organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-oxo-2-(2-phenyl­hydrazinyl­­idene)butano­ate: a re-determination

aDepartment of Physics, Ranchi University, Ranchi 834 008, India, and bDepartment of Chemistry, Bihar University, Muzzafarpur 842 002, India
*Correspondence e-mail: prasadsm50@hotmail.com

(Received 6 January 2011; accepted 14 January 2011; online 22 January 2011)

The previous crystallographic studies [Wang et al. (2005[Wang, J.-P., Cheng, X.-X. & Zhang, Y.-Q. (2005). Huaxue Yanjiu, 16, 29-32.]). Huaxue Yanjiu 16, 29–32; Wang et al. (2007[Wang, J.-P., Fu, Y.-J., Yin, W.-P., Wang, J.-G. & Qin, J.-H. (2007). Youji Huaxue, 27, 524.]). Youji Huaxue, 27, 524] of the title compound, C12H14N2O3, gave only the unit-cell dimensions and an R factor with no other details available: the full structure is presented here. The eth­oxy group is disordered over two orientations with refined occupancies of 0.642 (15):0.358 (15). The nine C atoms and two N atoms of the 1-phenyl-2-(propan-2-yl­idene)hydrazine segment of the mol­ecule are close to being coplanar, with a maximum deviation of 0.0779 (14) Å for the phenyl­amino N atom and an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, pairs of C—H⋯O hydrogen bonds link mol­ecules into inverson dimers, generating R22(16) loops.

Related literature

For previous reports of the structure of the title compound, see: Wang et al. (2005[Wang, J.-P., Cheng, X.-X. & Zhang, Y.-Q. (2005). Huaxue Yanjiu, 16, 29-32.], 2007[Wang, J.-P., Fu, Y.-J., Yin, W.-P., Wang, J.-G. & Qin, J.-H. (2007). Youji Huaxue, 27, 524.]). For further synthetic details, see: Fernandes et al. (1975[Fernandes, P. S., Nadkarny, V. V., Jaber, G. A. & Jain, R. P. (1975). J. Indian Chem. Soc. 52, 546, 840-842.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O3

  • Mr = 234.25

  • Monoclinic, P 21 /c

  • a = 8.4375 (9) Å

  • b = 17.551 (2) Å

  • c = 8.242 (1) Å

  • β = 91.24 (1)°

  • V = 1220.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.2 × 0.16 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2393 measured reflections

  • 2243 independent reflections

  • 1715 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 60 min intensity decay: 0.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.185

  • S = 1.07

  • 2243 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.92 2.571 (2) 131
C2—H2⋯O1i 0.93 2.53 3.430 (3) 163
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The unit cell of the title compound, (I), was reported by Wang et al. (2005, 2007). In the full structure reported here, the ethoxy group is disordered over two orientations with refined occupancies 0.642 (15):0.358 (15). The planes C9—O3A—C10A (plane A) and C9—O3B—C10B (plane B) of the two disordered ethoxy groups are inclined at an angle of 38.3 (17)°. The bonds C10A—C11A and C10B—C11B are bent in opposite directions with atom C11A and C11B deviating from planes A & B by 1.33 (1)Å and -1.41 (2)Å, respectively. The torsion angles C9—O3A—C10A—C11A and C9—O3B—C10B—C11B are 80.3 (6) and -89.0 (12)°, respectively. An intramolecular N—H···O hydrogen bond contributes to the planarity of the C1···C9, N1, N2, 1-phenyl-2-(propan-2-ylidene)hydrazine segment of the molecule. In the crystal structure C2—H2···O1 hydrogen bonds link pairs of molecules into centrosymmetric dimers generating R22(16) rings (Bernstein et al., 1995).

Related literature top

For previous reports of the structure of the title compound, see: Wang et al. (2005, 2007). For further synthetic details, see: Fernandes et al. (1975). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the coupling of diazonium salt of aniline with ethyl acetoacetate (Fernandes et al., 1975). It was recrystalized from methanol by slow evaporation at room temperature to yield colourless blocks of (I).

Refinement top

High values of isotropic thermal parameters for atoms O3 and C10 and unacceptable bond lengths for O3—C10 and C10—C11 of the ethoxy group indicated possible disorder. A difference elctron density map excluding the atoms O3, C10 and C11 showed that the ethoxy group to be disordered over two sites. The ratio of the occupancy factors of the two disorder components refined to 0.642 (15):0.358 (15). All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2, 0.86Å, Uiso = 1.2Ueq (N) for NH, and 0.96Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structre of (I) with 30% probability displacement ellipsoids for non-hyrogen atoms showing the disordered ethoxy group O3—C10—C11.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the a axis.
Ethyl 3-oxo-2-(2-phenylhydrazinylidene)butanoate top
Crystal data top
C12H14N2O3F(000) = 496
Mr = 234.25Dx = 1.275 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.4375 (9) Åθ = 25.8–35.5°
b = 17.551 (2) ŵ = 0.77 mm1
c = 8.242 (1) ÅT = 293 K
β = 91.24 (1)°Block, colourless
V = 1220.2 (2) Å30.2 × 0.16 × 0.12 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 69.8°, θmin = 5.0°
Graphite monochromatorh = 1010
ω–2θ scansk = 021
2393 measured reflectionsl = 09
2243 independent reflections3 standard reflections every 60 min
1715 reflections with I > 2σ(I) intensity decay: 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.1173P)2 + 0.0072P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2243 reflectionsΔρmax = 0.19 e Å3
186 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.072 (5)
Crystal data top
C12H14N2O3V = 1220.2 (2) Å3
Mr = 234.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.4375 (9) ŵ = 0.77 mm1
b = 17.551 (2) ÅT = 293 K
c = 8.242 (1) Å0.2 × 0.16 × 0.12 mm
β = 91.24 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
2393 measured reflections3 standard reflections every 60 min
2243 independent reflections intensity decay: 0.0%
1715 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
2243 reflectionsΔρmin = 0.17 e Å3
186 parameters
Special details top

Geometry. All su's are estimated using the full covariance matrix. The cell su's are taken into account individually in the estimation of su's in distances, angles and torsion angles; correlations between su's in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O3A0.5943 (5)0.3242 (3)0.4120 (7)0.0880 (14)0.642 (15)
C10A0.7449 (8)0.2909 (5)0.3648 (8)0.104 (2)0.642 (15)
H10A0.75820.29840.24930.125*0.642 (15)
H10B0.74250.23650.38510.125*0.642 (15)
C11A0.8803 (11)0.3242 (4)0.4529 (7)0.117 (2)0.642 (15)
H11A0.85550.32950.56550.176*0.642 (15)
H11B0.90350.37340.40840.176*0.642 (15)
H11C0.97090.29160.44260.176*0.642 (15)
O3B0.6366 (10)0.3601 (9)0.4633 (10)0.095 (3)0.358 (15)
C10B0.792 (2)0.3348 (9)0.416 (2)0.126 (4)0.358 (15)
H10C0.83230.36780.33200.151*0.358 (15)
H10D0.86490.33630.50840.151*0.358 (15)
C11B0.7762 (19)0.2558 (11)0.354 (2)0.168 (7)0.358 (15)
H11D0.71670.25600.25380.252*0.358 (15)
H11E0.72220.22520.43240.252*0.358 (15)
H11F0.87960.23490.33710.252*0.358 (15)
O10.1739 (2)0.49615 (9)0.38454 (16)0.0898 (5)
O20.6193 (2)0.41989 (13)0.2324 (2)0.1178 (7)
N10.23998 (17)0.41137 (8)0.63121 (16)0.0619 (4)
H10.17110.44120.58620.074*
N20.36686 (18)0.39265 (8)0.55505 (17)0.0621 (4)
C10.2155 (2)0.38255 (9)0.78858 (19)0.0585 (5)
C20.0821 (2)0.40648 (12)0.8691 (2)0.0727 (5)
H20.01120.44040.81990.087*
C30.0557 (3)0.37944 (14)1.0233 (3)0.0833 (6)
H30.03270.39581.07900.100*
C40.1590 (3)0.32856 (12)1.0954 (2)0.0803 (6)
H40.13960.31011.19890.096*
C50.2912 (3)0.30493 (11)1.0145 (2)0.0742 (6)
H50.36130.27071.06380.089*
C60.3204 (2)0.33190 (10)0.8599 (2)0.0647 (5)
H60.40970.31600.80510.078*
C70.4007 (2)0.42190 (11)0.4118 (2)0.0647 (5)
C80.3017 (2)0.47900 (11)0.3269 (2)0.0700 (5)
C90.5507 (3)0.39304 (14)0.3460 (3)0.0820 (6)
C120.3544 (3)0.51477 (14)0.1731 (3)0.0881 (7)
H12A0.28560.55650.14540.132*
H12B0.35070.47770.08750.132*
H12C0.46100.53310.18730.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O3A0.0801 (18)0.079 (2)0.106 (3)0.0054 (16)0.0292 (17)0.0026 (18)
C10A0.107 (4)0.093 (4)0.115 (4)0.023 (3)0.040 (3)0.008 (3)
C11A0.087 (4)0.142 (5)0.122 (4)0.029 (3)0.018 (3)0.003 (3)
O3B0.081 (3)0.111 (7)0.095 (4)0.020 (4)0.020 (3)0.005 (4)
C10B0.085 (9)0.139 (10)0.154 (10)0.025 (7)0.033 (7)0.010 (8)
C11B0.137 (10)0.129 (12)0.241 (16)0.046 (9)0.066 (9)0.030 (10)
O10.1019 (11)0.1033 (11)0.0645 (8)0.0229 (8)0.0097 (7)0.0206 (7)
O20.1127 (14)0.1545 (18)0.0879 (12)0.0112 (11)0.0391 (10)0.0288 (11)
N10.0694 (9)0.0669 (9)0.0495 (8)0.0048 (6)0.0022 (6)0.0060 (6)
N20.0684 (9)0.0645 (8)0.0535 (8)0.0050 (6)0.0021 (6)0.0015 (6)
C10.0697 (10)0.0578 (9)0.0479 (9)0.0059 (7)0.0021 (7)0.0010 (7)
C20.0725 (11)0.0827 (12)0.0631 (10)0.0069 (9)0.0064 (8)0.0105 (9)
C30.0880 (13)0.0957 (14)0.0669 (12)0.0012 (11)0.0180 (10)0.0088 (10)
C40.1020 (15)0.0811 (13)0.0579 (10)0.0139 (10)0.0066 (10)0.0127 (9)
C50.0991 (14)0.0629 (11)0.0601 (10)0.0009 (9)0.0064 (9)0.0089 (8)
C60.0786 (11)0.0583 (9)0.0572 (10)0.0041 (7)0.0002 (8)0.0005 (7)
C70.0736 (11)0.0695 (10)0.0511 (9)0.0098 (8)0.0023 (7)0.0005 (7)
C80.0816 (12)0.0753 (11)0.0529 (9)0.0100 (9)0.0013 (8)0.0033 (8)
C90.0801 (13)0.1015 (16)0.0648 (11)0.0064 (11)0.0107 (10)0.0009 (10)
C120.0926 (15)0.1040 (16)0.0677 (12)0.0173 (12)0.0002 (10)0.0252 (11)
Geometric parameters (Å, º) top
O3A—C91.373 (4)N1—H10.8600
O3A—C10A1.459 (8)N2—C71.324 (2)
C10A—C11A1.462 (12)C1—C21.384 (3)
C10A—H10A0.9700C1—C61.377 (2)
C10A—H10B0.9700C2—C31.379 (3)
C11A—H11A0.9600C2—H20.9300
C11A—H11B0.9600C3—C41.374 (3)
C11A—H11C0.9600C3—H30.9300
O3B—C91.328 (7)C4—C51.376 (3)
O3B—C10B1.445 (15)C4—H40.9300
C10B—C11B1.48 (2)C5—C61.387 (3)
C10B—H10C0.9700C5—H50.9300
C10B—H10D0.9700C6—H60.9300
C11B—H11D0.9600C7—C81.472 (3)
C11B—H11E0.9600C7—C91.477 (3)
C11B—H11F0.9600C8—C121.491 (3)
O1—C81.225 (2)C12—H12A0.9600
O2—C91.207 (3)C12—H12B0.9600
N1—N21.295 (2)C12—H12C0.9600
N1—C11.412 (2)
C9—O3A—C10A118.3 (4)C4—C3—C2120.6 (2)
O3A—C10A—C11A112.6 (9)C4—C3—H3119.7
O3A—C10A—H10A109.1C2—C3—H3119.7
C11A—C10A—H10A109.1C5—C4—C3119.96 (18)
O3A—C10A—H10B109.1C5—C4—H4120.0
C11A—C10A—H10B109.1C3—C4—H4120.0
H10A—C10A—H10B107.8C4—C5—C6120.32 (18)
C9—O3B—C10B114.9 (9)C4—C5—H5119.8
C11B—C10B—O3B107.8 (17)C6—C5—H5119.8
C11B—C10B—H10C110.1C1—C6—C5119.16 (18)
O3B—C10B—H10C110.1C1—C6—H6120.4
C11B—C10B—H10D110.1C5—C6—H6120.4
O3B—C10B—H10D110.1N2—C7—C8123.80 (17)
H10C—C10B—H10D108.5N2—C7—C9113.43 (17)
C10B—C11B—H11D109.5C8—C7—C9122.76 (17)
C10B—C11B—H11E109.5O1—C8—C7118.59 (16)
H11D—C11B—H11E109.5O1—C8—C12120.48 (19)
C10B—C11B—H11F109.5C7—C8—C12120.92 (19)
H11D—C11B—H11F109.5O2—C9—O3B118.1 (4)
H11E—C11B—H11F109.5O2—C9—O3A121.5 (3)
N2—N1—C1119.56 (14)O3B—C9—O3A36.0 (5)
N2—N1—H1120.2O2—C9—C7125.4 (2)
C1—N1—H1120.2O3B—C9—C7109.9 (3)
N1—N2—C7122.04 (15)O3A—C9—C7112.4 (2)
C2—C1—C6120.85 (16)C8—C12—H12A109.5
C2—C1—N1117.94 (15)C8—C12—H12B109.5
C6—C1—N1121.21 (16)H12A—C12—H12B109.5
C1—C2—C3119.12 (18)C8—C12—H12C109.5
C1—C2—H2120.4H12A—C12—H12C109.5
C3—C2—H2120.4H12B—C12—H12C109.5
C9—O3A—C10A—C11A80.3 (6)C9—C7—C8—O1175.22 (18)
C9—O3B—C10B—C11B89.0 (12)N2—C7—C8—C12174.34 (17)
C1—N1—N2—C7175.53 (14)C9—C7—C8—C124.1 (3)
N2—N1—C1—C2177.16 (15)C10B—O3B—C9—O222.3 (18)
N2—N1—C1—C63.1 (3)C10B—O3B—C9—O3A83.5 (14)
C6—C1—C2—C30.6 (3)C10B—O3B—C9—C7175.5 (12)
N1—C1—C2—C3179.73 (18)C10A—O3A—C9—O212.4 (9)
C1—C2—C3—C40.9 (4)C10A—O3A—C9—O3B83.2 (8)
C2—C3—C4—C50.8 (4)C10A—O3A—C9—C7176.6 (6)
C3—C4—C5—C60.4 (3)N2—C7—C9—O2167.1 (2)
C2—C1—C6—C50.1 (3)C8—C7—C9—O211.5 (3)
N1—C1—C6—C5179.79 (16)N2—C7—C9—O3B16.3 (8)
C4—C5—C6—C10.0 (3)C8—C7—C9—O3B162.3 (8)
N1—N2—C7—C81.4 (3)N2—C7—C9—O3A22.3 (4)
N1—N2—C7—C9179.99 (16)C8—C7—C9—O3A159.1 (4)
N2—C7—C8—O16.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.922.571 (2)131
C2—H2···O1i0.932.533.430 (3)163
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N2O3
Mr234.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4375 (9), 17.551 (2), 8.242 (1)
β (°) 91.24 (1)
V3)1220.2 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.2 × 0.16 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2393, 2243, 1715
Rint0.022
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.185, 1.07
No. of reflections2243
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.922.571 (2)131
C2—H2···O1i0.932.533.430 (3)163
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the late Dr N. Prasad and his co-workers in the Department of Chemistry, BRA Bihar University, Muzaffarpur, India, for the gift of crystals and the X-ray Diffraction Group, Indian Institute of Technology, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, P. S., Nadkarny, V. V., Jaber, G. A. & Jain, R. P. (1975). J. Indian Chem. Soc. 52, 546, 840–842.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-P., Cheng, X.-X. & Zhang, Y.-Q. (2005). Huaxue Yanjiu, 16, 29–32.  CAS Google Scholar
First citationWang, J.-P., Fu, Y.-J., Yin, W.-P., Wang, J.-G. & Qin, J.-H. (2007). Youji Huaxue, 27, 524.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds