organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carb­­oxy­methyl ursolate monohydrate

aSchool of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24 Nanjing, Nanjing 210009, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China, and cSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No.140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wjy090202@yahoo.com.cn

(Received 1 January 2011; accepted 11 January 2011; online 15 January 2011)

In the title compound, C28H50O5·H2O, all of the six-membered rings of the penta­cyclic triterpene skeleton adopt chair conformations. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Wen et al. (2006[Wen, X.-A., Zhang, P., Liu, J., Zhang, L.-Y., Wu, X.-M., Ni, P.-Z. & Sun, H.-B. (2006). Bioorg. Med. Chem. Lett. 16, 722-726.]). The crystal structure of ursolic acid is known from its ethanol solvate, see: Simon et al. (1992[Simon, A., Delage, C., Saux, M., Chulia, A. J., Najid, A. & Rigaud, M. (1992). Acta Cryst. C48, 726-728.]). For methyl uroslate-3-bromo­acetate, see: Stout & Stevens (1963[Stout, G. H. & Stevens, K. L. (1963). J. Org. Chem. 28, 1259-1262.]). For methyl ursolate-3-p-bromo­benzoate, see: Paton & Paul (1979[Paton, W. F. & Paul, I. C. (1979). Cryst. Struct. Commun. 8, 207-211.]). For background to ursolic acid derivatives and their biological activity, see: Es-saady et al. (1996[Es-saady, D., Simon, A., Ollier, M., Maurizis, J. C., Chulia, A. J. & Delage, C. (1996). Cancer Lett. 106, 193-197.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C32H50O5·H2O

  • Mr = 532.74

  • Monoclinic, P 21

  • a = 13.338 (3) Å

  • b = 8.1010 (16) Å

  • c = 14.311 (3) Å

  • β = 106.26 (3)°

  • V = 1484.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.992

  • 5692 measured reflections

  • 5446 independent reflections

  • 4536 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.00

  • 5446 reflections

  • 350 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWB⋯O2i 0.85 2.41 2.839 (3) 112
OW—HWB⋯O4i 0.85 2.58 3.365 (3) 154
O1—H1A⋯O4ii 0.82 1.98 2.758 (3) 159
OW—HWA⋯O1iii 0.86 1.88 2.681 (3) 154
O5—H5B⋯OW 0.85 1.74 2.575 (3) 165
C12—H12A⋯OWi 0.93 2.57 3.455 (3) 159
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the synthesis, see: Wen et al. (2006). The crystal structure of ursolic acid is known from its ethanol solvate, see: Simon et al. (1992). For methyl uroslate-3-bromoacetate, see: Stout & Stevens (1963). For methyl ursolate-3-p-bromobenzoate, see: Paton & Paul (1979). For background to ursolic acid derivatives and their biological activity, see: Es-saady et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of ursolic acid (5.0 g, 11 mmol) in DMF (125 ml) were added ethyl chloroacetate (1.17 ml, 11 mmol) and K2CO3 (4.5 g, 33 mmol). The reaction mixture was stirred at room temperature for 5 h, then filtered and concentrated to give ethoxycarbonylmethyl ursolate as a yellow oil, which is pure enough for the next step. The ester was dissolved in MeOH (50 ml), THF (75 ml) and 4 N NaOH (30 ml). The mixture was stirred at room temperature for 18 h. After solvent evaporation under reduced pressure, H2O (90 ml) was added. The mixture was acidified with 4 N HCl until the pH was adjusted to 3.0 and the product was extracted with CHCl3 (75 ml). The organic layer was separated and dried in Na2SO4. Filtration and concentration under reduce pressure provided carboxymethyl ursolate as a white powder. The colorless block of the title compound used in x-ray diffraction studies were grown in a mixture of ethyl acetate and hexane by a slow evaporation at room temperature.

Refinement top

The absolute sturucture was indeterminate in the present experiment. The relative chiralities of the stereogenic centres are: C1 R*, C4 S*, C5 S*, C7 R*, C14 R*, C15 S*, C16 R*, C17 R*, C22 S*, C23 R*. All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å, and included in the refinement in riding motion approximation with Uĩso~(H) = 1.2 or 1.5U~eq~ of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
Carboxymethyl ursolate monohydrate top
Crystal data top
C32H50O5·H2OF(000) = 584
Mr = 532.74Dx = 1.192 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 13.338 (3) Åθ = 9–13°
b = 8.1010 (16) ŵ = 0.08 mm1
c = 14.311 (3) ÅT = 293 K
β = 106.26 (3)°Block, colorless
V = 1484.5 (5) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
4536 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.4°, θmin = 1.5°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.976, Tmax = 0.992l = 1716
5692 measured reflections3 standard reflections every 200 reflections
5446 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.094P)2]
where P = (Fo2 + 2Fc2)/3
5446 reflections(Δ/σ)max < 0.001
350 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C32H50O5·H2OV = 1484.5 (5) Å3
Mr = 532.74Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.338 (3) ŵ = 0.08 mm1
b = 8.1010 (16) ÅT = 293 K
c = 14.311 (3) Å0.30 × 0.20 × 0.10 mm
β = 106.26 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4536 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.976, Tmax = 0.9923 standard reflections every 200 reflections
5692 measured reflections intensity decay: 1%
5446 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
5446 reflectionsΔρmin = 0.23 e Å3
350 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85435 (16)0.1230 (3)0.65587 (19)0.0785 (7)
H1A0.86270.02290.66210.118*
C10.7706 (2)0.1725 (3)0.6936 (2)0.0484 (6)
H1B0.79110.14900.76360.058*
C20.6748 (2)0.0714 (3)0.64682 (19)0.0456 (6)
H2A0.69030.04470.66010.055*
H2B0.65570.08710.57690.055*
O20.16556 (16)0.8730 (2)0.72389 (16)0.0640 (6)
O30.09919 (14)0.6206 (2)0.68621 (12)0.0547 (5)
C30.58375 (18)0.1207 (3)0.68505 (18)0.0401 (5)
H3A0.60090.09510.75390.048*
H3B0.52310.05570.65210.048*
C40.55611 (17)0.3049 (3)0.67043 (15)0.0359 (5)
O40.07654 (15)0.8025 (2)0.65381 (14)0.0564 (5)
C50.65734 (17)0.4056 (3)0.71361 (16)0.0343 (5)
H5A0.67710.37940.78320.041*
O50.10926 (14)0.7942 (3)0.49516 (14)0.0579 (5)
H5B0.08790.76650.44670.069*
C60.75574 (19)0.3587 (3)0.68039 (18)0.0425 (6)
C70.48023 (17)0.3472 (3)0.73329 (16)0.0343 (5)
H7A0.51600.30670.79870.041*
C90.56111 (19)0.6301 (3)0.77258 (17)0.0404 (5)
H9A0.54490.74700.76690.048*
H9B0.59870.60850.83990.048*
C100.6324 (2)0.5904 (3)0.70921 (18)0.0424 (6)
H10A0.69680.65290.73160.051*
H10B0.59870.62210.64250.051*
C110.3777 (2)0.2509 (3)0.7033 (2)0.0544 (7)
H11A0.34940.25720.63320.065*
H11B0.39200.13570.72040.065*
C120.29722 (17)0.3121 (3)0.74972 (17)0.0420 (5)
H12A0.23500.25310.73640.050*
C130.30539 (16)0.4407 (3)0.80729 (15)0.0330 (5)
C140.40501 (17)0.5457 (3)0.83295 (15)0.0326 (5)
C150.45858 (18)0.5331 (3)0.74771 (16)0.0353 (5)
C160.21627 (17)0.4787 (3)0.85160 (16)0.0350 (5)
H16A0.15340.42920.80800.042*
C170.19584 (18)0.6672 (3)0.85059 (17)0.0373 (5)
C180.29810 (19)0.7566 (3)0.90141 (18)0.0416 (5)
H18A0.28450.87390.90370.050*
H18B0.32340.71720.96790.050*
C190.38151 (19)0.7295 (3)0.84990 (17)0.0390 (5)
H19A0.44560.78140.88780.047*
H19B0.36020.78470.78730.047*
C200.1086 (2)0.7089 (3)0.89839 (19)0.0486 (6)
H20A0.10450.82780.90440.058*
H20B0.04230.67080.85640.058*
C210.1263 (2)0.6317 (4)0.99763 (19)0.0533 (7)
H21A0.06790.65801.02290.064*
H21B0.18890.67801.04170.064*
C220.1377 (2)0.4456 (3)0.99400 (18)0.0480 (6)
H22A0.07360.40100.94980.058*
C230.22925 (19)0.4004 (3)0.95339 (17)0.0411 (5)
H23A0.29370.44310.99810.049*
C240.8518 (2)0.4416 (4)0.7495 (2)0.0584 (7)
H24A0.85260.42010.81570.088*
H24B0.84860.55850.73810.088*
H24C0.91410.39790.73780.088*
C250.7499 (3)0.4133 (4)0.5764 (2)0.0605 (7)
H25A0.81610.39420.56400.091*
H25B0.73330.52880.56920.091*
H25C0.69670.35120.53100.091*
C260.5071 (2)0.3335 (4)0.56091 (17)0.0514 (7)
H26A0.54370.26910.52470.077*
H26B0.51200.44840.54630.077*
H26C0.43500.30100.54340.077*
C270.3843 (2)0.6049 (4)0.65303 (17)0.0512 (6)
H27A0.41320.58530.59960.077*
H27B0.37650.72150.66060.077*
H27C0.31730.55220.64020.077*
C280.47549 (17)0.4806 (3)0.93108 (16)0.0402 (5)
H28A0.44400.50580.98210.060*
H28B0.54280.53230.94490.060*
H28C0.48330.36320.92720.060*
C290.2394 (3)0.2128 (4)0.9468 (2)0.0610 (8)
H29A0.25340.16561.01070.092*
H29B0.29570.18710.91970.092*
H29C0.17550.16810.90590.092*
C300.1508 (3)0.3706 (4)1.0951 (2)0.0671 (8)
H30A0.09860.41511.12250.101*
H30B0.21890.39671.13650.101*
H30C0.14290.25291.08940.101*
C310.15463 (19)0.7326 (3)0.74804 (19)0.0441 (6)
C320.0496 (2)0.6730 (4)0.58938 (19)0.0587 (8)
H32A0.03590.57780.54660.070*
H32B0.09600.74640.56760.070*
C330.0518 (2)0.7612 (3)0.58279 (19)0.0435 (6)
OW0.04995 (14)0.6584 (3)0.35682 (15)0.0641 (6)
HWB0.03150.55780.36560.077*
HWA0.00650.67020.33930.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0566 (12)0.0473 (12)0.149 (2)0.0031 (10)0.0575 (14)0.0128 (13)
C10.0439 (14)0.0373 (13)0.0673 (16)0.0051 (11)0.0211 (13)0.0026 (12)
C20.0506 (15)0.0300 (12)0.0590 (15)0.0019 (11)0.0198 (12)0.0073 (11)
O20.0589 (12)0.0472 (11)0.0797 (14)0.0059 (9)0.0092 (10)0.0249 (10)
O30.0641 (12)0.0464 (10)0.0434 (9)0.0193 (9)0.0018 (8)0.0006 (8)
C30.0411 (12)0.0271 (11)0.0542 (13)0.0019 (10)0.0168 (11)0.0084 (10)
C40.0370 (11)0.0288 (11)0.0405 (12)0.0031 (10)0.0084 (9)0.0033 (10)
O40.0618 (12)0.0465 (10)0.0634 (12)0.0084 (10)0.0216 (9)0.0023 (9)
C50.0372 (12)0.0294 (11)0.0362 (11)0.0002 (9)0.0101 (9)0.0005 (9)
O50.0508 (10)0.0576 (12)0.0575 (11)0.0168 (10)0.0024 (8)0.0007 (9)
C60.0440 (13)0.0324 (12)0.0562 (15)0.0022 (10)0.0222 (12)0.0042 (11)
C70.0353 (12)0.0282 (12)0.0380 (11)0.0007 (9)0.0077 (9)0.0044 (9)
C90.0486 (13)0.0246 (11)0.0507 (13)0.0019 (10)0.0183 (11)0.0061 (10)
C100.0492 (14)0.0270 (12)0.0527 (14)0.0007 (10)0.0169 (11)0.0021 (10)
C110.0432 (14)0.0457 (15)0.0740 (19)0.0102 (12)0.0158 (13)0.0316 (14)
C120.0306 (11)0.0400 (12)0.0520 (13)0.0038 (10)0.0056 (10)0.0125 (11)
C130.0327 (11)0.0267 (10)0.0354 (11)0.0058 (9)0.0026 (9)0.0019 (9)
C140.0335 (11)0.0267 (11)0.0344 (11)0.0019 (9)0.0041 (9)0.0036 (9)
C150.0386 (12)0.0287 (11)0.0354 (11)0.0042 (9)0.0051 (10)0.0009 (9)
C160.0325 (11)0.0284 (11)0.0397 (12)0.0027 (9)0.0027 (9)0.0004 (9)
C170.0379 (12)0.0262 (11)0.0471 (13)0.0069 (9)0.0110 (10)0.0008 (9)
C180.0464 (13)0.0275 (11)0.0488 (13)0.0016 (10)0.0101 (11)0.0074 (10)
C190.0429 (13)0.0281 (12)0.0448 (13)0.0030 (10)0.0102 (10)0.0089 (10)
C200.0476 (15)0.0393 (14)0.0612 (16)0.0113 (11)0.0191 (12)0.0049 (12)
C210.0541 (15)0.0531 (16)0.0594 (16)0.0007 (13)0.0268 (13)0.0073 (13)
C220.0497 (14)0.0460 (15)0.0488 (14)0.0057 (12)0.0144 (11)0.0037 (12)
C230.0424 (13)0.0363 (13)0.0416 (13)0.0011 (10)0.0068 (10)0.0003 (10)
C240.0451 (14)0.0475 (15)0.084 (2)0.0076 (12)0.0208 (14)0.0105 (15)
C250.0755 (19)0.0542 (17)0.0652 (18)0.0055 (15)0.0418 (16)0.0010 (14)
C260.0559 (16)0.0558 (17)0.0403 (13)0.0059 (13)0.0101 (11)0.0091 (12)
C270.0602 (16)0.0487 (15)0.0409 (13)0.0173 (13)0.0080 (11)0.0033 (11)
C280.0357 (11)0.0447 (14)0.0363 (12)0.0013 (10)0.0036 (9)0.0010 (10)
C290.074 (2)0.0428 (16)0.0670 (18)0.0079 (14)0.0207 (16)0.0121 (13)
C300.078 (2)0.068 (2)0.0618 (18)0.0087 (16)0.0303 (16)0.0056 (14)
C310.0369 (13)0.0399 (14)0.0553 (14)0.0104 (11)0.0127 (11)0.0045 (12)
C320.0658 (18)0.0592 (18)0.0459 (14)0.0277 (15)0.0073 (13)0.0019 (12)
C330.0465 (13)0.0279 (12)0.0528 (15)0.0019 (10)0.0086 (12)0.0017 (10)
OW0.0455 (10)0.0595 (13)0.0849 (14)0.0056 (9)0.0141 (10)0.0206 (11)
Geometric parameters (Å, º) top
O1—C11.427 (3)C16—H16A0.9800
O1—H1A0.8200C17—C311.512 (3)
C1—C21.508 (4)C17—C181.536 (3)
C1—C61.526 (3)C17—C201.543 (3)
C1—H1B0.9800C18—C191.513 (3)
C2—C31.518 (3)C18—H18A0.9700
C2—H2A0.9700C18—H18B0.9700
C2—H2B0.9700C19—H19A0.9700
O2—C311.209 (3)C19—H19B0.9700
O3—C311.337 (3)C20—C211.509 (4)
O3—C321.423 (3)C20—H20A0.9700
C3—C41.537 (3)C20—H20B0.9700
C3—H3A0.9700C21—C221.517 (4)
C3—H3B0.9700C21—H21A0.9700
C4—C261.538 (3)C21—H21B0.9700
C4—C51.551 (3)C22—C301.533 (4)
C4—C71.569 (3)C22—C231.536 (3)
O4—C331.201 (3)C22—H22A0.9800
C5—C101.531 (3)C23—C291.531 (4)
C5—C61.563 (3)C23—H23A0.9800
C5—H5A0.9800C24—H24A0.9600
O5—C331.301 (3)C24—H24B0.9600
O5—H5B0.8500C24—H24C0.9600
C6—C251.533 (4)C25—H25A0.9600
C6—C241.536 (4)C25—H25B0.9600
C7—C111.528 (3)C25—H25C0.9600
C7—C151.558 (3)C26—H26A0.9600
C7—H7A0.9800C26—H26B0.9600
C9—C101.521 (3)C26—H26C0.9600
C9—C151.530 (3)C27—H27A0.9600
C9—H9A0.9700C27—H27B0.9600
C9—H9B0.9700C27—H27C0.9600
C10—H10A0.9700C28—H28A0.9600
C10—H10B0.9700C28—H28B0.9600
C11—C121.496 (4)C28—H28C0.9600
C11—H11A0.9700C29—H29A0.9600
C11—H11B0.9700C29—H29B0.9600
C12—C131.314 (3)C29—H29C0.9600
C12—H12A0.9300C30—H30A0.9600
C13—C161.527 (3)C30—H30B0.9600
C13—C141.533 (3)C30—H30C0.9600
C14—C281.548 (3)C32—C331.508 (4)
C14—C191.555 (3)C32—H32A0.9700
C14—C151.580 (3)C32—H32B0.9700
C15—C271.550 (3)OW—HWB0.8500
C16—C171.550 (3)OW—HWA0.8634
C16—C231.553 (3)
C1—O1—H1A109.5C20—C17—C16111.3 (2)
O1—C1—C2109.6 (2)C19—C18—C17112.19 (18)
O1—C1—C6108.6 (2)C19—C18—H18A109.2
C2—C1—C6114.7 (2)C17—C18—H18A109.2
O1—C1—H1B107.9C19—C18—H18B109.2
C2—C1—H1B107.9C17—C18—H18B109.2
C6—C1—H1B107.9H18A—C18—H18B107.9
C1—C2—C3111.17 (19)C18—C19—C14115.02 (19)
C1—C2—H2A109.4C18—C19—H19A108.5
C3—C2—H2A109.4C14—C19—H19A108.5
C1—C2—H2B109.4C18—C19—H19B108.5
C3—C2—H2B109.4C14—C19—H19B108.5
H2A—C2—H2B108.0H19A—C19—H19B107.5
C31—O3—C32117.5 (2)C21—C20—C17112.9 (2)
C2—C3—C4113.07 (19)C21—C20—H20A109.0
C2—C3—H3A109.0C17—C20—H20A109.0
C4—C3—H3A109.0C21—C20—H20B109.0
C2—C3—H3B109.0C17—C20—H20B109.0
C4—C3—H3B109.0H20A—C20—H20B107.8
H3A—C3—H3B107.8C20—C21—C22111.7 (2)
C3—C4—C26107.61 (19)C20—C21—H21A109.3
C3—C4—C5107.93 (18)C22—C21—H21A109.3
C26—C4—C5113.6 (2)C20—C21—H21B109.3
C3—C4—C7107.62 (18)C22—C21—H21B109.3
C26—C4—C7113.15 (18)H21A—C21—H21B107.9
C5—C4—C7106.63 (17)C21—C22—C30110.3 (2)
C10—C5—C4110.11 (19)C21—C22—C23110.4 (2)
C10—C5—C6114.61 (19)C30—C22—C23111.7 (2)
C4—C5—C6117.54 (18)C21—C22—H22A108.1
C10—C5—H5A104.3C30—C22—H22A108.1
C4—C5—H5A104.3C23—C22—H22A108.1
C6—C5—H5A104.3C29—C23—C22110.7 (2)
C33—O5—H5B119.3C29—C23—C16109.6 (2)
C1—C6—C25112.0 (2)C22—C23—C16111.4 (2)
C1—C6—C24107.2 (2)C29—C23—H23A108.3
C25—C6—C24107.8 (2)C22—C23—H23A108.3
C1—C6—C5107.09 (19)C16—C23—H23A108.3
C25—C6—C5114.0 (2)C6—C24—H24A109.5
C24—C6—C5108.5 (2)C6—C24—H24B109.5
C11—C7—C15110.25 (19)H24A—C24—H24B109.5
C11—C7—C4113.45 (18)C6—C24—H24C109.5
C15—C7—C4117.41 (18)H24A—C24—H24C109.5
C11—C7—H7A104.8H24B—C24—H24C109.5
C15—C7—H7A104.8C6—C25—H25A109.5
C4—C7—H7A104.8C6—C25—H25B109.5
C10—C9—C15114.85 (19)H25A—C25—H25B109.5
C10—C9—H9A108.6C6—C25—H25C109.5
C15—C9—H9A108.6H25A—C25—H25C109.5
C10—C9—H9B108.6H25B—C25—H25C109.5
C15—C9—H9B108.6C4—C26—H26A109.5
H9A—C9—H9B107.5C4—C26—H26B109.5
C9—C10—C5110.30 (19)H26A—C26—H26B109.5
C9—C10—H10A109.6C4—C26—H26C109.5
C5—C10—H10A109.6H26A—C26—H26C109.5
C9—C10—H10B109.6H26B—C26—H26C109.5
C5—C10—H10B109.6C15—C27—H27A109.5
H10A—C10—H10B108.1C15—C27—H27B109.5
C12—C11—C7113.78 (19)H27A—C27—H27B109.5
C12—C11—H11A108.8C15—C27—H27C109.5
C7—C11—H11A108.8H27A—C27—H27C109.5
C12—C11—H11B108.8H27B—C27—H27C109.5
C7—C11—H11B108.8C14—C28—H28A109.5
H11A—C11—H11B107.7C14—C28—H28B109.5
C13—C12—C11126.7 (2)H28A—C28—H28B109.5
C13—C12—H12A116.7C14—C28—H28C109.5
C11—C12—H12A116.7H28A—C28—H28C109.5
C12—C13—C16118.9 (2)H28B—C28—H28C109.5
C12—C13—C14120.3 (2)C23—C29—H29A109.5
C16—C13—C14120.80 (18)C23—C29—H29B109.5
C13—C14—C28107.08 (18)H29A—C29—H29B109.5
C13—C14—C19111.68 (18)C23—C29—H29C109.5
C28—C14—C19106.42 (18)H29A—C29—H29C109.5
C13—C14—C15109.16 (17)H29B—C29—H29C109.5
C28—C14—C15112.80 (17)C22—C30—H30A109.5
C19—C14—C15109.69 (17)C22—C30—H30B109.5
C9—C15—C27108.7 (2)H30A—C30—H30B109.5
C9—C15—C7109.91 (18)C22—C30—H30C109.5
C27—C15—C7110.09 (19)H30A—C30—H30C109.5
C9—C15—C14110.80 (18)H30B—C30—H30C109.5
C27—C15—C14109.52 (18)O2—C31—O3122.5 (2)
C7—C15—C14107.78 (17)O2—C31—C17124.6 (3)
C13—C16—C17110.48 (19)O3—C31—C17112.8 (2)
C13—C16—C23114.31 (18)O3—C32—C33111.5 (2)
C17—C16—C23112.59 (19)O3—C32—H32A109.3
C13—C16—H16A106.3C33—C32—H32A109.3
C17—C16—H16A106.3O3—C32—H32B109.3
C23—C16—H16A106.3C33—C32—H32B109.3
C31—C17—C18109.12 (19)H32A—C32—H32B108.0
C31—C17—C20103.84 (19)O4—C33—O5122.0 (2)
C18—C17—C20111.50 (19)O4—C33—C32122.2 (2)
C31—C17—C16111.69 (19)O5—C33—C32115.7 (2)
C18—C17—C16109.25 (18)HWB—OW—HWA84.8
O1—C1—C2—C3179.9 (2)C4—C7—C15—C14165.94 (16)
C6—C1—C2—C357.5 (3)C13—C14—C15—C9177.45 (18)
C1—C2—C3—C457.0 (3)C28—C14—C15—C958.5 (2)
C2—C3—C4—C2670.6 (3)C19—C14—C15—C959.9 (2)
C2—C3—C4—C552.4 (2)C13—C14—C15—C2762.6 (2)
C2—C3—C4—C7167.17 (19)C28—C14—C15—C27178.5 (2)
C3—C4—C5—C10174.95 (18)C19—C14—C15—C2760.1 (2)
C26—C4—C5—C1065.8 (2)C13—C14—C15—C757.2 (2)
C7—C4—C5—C1059.6 (2)C28—C14—C15—C761.7 (2)
C3—C4—C5—C651.3 (3)C19—C14—C15—C7179.83 (18)
C26—C4—C5—C667.9 (3)C12—C13—C16—C17139.4 (2)
C7—C4—C5—C6166.72 (18)C14—C13—C16—C1743.4 (3)
O1—C1—C6—C2549.3 (3)C12—C13—C16—C2392.4 (3)
C2—C1—C6—C2573.7 (3)C14—C13—C16—C2384.8 (2)
O1—C1—C6—C2468.8 (3)C13—C16—C17—C3166.4 (2)
C2—C1—C6—C24168.3 (2)C23—C16—C17—C31164.42 (19)
O1—C1—C6—C5174.9 (2)C13—C16—C17—C1854.4 (2)
C2—C1—C6—C552.0 (3)C23—C16—C17—C1874.8 (2)
C10—C5—C6—C1177.7 (2)C13—C16—C17—C20177.98 (18)
C4—C5—C6—C150.6 (3)C23—C16—C17—C2048.8 (3)
C10—C5—C6—C2557.8 (3)C31—C17—C18—C1960.7 (2)
C4—C5—C6—C2573.9 (3)C20—C17—C18—C19174.8 (2)
C10—C5—C6—C2462.3 (3)C16—C17—C18—C1961.7 (2)
C4—C5—C6—C24166.0 (2)C17—C18—C19—C1453.9 (3)
C3—C4—C7—C1161.6 (2)C13—C14—C19—C1837.8 (3)
C26—C4—C7—C1157.2 (3)C28—C14—C19—C1878.7 (2)
C5—C4—C7—C11177.2 (2)C15—C14—C19—C18158.94 (18)
C3—C4—C7—C15167.87 (19)C31—C17—C20—C21171.4 (2)
C26—C4—C7—C1573.4 (3)C18—C17—C20—C2171.2 (3)
C5—C4—C7—C1552.3 (2)C16—C17—C20—C2151.1 (3)
C15—C9—C10—C556.6 (3)C17—C20—C21—C2256.5 (3)
C4—C5—C10—C963.7 (2)C20—C21—C22—C30177.6 (2)
C6—C5—C10—C9161.1 (2)C20—C21—C22—C2358.5 (3)
C15—C7—C11—C1235.2 (3)C21—C22—C23—C29178.4 (2)
C4—C7—C11—C12169.2 (2)C30—C22—C23—C2958.4 (3)
C7—C11—C12—C133.6 (4)C21—C22—C23—C1656.1 (3)
C11—C12—C13—C16177.1 (2)C30—C22—C23—C16179.3 (2)
C11—C12—C13—C140.2 (4)C13—C16—C23—C2957.9 (3)
C12—C13—C14—C2895.1 (2)C17—C16—C23—C29175.0 (2)
C16—C13—C14—C2882.1 (2)C13—C16—C23—C22179.22 (19)
C12—C13—C14—C19148.8 (2)C17—C16—C23—C2252.1 (3)
C16—C13—C14—C1934.0 (3)C32—O3—C31—O21.8 (4)
C12—C13—C14—C1527.3 (3)C32—O3—C31—C17175.0 (2)
C16—C13—C14—C15155.50 (18)C18—C17—C31—O232.5 (3)
C10—C9—C15—C2774.9 (2)C20—C17—C31—O286.5 (3)
C10—C9—C15—C745.6 (3)C16—C17—C31—O2153.4 (2)
C10—C9—C15—C14164.66 (18)C18—C17—C31—O3150.77 (19)
C11—C7—C15—C9177.09 (19)C20—C17—C31—O390.2 (2)
C4—C7—C15—C945.1 (3)C16—C17—C31—O329.9 (3)
C11—C7—C15—C2757.3 (3)C31—O3—C32—C3381.0 (3)
C4—C7—C15—C2774.7 (2)O3—C32—C33—O410.7 (4)
C11—C7—C15—C1462.1 (2)O3—C32—C33—O5171.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···O2i0.852.412.839 (3)112
OW—HWB···O4i0.852.583.365 (3)154
O1—H1A···O4ii0.821.982.758 (3)159
OW—HWA···O1iii0.861.882.681 (3)154
O5—H5B···OW0.851.742.575 (3)165
C12—H12A···OWi0.932.573.455 (3)159
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1, z; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC32H50O5·H2O
Mr532.74
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)13.338 (3), 8.1010 (16), 14.311 (3)
β (°) 106.26 (3)
V3)1484.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5692, 5446, 4536
Rint0.025
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.00
No. of reflections5446
No. of parameters350
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS (Enraf–Nonius, 1994, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···O2i0.852.412.839 (3)112
OW—HWB···O4i0.852.583.365 (3)154
O1—H1A···O4ii0.821.982.758 (3)159
OW—HWA···O1iii0.861.882.681 (3)154
O5—H5B···OW0.851.742.575 (3)165
C12—H12A···OWi0.932.573.455 (3)159
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1, z; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge support from the Natural Science Fundation of Jiangsu Province (No. BK2010538). The authors also thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for collecting the crystallographic data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEs-saady, D., Simon, A., Ollier, M., Maurizis, J. C., Chulia, A. J. & Delage, C. (1996). Cancer Lett. 106, 193–197.  CAS PubMed Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPaton, W. F. & Paul, I. C. (1979). Cryst. Struct. Commun. 8, 207–211.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimon, A., Delage, C., Saux, M., Chulia, A. J., Najid, A. & Rigaud, M. (1992). Acta Cryst. C48, 726–728.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationStout, G. H. & Stevens, K. L. (1963). J. Org. Chem. 28, 1259–1262.  CrossRef CAS Google Scholar
First citationWen, X.-A., Zhang, P., Liu, J., Zhang, L.-Y., Wu, X.-M., Ni, P.-Z. & Sun, H.-B. (2006). Bioorg. Med. Chem. Lett. 16, 722–726.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds