋯O4v 0.96 1.88 2.763 (4) 152
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) -x+1, -y+2, -z; (v) x-1, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background to Schiff bases as ligands, see: Tai et al. (2003).

Experimental top

1 mmol of magnesium perchlorate was added to a solution of 5-bromosalicylaldehyde-4-aminobenzene sulfonic acid (1 mmol) in 10 ml of 95% ethanol. The mixture was stirred for 3 h at refluxing temperature. Evaporating some ethanol, clear blocks of (I) were obtained after two weeks.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids. Symmetry code: (i) –x, 1–y, –z.
Hexaaquamagnesium bis{4-[(5-bromo-2-hydroxybenzylidene)amino]benzenesulfonate} dihydrate top
Crystal data top
[Mg(H2O)6](C13H9BrNO4S)2·2H2OF(000) = 892
Mr = 878.80Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1852 reflections
a = 18.7737 (14) Åθ = 2.3–22.6°
b = 6.2837 (5) ŵ = 2.51 mm1
c = 15.7591 (12) ÅT = 291 K
β = 108.668 (1)°Block, colourless
V = 1761.3 (2) Å30.30 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3446 independent reflections
Radiation source: sealed tube2473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2122
Tmin = 0.48, Tmax = 0.55k = 77
9144 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.06P)2 + 1.22P]
where P = (Fo2 + 2Fc2)/3
3446 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mg(H2O)6](C13H9BrNO4S)2·2H2OV = 1761.3 (2) Å3
Mr = 878.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 18.7737 (14) ŵ = 2.51 mm1
b = 6.2837 (5) ÅT = 291 K
c = 15.7591 (12) Å0.30 × 0.26 × 0.24 mm
β = 108.668 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3446 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2473 reflections with I > 2σ(I)
Tmin = 0.48, Tmax = 0.55Rint = 0.044
9144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3446 reflectionsΔρmin = 0.46 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22648 (3)1.13983 (10)0.17778 (4)0.0651 (2)
C10.3958 (3)0.6851 (8)0.1070 (3)0.0477 (11)
C20.3228 (3)0.6150 (9)0.1013 (4)0.0604 (13)
H20.30740.47750.08210.072*
C30.2748 (2)0.7509 (8)0.1242 (3)0.0481 (11)
H30.22710.70410.12130.058*
C40.2961 (2)0.9538 (8)0.1511 (3)0.0448 (10)
C50.3665 (2)1.0246 (8)0.1571 (3)0.0450 (10)
H50.38051.16260.17670.054*
C60.4171 (2)0.8944 (7)0.1345 (3)0.0397 (9)
C70.4892 (2)0.9756 (8)0.1354 (3)0.0482 (11)
H70.50181.11600.15230.058*
C80.6080 (2)0.9353 (7)0.1133 (3)0.0387 (9)
C90.6512 (3)0.7946 (8)0.0856 (4)0.0563 (13)
H90.63250.66010.06580.068*
C100.7223 (3)0.8507 (8)0.0870 (3)0.0513 (12)
H100.75120.75460.06710.062*
C110.7506 (2)1.0454 (7)0.1170 (3)0.0403 (10)
C120.7072 (2)1.1915 (7)0.1430 (3)0.0457 (11)
H120.72571.32710.16110.055*
C130.6353 (2)1.1350 (8)0.1421 (3)0.0476 (12)
H130.60591.23150.16080.057*
Mg10.00000.50000.00000.0372 (4)
N10.53591 (18)0.8598 (6)0.1135 (2)0.0436 (9)
O10.44163 (19)0.5502 (6)0.0844 (3)0.0727 (12)
H1A0.48530.62680.08250.109*
O20.85670 (16)1.0353 (5)0.04402 (18)0.0401 (7)
O30.89136 (16)0.9951 (6)0.20297 (19)0.0522 (8)
O40.85143 (17)1.3394 (5)0.1372 (2)0.0450 (7)
O50.04046 (16)0.9650 (5)0.19393 (18)0.0438 (7)
H5D0.00400.97380.19650.053*
H5A0.06790.89730.23930.066*
O110.04471 (18)0.3651 (5)0.12539 (18)0.0486 (8)
H11A0.09110.29500.12910.073*
H11C0.05420.47460.17010.073*
O120.05566 (19)0.7759 (5)0.0447 (2)0.0503 (8)
H12A0.10360.77220.03490.075*
H12B0.06310.79040.10760.075*
O130.08843 (18)0.6110 (5)0.0402 (2)0.0506 (8)
H13A0.12300.68820.00830.076*
H13C0.11380.49230.05600.076*
S10.84436 (5)1.11031 (16)0.12566 (6)0.0322 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0464 (3)0.0689 (4)0.0887 (4)0.0068 (2)0.0338 (3)0.0030 (3)
C10.040 (2)0.047 (3)0.055 (3)0.007 (2)0.014 (2)0.003 (2)
C20.046 (3)0.048 (3)0.087 (4)0.018 (2)0.021 (3)0.005 (3)
C30.028 (2)0.058 (3)0.056 (3)0.003 (2)0.0105 (19)0.013 (2)
C40.030 (2)0.051 (3)0.053 (3)0.0018 (19)0.0128 (19)0.004 (2)
C50.039 (2)0.039 (3)0.059 (3)0.0022 (19)0.019 (2)0.002 (2)
C60.029 (2)0.043 (3)0.046 (2)0.0004 (17)0.0107 (17)0.0030 (19)
C70.038 (2)0.046 (3)0.063 (3)0.003 (2)0.018 (2)0.003 (2)
C80.0305 (19)0.040 (2)0.047 (2)0.0055 (17)0.0137 (18)0.0009 (18)
C90.050 (3)0.035 (2)0.093 (4)0.020 (2)0.035 (3)0.028 (2)
C100.048 (3)0.049 (3)0.062 (3)0.008 (2)0.025 (2)0.025 (2)
C110.038 (2)0.048 (3)0.035 (2)0.0006 (19)0.0116 (18)0.0036 (18)
C120.041 (2)0.039 (3)0.067 (3)0.0133 (19)0.031 (2)0.026 (2)
C130.047 (2)0.049 (3)0.063 (3)0.015 (2)0.041 (2)0.031 (2)
Mg10.0380 (10)0.0361 (11)0.0405 (10)0.0008 (8)0.0166 (8)0.0003 (8)
N10.0279 (17)0.048 (2)0.054 (2)0.0080 (16)0.0114 (15)0.0044 (18)
O10.0431 (18)0.057 (2)0.124 (3)0.0094 (17)0.035 (2)0.026 (2)
O20.0475 (16)0.0432 (17)0.0386 (14)0.0031 (13)0.0264 (13)0.0058 (13)
O30.0353 (16)0.078 (2)0.0378 (16)0.0083 (16)0.0042 (13)0.0168 (16)
O40.0482 (17)0.0379 (18)0.0560 (18)0.0109 (14)0.0267 (15)0.0102 (14)
O50.0436 (16)0.0509 (19)0.0358 (15)0.0081 (14)0.0111 (13)0.0089 (13)
O110.063 (2)0.0476 (19)0.0329 (15)0.0076 (15)0.0119 (14)0.0015 (13)
O120.065 (2)0.0463 (19)0.0510 (17)0.0202 (16)0.0340 (16)0.0143 (14)
O130.0584 (19)0.0361 (18)0.072 (2)0.0118 (15)0.0415 (17)0.0130 (15)
S10.0313 (5)0.0350 (6)0.0320 (5)0.0036 (4)0.0123 (4)0.0004 (4)
Geometric parameters (Å, º) top
Br1—C41.899 (5)C11—S11.770 (4)
C1—O11.334 (6)C12—C131.390 (6)
C1—C61.402 (6)C12—H120.9300
C1—C21.415 (6)C13—H130.9300
C2—C31.370 (7)Mg1—O12i2.031 (3)
C2—H20.9300Mg1—O122.031 (3)
C3—C41.362 (7)Mg1—O112.065 (3)
C3—H30.9300Mg1—O11i2.065 (3)
C4—C51.367 (6)Mg1—O13i2.077 (3)
C5—C61.385 (6)Mg1—O132.077 (3)
C5—H50.9300O1—H1A0.9600
C6—C71.443 (6)O2—S11.457 (3)
C7—N11.268 (6)O3—S11.449 (3)
C7—H70.9300O4—S11.452 (3)
C8—C91.362 (6)O5—H5D0.8501
C8—C131.376 (6)O5—H5A0.8500
C8—N11.436 (5)O11—H11A0.9600
C9—C101.373 (6)O11—H11C0.9600
C9—H90.9300O12—H12A0.9601
C10—C111.358 (6)O12—H12B0.9599
C10—H100.9300O13—H13A0.9599
C11—C121.374 (6)O13—H13C0.9600
O1—C1—C6122.3 (4)C8—C13—C12119.6 (4)
O1—C1—C2118.6 (4)C8—C13—H13120.2
C6—C1—C2119.1 (4)C12—C13—H13120.2
C3—C2—C1119.6 (5)O12i—Mg1—O12180.0
C3—C2—H2120.2O12i—Mg1—O1189.32 (13)
C1—C2—H2120.2O12—Mg1—O1190.68 (13)
C4—C3—C2120.9 (4)O12i—Mg1—O11i90.68 (13)
C4—C3—H3119.6O12—Mg1—O11i89.32 (13)
C2—C3—H3119.6O11—Mg1—O11i180.0
C3—C4—C5120.5 (4)O12i—Mg1—O13i88.86 (13)
C3—C4—Br1119.4 (3)O12—Mg1—O13i91.14 (13)
C5—C4—Br1120.1 (4)O11—Mg1—O13i91.94 (13)
C4—C5—C6121.1 (4)O11i—Mg1—O13i88.06 (13)
C4—C5—H5119.4O12i—Mg1—O1391.14 (13)
C6—C5—H5119.4O12—Mg1—O1388.86 (13)
C5—C6—C1118.8 (4)O11—Mg1—O1388.06 (13)
C5—C6—C7120.5 (4)O11i—Mg1—O1391.94 (13)
C1—C6—C7120.6 (4)O13i—Mg1—O13180.0
N1—C7—C6121.5 (4)C7—N1—C8123.0 (4)
N1—C7—H7119.3C1—O1—H1A108.7
C6—C7—H7119.3H5D—O5—H5A109.5
C9—C8—C13120.0 (4)Mg1—O11—H11A109.3
C9—C8—N1116.4 (4)Mg1—O11—H11C109.3
C13—C8—N1123.6 (4)H11A—O11—H11C109.5
C8—C9—C10120.2 (4)Mg1—O12—H12A109.1
C8—C9—H9119.9Mg1—O12—H12B109.2
C10—C9—H9119.9H12A—O12—H12B109.5
C11—C10—C9120.4 (4)Mg1—O13—H13A109.3
C11—C10—H10119.8Mg1—O13—H13C109.2
C9—C10—H10119.8H13A—O13—H13C109.5
C10—C11—C12120.2 (4)O3—S1—O4112.5 (2)
C10—C11—S1120.2 (4)O3—S1—O2110.78 (19)
C12—C11—S1119.6 (3)O4—S1—O2113.44 (18)
C11—C12—C13119.5 (4)O3—S1—C11105.83 (19)
C11—C12—H12120.3O4—S1—C11106.7 (2)
C13—C12—H12120.3O2—S1—C11107.05 (19)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.961.732.570 (5)144
O5—H5D···O3ii0.852.002.854 (4)180
O5—H5A···O4iii0.852.082.892 (4)160
O11—H11A···Br1iv0.962.603.539 (3)166
O11—H11C···O3iii0.961.942.710 (4)136
O12—H12A···O2v0.962.042.747 (4)129
O12—H12B···O50.961.902.729 (4)143
O13—H13C···O4vi0.961.882.763 (4)152
Symmetry codes: (ii) x1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x, y1, z; (v) x+1, y+2, z; (vi) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C13H9BrNO4S)2·2H2O
Mr878.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)18.7737 (14), 6.2837 (5), 15.7591 (12)
β (°) 108.668 (1)
V3)1761.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.48, 0.55
No. of measured, independent and
observed [I > 2σ(I)] reflections
9144, 3446, 2473
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.131, 1.03
No. of reflections3446
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.46

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mg1—O122.031 (3)Mg1—O132.077 (3)
Mg1—O112.065 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.961.732.570 (5)144
O5—H5D···O3i0.852.002.854 (4)180
O5—H5A···O4ii0.852.082.892 (4)160
O11—H11A···Br1iii0.962.603.539 (3)166
O11—H11C···O3ii0.961.942.710 (4)136
O12—H12A···O2iv0.962.042.747 (4)129
O12—H12B···O50.961.902.729 (4)143
O13—H13C···O4v0.961.882.763 (4)152
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+2, z; (v) x1, y1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), NingXia Natural Gas Transfering Key Laboratory (2004007), the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds